

Calculus 1

August 9, 2020

Exercise A.1.6

Calculus 1

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$ and show

Solution. Since $\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$ then, multiplying both sides by 15

 $15\left(\frac{4}{5}(x-2)\right) < 15\left(\frac{1}{3}(x-6)\right)$ or (simplifying) 12(x-2) < 5(x-6) or

(distributing) 12x - 24 < 5x - 30. Adding 24 to both sides we have (by inequality property (1)) (12x - 24) + 24 < (5x - 30) + 24 or (simplifying) 12x < 5x - 6. Subtracting 5x from both sides we have (by inequality property (2)) (12x) - 5x < (5x - 6) - 5x or (simplifying) 7x < -6. Multiplying both sides by 1/7 we have (by inequality property (3)

August 9, 2020

(1/7)(7x) < (1/7)(-6) or (simplifying) x < -6/7.

the solution set on the real number line.

and using inequality property (3), we have

Exercise A.1.24

Exercise A.1.24. A proof of the Triangle Inequality.

Give the reason justifying each of the numbered steps in the following proof of the Triangle Inequality.

$$|a+b|^2 = (a+b)^2$$
 (1)
= $a^2 + 2ab + b^2$

$$\leq a^2 + 2|a||b| + b^2$$
 (2)

$$= |a|^2 + 2|a||b| + |b|^2 (3)$$

$$= (|a|+|b|)^2$$

$$|a+b| \leq |a|+|b| \tag{4}$$

Solution. Since $(a+b)^2 \ge 0$ then $(a+b)^2 = |(a+b)^2|$ by the definition of absolute value. By absolute value property (2), $|(a+b)^2| = |(a+b)(a+b)| = |a+b||a+b| = |a+b|^2$ and so step (1) is justified.

Exercise A.1.6 (continued)

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$ and show the solution set on the real number line.

Solution (continued). ... x < -6/7. So the solution set is $\{x \in \mathbb{R} \mid x < -6/7\}$ or the interval $(-\infty, -6/7)$. On the real number line this set is:

Exercise A.1.24 (continued 1)

$|a+b|^2 = (a+b)^2$ (1) = $a^2 + 2ab + b^2$

$$\leq a^2 + 2|a||b| + b^2$$
 (2)

$$= |a|^2 + 2|a||b| + |b|^2 (3)$$

$$= (|a| + |b|)^2$$

$$|a+b| \leq |a|+|b| \tag{4}$$

Solution (continued). By the definition of absolute value, if $x \ge 0$ then |x| = x, and if x < 0 (in which case -x > 0 by inequality property (4)) then |x| = -x > 0 > x; in both cases, $x \le |x|$. So, with x = ab, we have $ab \le |ab|$ and (by absolute value property (2)) |ab| = |a| |b|. Hence, $ab \le |ab| = |a| |b|$ and so (by inequality property (3)) $2ab \le 2|a| |b|$. Then (by inequality property (1)) $a^2 + b^2 + (2ab) \le a^2 + b^2 + (2|a| |b|)$ and so step (2) is justified.

Exercise A 1.24 A proof of The Triangle Inequality

Exercise A.1.24 (continued 3)

$$|a+b|^2 = (a+b)^2$$
 (1)
= $a^2 + 2ab + b^2$

$$\leq a^2 + 2|a||b| + b^2 \tag{2}$$

$$= |a|^2 + 2|a| |b| + |b|^2$$
 (3)

$$= (|a|+|b|)^2$$

$$|a+b| \leq |a|+|b| \tag{4}$$

Solution (continued). Since $|a+b|^2 \le (|a|+|b|)^2$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative numbers), we have $\sqrt{(|a+b|)^2} \le \sqrt{(|a|+|b|)^2}$ or, since $\sqrt{x^2} = |x|$, $||a+b|| \le ||a|+|b||$. Since $|a+b| \ge 0$ then ||a+b|| = |a+b|, and since $|a|+|b| \ge 0$ then ||a|+|b|| = |a|+|b|. Therefore, $|a+b| \le |a|+|b|$ and step (4) is justified. \square

