Calculus 1

Appendices

A.1. Real Numbers and the Real Line—Examples and Proofs

2 [Exercise A.1.24. A proof of The Triangle Inequality](#page-6-0)

3 [Exercise A.1.12](#page-13-0)

[Exercise A.1.16](#page-17-0)

5 [Exercise A.1.20](#page-22-0)

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ and show the solution set on the real number line.

Solution. Since $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ then, multiplying both sides by 15 and using inequality property (3), we have $15\left(\frac{4}{5}\right)$ $\frac{4}{5}(x-2)\right) < 15\left(\frac{1}{3}\right)$ $\frac{1}{3}(x-6)$ or (simplifying) 12(x − 2) < 5(x − 6) or (distributing) $12x - 24 < 5x - 30$.

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ and show the solution set on the real number line.

Solution. Since $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ then, multiplying both sides by 15 and using inequality property (3), we have $15\left(\frac{4}{5}\right)$ $\left(\frac{4}{5}(x-2)\right) < 15\left(\frac{1}{3}\right)$ $\frac{1}{3}(x-6)$ or (simplifying) 12(x − 2) < 5(x − 6) or (distributing) $12x - 24 < 5x - 30$. Adding 24 to both sides we have (by inequality property (1)) $(12x - 24) + 24 < (5x - 30) + 24$ or (simplifying) $12x < 5x - 6$. Subtracting 5x from both sides we have (by inequality property (2)) $(12x) - 5x < (5x - 6) - 5x$ or (simplifying) $7x < -6$. Multiplying both sides by 1/7 we have (by inequality property (3) $(1/7)(7x) < (1/7)(-6)$ or (simplifying) $x < -6/7$.

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ and show the solution set on the real number line.

Solution. Since $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ then, multiplying both sides by 15 and using inequality property (3), we have $15\left(\frac{4}{5}\right)$ $\left(\frac{4}{5}(x-2)\right) < 15\left(\frac{1}{3}\right)$ $\frac{1}{3}(x-6)$ or (simplifying) 12(x − 2) < 5(x − 6) or (distributing) $12x - 24 < 5x - 30$. Adding 24 to both sides we have (by inequality property (1)) $(12x - 24) + 24 < (5x - 30) + 24$ or (simplifying) $12x < 5x - 6$. Subtracting 5x from both sides we have (by inequality property (2)) $(12x) - 5x < (5x - 6) - 5x$ or (simplifying) $7x < -6$. Multiplying both sides by $1/7$ we have (by inequality property (3) $(1/7)(7x) < (1/7)(-6)$ or (simplifying) $x < -6/7$.

Exercise A.1.6 (continued)

Exercise A.1.6. Find all $x \in \mathbb{R}$ satisfying $\frac{4}{5}(x-2) < \frac{1}{3}$ $\frac{1}{3}(x-6)$ and show the solution set on the real number line.

Solution (continued). $\ldots x < -6/7$. So the solution set is $\boxed{\{x\in\mathbb{R}\mid x<-6/7\}}$ or the interval $\boxed{(-\infty,-6/7)}$. On the real number line this set is:

$$
\leftarrow
$$

Exercise A.1.24. A proof of the Triangle Inequality.

Give the reason justifying each of the numbered steps in the following proof of the Triangle Inequality.

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution. Since $(a + b)^2 \ge 0$ then $(a + b)^2 = |(a + b)^2|$ by the definition of absolute value. By absolute value property (2), $|(a+b)^2| = |(a+b)(a+b)| = |a+b||a+b| = |a+b|^2$ and so step (1) is justified.

Exercise A.1.24. A proof of the Triangle Inequality.

Give the reason justifying each of the numbered steps in the following proof of the Triangle Inequality.

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution. Since $(a + b)^2 \ge 0$ then $(a + b)^2 = |(a + b)^2|$ by the definition of absolute value. By absolute value property (2), $|(a + b)^2| = |(a + b)(a + b)| = |a + b||a + b| = |a + b|^2$ and so step (1) is justified.

Exercise A.1.24 (continued 1)

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution (continued). By the definition of absolute value, if $x > 0$ then $|x| = x$, and if $x < 0$ (in which case $-x > 0$ by inequality property (4)) then $|x| = -x > 0 > x$; in both cases, $x < |x|$. So, with $x = ab$, we have $ab \le |ab|$ and (by absolute value property (2)) $|ab| = |a||b|$. Hence, $ab \le |ab| = |a||b|$ and so (by inequality property (3)) $2ab \le 2|a||b|$. Then (by inequality property (1)) $a^2 + b^2 + (2ab) \le a^2 + b^2 + (2|a||b|)$ and so step (2) is justified.

Exercise A.1.24 (continued 1)

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution (continued). By the definition of absolute value, if $x \ge 0$ then $|x| = x$, and if $x < 0$ (in which case $-x > 0$ by inequality property (4)) then $|x| = -x > 0 > x$; in both cases, $x < |x|$. So, with $x = ab$, we have $ab \le |ab|$ and (by absolute value property (2)) $|ab| = |a||b|$. Hence, $ab \le |ab| = |a||b|$ and so (by inequality property (3)) $2ab \le 2|a||b|$. Then (by inequality property (1)) $a^2 + b^2 + (2ab) \le a^2 + b^2 + (2|a|\,|b|)$ and so step (2) is justified.

Exercise A.1.24 (continued 2)

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution (continued). Since $x^2 \geq 0$ then $x^2 = |x^2|$ by the definition of absolute value. By absolute value property (2), $\vert x^2 \vert = \vert xx \vert = \vert x \vert \, \vert x \vert$ and so $\alpha^2=|x|^2.$ With $x=a$ we have $a^2=|a|^2$ and with $x=b$ we have $b^2 = |b|^2$. So $a^2 + 2|a||b| + b^2 = |a|^2 + 2|a||b| + |b|^2$ and step (3) is justified.

Exercise A.1.24 (continued 3)

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution (continued). Since $|a+b|^2 \leq (|a|+|b|)^2$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative numbers), we have $\sqrt{(|a+b|)^2}\leq \sqrt{(|a|+|b|)^2}$ or, since $\sqrt{x^2} = |x|$, $||a + b|| \le ||a| + |b||$. Since $||a + b|| \ge 0$ then $||a + b|| = |a + b|$, and since $|a| + |b| \ge 0$ then $||a| + |b|| = |a| + |b|$. Therefore, $|a + b| \le |a| + |b|$ and step (4) is justified. \square

Exercise A.1.24 (continued 3)

$$
|a+b|^2 = (a+b)^2
$$

\n
$$
= a^2 + 2ab + b^2
$$

\n
$$
\leq a^2 + 2|a||b| + b^2
$$

\n
$$
= |a|^2 + 2|a||b| + |b|^2
$$

\n
$$
= (|a| + |b|)^2
$$

\n
$$
|a+b| \leq |a| + |b|
$$
\n(4)

Solution (continued). Since $|a+b|^2 \leq (|a|+|b|)^2$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative numbers), we have $\sqrt{(|a+b|)^2}\leq \sqrt{(|a|+|b|)^2}$ or, since $\sqrt{x^2} = |x|$, $||a + b|| \le ||a| + |b||$. Since $|a + b| \ge 0$ then $||a + b|| = |a + b|$, and since $|a| + |b| \ge 0$ then $||a| + |b|| = |a| + |b|$. Therefore, $|a + b| \le |a| + |b|$ and step (4) is justified. \square

Exercise A.1.12. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|3y - 7| < 4$.

Solution. By the relationship of intervals to absolute values (property (6)) we have that $|3y - 7| < 4$ is equivalent to $-4 < 3y - 7 < 4$. Adding 7 to each of the three parts (by inequality property (1)) we have $(-4) + 7 < (3y - 7) + 7 < (4) + 7$ or (simplifying) $3 < 3y < 11$.

Exercise A 1 12

Exercise A.1.12. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|3y - 7| < 4$.

Solution. By the relationship of intervals to absolute values (property (6)) we have that $|3y - 7| < 4$ is equivalent to $-4 < 3y - 7 < 4$. Adding 7 to each of the three parts (by inequality property (1)) we have $(-4) + 7 < (3y - 7) + 7 < (4) + 7$ or (simplifying) $3 < 3y < 11$. Multiplying each of the three parts by $1/3$ (by inequality property (3)) we have $3/3 < 3\gamma/3 < 11/3$ or (simplifying) $1 < \gamma < 11/3$. So the solution set $\left|\left\{y \in \mathbb{R} \mid 1 < y < 11/3\right\}\right|$ or the interval $\left|\left(1,11/3\right)\right|$. On the real number line this set is:

Exercise A.1.12. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|3y - 7| < 4$.

Solution. By the relationship of intervals to absolute values (property (6)) we have that $|3y - 7| < 4$ is equivalent to $-4 < 3y - 7 < 4$. Adding 7 to each of the three parts (by inequality property (1)) we have $(-4) + 7 < (3y - 7) + 7 < (4) + 7$ or (simplifying) $3 < 3y < 11$. Multiplying each of the three parts by $1/3$ (by inequality property (3)) we have $3/3 < 3y/3 < 11/3$ or (simplifying) $1 < y < 11/3$. So the solution set $\left|\left\{y \in \mathbb{R} \mid 1 \lt y \lt 11/3\right\}\right|$ or the interval $\left[\overline{(1,11/3)}\right]$. On the real number line this set is:

$$
\begin{array}{c}\n\downarrow \\
\downarrow \\
1\n\end{array}
$$

Exercise A 1 12

Exercise A.1.12. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|3y - 7| < 4$.

Solution. By the relationship of intervals to absolute values (property (6)) we have that $|3y - 7| < 4$ is equivalent to $-4 < 3y - 7 < 4$. Adding 7 to each of the three parts (by inequality property (1)) we have $(-4) + 7 < (3y - 7) + 7 < (4) + 7$ or (simplifying) $3 < 3y < 11$. Multiplying each of the three parts by $1/3$ (by inequality property (3)) we have $3/3 < 3y/3 < 11/3$ or (simplifying) $1 < y < 11/3$. So the solution set $\left|\left\{y \in \mathbb{R} \mid 1 \lt y \lt 11/3\right\}\right|$ or the interval $\left[\overline{(1,11/3)}\right]$. On the real number line this set is:

$$
\begin{array}{c}\n\downarrow \\
\uparrow \\
1\n\end{array}
$$

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|1 - x| > 1$.

Solution. By the relationship of intervals to absolute values (property (7)) we have that $|1 - x| > 1$ is equivalent to $1 - x < -1$ or $1 - x > 1$. Adding x to both sides of each inequality (by inequality property (1)) we have $(1-x) + x < (-1) + x$ or $(1-x) + x > (1) + x$, which simplifies to $1 < -1 + x$ or $1 > 1 + x$.

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|1 - x| > 1$.

Solution. By the relationship of intervals to absolute values (property (7)) we have that $|1-x| > 1$ is equivalent to $1-x < -1$ or $1-x > 1$. Adding x to both sides of each inequality (by inequality property (1)) we have $(1-x) + x < (-1) + x$ or $(1-x) + x > (1) + x$, which simplifies to $1 < -1 + x$ or $1 > 1 + x$. Adding 1 to both sides of the first inequality and subtracting 1 from both sides of the second inequality (by inequality properties (1) and (2)) we have $(1) + 1 < (-1 + x) + 1$ or $(1) - 1 > (1 + x) - 1$. This simplifies to the condition on x of 2 < x or $0 > x$. We have $2 < x$ (or $x > 2$) for $x \in (2, \infty)$. We have $0 > x$ (or $x < 0$) for $x \in (-\infty, 0)$.

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|1 - x| > 1$.

Solution. By the relationship of intervals to absolute values (property (7)) we have that $|1-x| > 1$ is equivalent to $1-x < -1$ or $1-x > 1$. Adding x to both sides of each inequality (by inequality property (1)) we have $(1-x) + x < (-1) + x$ or $(1-x) + x > (1) + x$, which simplifies to $1 < -1 + x$ or $1 > 1 + x$. Adding 1 to both sides of the first inequality and subtracting 1 from both sides of the second inequality (by inequality properties (1) and (2)) we have $(1) + 1 < (-1 + x) + 1$ or $(1) - 1 > (1 + x) - 1$. This simplifies to the condition on x of 2 < x or $0 > x$. We have $2 < x$ (or $x > 2$) for $x \in (2, \infty)$. We have $0 > x$ (or $x < 0$) for $x \in (-\infty, 0)$.

Exercise A.1.16 (continued)

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|1 - x| > 1$.

Solution. ... We have $0 > x$ (or $x < 0$) for $x \in (-\infty, 0)$. So the solution set is $\sqrt{x \in \mathbb{R} \mid x < 0} \cup \{x \in \mathbb{R} \mid x > 2\}$, or the union of intervals $\big|(-\infty,0)\cup(2,\infty)\big|$. On the real number line this set is:

Exercise A.1.16 (continued)

Exercise A.1.16. Express the solution set as an interval or a union of intervals and show the solution set on the real line: $|1 - x| > 1$.

Solution. ... We have $0 > x$ (or $x < 0$) for $x \in (-\infty, 0)$. So the solution set is $\sqrt{x \in \mathbb{R} \mid x < 0} \cup \{x \in \mathbb{R} \mid x > 2\}$, or the union of intervals $\big|(-\infty,0)\cup(2,\infty)\big|$. On the real number line this set is:

Exercise A.1.20. Solve the inequality $(x - 1)^2 < 4$. Express the solution set as an interval or a union of intervals and show them on the real line. set as an interval or a un
Use the result $\sqrt{a^2} = |a|$. **Solution.** Since $(x - 1)^2 < 4$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative numbers), we have $\sqrt{(x-1)^2} < \sqrt{4}$ or $|x-1| < 2.5$

Exercise A.1.20. Solve the inequality $(x - 1)^2 < 4$. Express the solution set as an interval or a union of intervals and show them on the real line. set as an interval or a un
Use the result $\sqrt{a^2} = |a|$. **Solution.** Since $(x - 1)^2 < 4$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative <code>numbers</code>), we have $\sqrt{(x-1)^2} < \sqrt{4}$ or $|x-1| < 2$. By the relationship of intervals to absolute values (property (6)) we have that $|x-1| < 2$ is equivalent to $-2 < x - 1 < 2$. Adding 1 to each of the three parts (by inequality property (1)) we have $(-2) + 1 < (x - 1) + 1 < (2) + 1$ or (simplifying) $-1 < x < 3$. So the solution set $\left| \{ x \in \mathbb{R} \mid -1 < x < 3 \} \right|$ or the interval $\vert (-1, 3) \vert$. On the real number line this set is:

Exercise A.1.20. Solve the inequality $(x - 1)^2 < 4$. Express the solution set as an interval or a union of intervals and show them on the real line. set as an interval or a un
Use the result $\sqrt{a^2} = |a|$. **Solution.** Since $(x - 1)^2 < 4$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative
√ numbers), we have $\sqrt{(x-1)^2} < \sqrt{4}$ or $|x-1| <$ 2. By the relationship of intervals to absolute values (property (6)) we have that $|x-1| < 2$ is equivalent to $-2 < x - 1 < 2$. Adding 1 to each of the three parts (by inequality property (1)) we have $(-2) + 1 < (x - 1) + 1 < (2) + 1$ or (simplifying) $-1 < x < 3$. So the solution set $\boxed{\{x \in \mathbb{R} \mid -1 < x < 3\}}$ or the interval $\vert (-1, 3) \vert$. On the real number line this set is:

Exercise A.1.20. Solve the inequality $(x - 1)^2 < 4$. Express the solution set as an interval or a union of intervals and show them on the real line. set as an interval or a un
Use the result $\sqrt{a^2} = |a|$. **Solution.** Since $(x - 1)^2 < 4$, then taking square roots of both sides and using the fact that the square root function is an increasing function on non-negative numbers (so it preserves inequalities involving non-negative
√ numbers), we have $\sqrt{(x-1)^2} < \sqrt{4}$ or $|x-1| <$ 2. By the relationship of intervals to absolute values (property (6)) we have that $|x-1| < 2$ is equivalent to $-2 < x - 1 < 2$. Adding 1 to each of the three parts (by inequality property (1)) we have $(-2) + 1 < (x - 1) + 1 < (2) + 1$ or (simplifying) $-1 < x < 3$. So the solution set $\boxed{\{x \in \mathbb{R} \mid -1 < x < 3\}}$ or the interval $\vert (-1, 3) \vert$. On the real number line this set is: