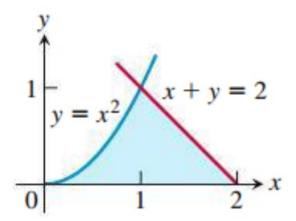

Calculus 1, Handwritten Homework 14 — Spring 2022

NAME	STUDENT NUMBER	
Write in complete sentences justifications for your claims by name or number, as is do online). Give precise values, answer in the box. Each nu problem, scan your solutions See the online syllabus for o	and use correct notation (such as using the definitions and theorem one in the examples in the notes a not numerical (calculator) approached problem is worth 5 points, and submit the scan of (in PDF)	s equal signs and integral signs). Give ms in the notes and book (quote them and videos, and in the solutions posted eximations. If provided, put your final ts. Print out this document, work the to the D2L DropBox by the deadline. From others or from the internet!
		$\int \frac{1}{\sqrt{t}} \cos(\sqrt{t} + 3) dt.$ This is Exercise



2(a). Evaluate using The Substitution Rule (Theorem 5.6): $\int \frac{e^{\cos^{-1}x} dx}{\sqrt{1-x^2}}$. This is Exercise 62 in Section 5.5.

2(b). Find the total area of the shaded region. This is Exercise 60 of Section 5.6.

3.	Find	the area	bounded	by $x -$	$y^{2/3} = 0$	and $x +$	$y^4 = 2.$	This is	Exercise	80 of Sec	tion 5.6.	
												_
												_