Exercise A.1.24 (continued 2)

$$|a+b|^2 = (a+b)^2$$
 (1)
= $a^2 + 2ab + b^2$

$$\leq a^2 + 2|a||b| + b^2$$
 (2)

$$= |a|^2 + 2|a||b| + |b|^2 (3)$$

$$= (|a| + |b|)^2$$

$$|a+b| \leq |a|+|b| \tag{4}$$

Solution (continued). Since $x^2 \ge 0$ then $x^2 = |x^2|$ by the definition of absolute value. By absolute value property (2), $|x^2| = |xx| = |x| |x|$ and so $x^2 = |x|^2$. With x = a we have $a^2 = |a|^2$ and with x = b we have $b^2 = |b|^2$. So $a^2 + 2|a| |b| + b^2 = |a|^2 + 2|a| |b| + |b|^2$ and step (3) is justified.

7.1020 7.7.12

Exercise A.1.

Exercise A.1.12

Exercise A.1.12. Express the solution set as an interval or a union of intervals and show the solution set on the real line: |3y - 7| < 4.

Solution. By the relationship of intervals to absolute values (property (6)) we have that |3y-7| < 4 is equivalent to -4 < 3y-7 < 4. Adding 7 to each of the three parts (by inequality property (1)) we have (-4)+7 < (3y-7)+7 < (4)+7 or (simplifying) 3 < 3y < 11. Multiplying each of the three parts by 1/3 (by inequality property (3)) we have 3/3 < 3y/3 < 11/3 or (simplifying) 1 < y < 11/3. So the solution set $\{y \in \mathbb{R} \mid 1 < y < 11/3\}$ or the interval (1,11/3). On the real number line this set is:

Solution. By the relationship of intervals to absolute values (property (7)) we have that |1-x|>1 is equivalent to 1-x<-1 or 1-x>1. Adding x to both sides of each inequality (by inequality property (1)) we have (1-x) + x < (-1) + x or (1-x) + x > (1) + x, which simplifies to 1 < -1 + x or 1 > 1 + x. Adding 1 to both sides of the first inequality and subtracting 1 from both sides of the second inequality (by inequality properties (1) and (2)) we have (1) + 1 < (-1 + x) + 1 or (1) - 1 > (1 + x) - 1. This simplifies to the condition on x of 2 < x or 0 > x. We have 2 < x (or x > 2) for $x \in (2, \infty)$. We have 0 > x (or x < 0) for $x \in (-\infty, 0)$.

Calculus 1

Exercise A.1.20

Exercise A.1.20. Solve the inequality $(x-1)^2 < 4$. Express the solution set as an interval or a union of intervals and show them on the real line. Use the result $\sqrt{a^2} = |a|$.

Solution. Since $(x-1)^2 < 4$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative numbers), we have $\sqrt{(x-1)^2} < \sqrt{4}$ or |x-1| < 2. By the relationship of intervals to absolute values (property (6)) we have that |x-1| < 2 is equivalent to -2 < x - 1 < 2. Adding 1 to each of the three parts (by inequality property (1)) we have (-2) + 1 < (x - 1) + 1 < (2) + 1 or (simplifying) -1 < x < 3. So the solution set $|\{x \in \mathbb{R} \mid -1 < x < 3\}|$ or the interval |(-1,3)|. On the real number line this set is:

Exercise A.1.16 (continued)

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: |1 - x| > 1.

Solution. ... We have 0 > x (or x < 0) for $x \in (-\infty, 0)$. So the solution set is $|\{x \in \mathbb{R} \mid x < 0\} \cup \{x \in \mathbb{R} \mid x > 2\}|$, or the union of intervals $(-\infty,0)\cup(2,\infty)$. On the real number line this set is:

