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Page 269, Number 11
Designing a poster. You are designing a rectangular poster to contain 50 in? of printing with a

4-in. margin at the top and bottom and a 2-in. margin at each side. What overall dimensions will

minimize the amount of paper used?

Solution. We follow the 5 step method outlined in class.
Step 1. Draw a picture and label the unknowns and constants. We let = represent the

width of the poster and y represent with height of the poster. We then have:
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Step 2. State the question in terms of the unknowns. The question is to minimize the area
A of the poster which, in terms of the unknowns, is A = zy.
Step 3. Find a relationship between the unknowns. Due to the margins, the width of the

printed area is x — 4 in. and the height of the printed area is y — 8 in. Since the total printed area
50

is 50 in?, then (z — 4)(y — 8) = 50. We can solve this for y to get y — 8 = pr

or
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Step 4. Write the desired quantity as a function of one unknown. The area of the poster

in terms of x only is:

1 8 18 8x?
8 + :E)Z X + 3 ~ Ax).

A==y (S) ==

1



Step 5. Maximize/Minimize the function. Since x cannot equal 4 (if z = 4, then there is not

printed area), then we need to minimize A(z) for x € (4,00). First, we find the derivative:
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So the derivative is 0 when x = —1 and z = 9. Since x = —1 is not in the interval of interest (4, ),

then we need not worry about it. Also, the derivative is undefined at = = 4, but this is not in the
domain of A(z). So the only critical point in the interval (4,00) is = 4. We need to see if this

corresponds to a maximum or minimum. Let’s use the first derivative test. Consider
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So by the First Derivative Test, A(x) has a minimum at = = 9 inches. When the width is z = 9
18 +8(9
inches, the height is y = ?9;—7(4) = 18 inches. So the minimum area is A = zy = 9 x 18 = 162

in?.



