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Exercise A.1.6

Exercise A.1.6

Exercise A.1.6. Find all x ∈ R satisfying
4

5
(x − 2) <

1

3
(x − 6) and show

the solution set on the real number line.

Solution. Since
4

5
(x − 2) <

1

3
(x − 6) then, multiplying both sides by 15

and using inequality property (3), we have

15

(
4

5
(x − 2)

)
< 15

(
1

3
(x − 6)

)
or (simplifying) 12(x − 2) < 5(x − 6) or

(distributing) 12x − 24 < 5x − 30.

Adding 24 to both sides we have (by
inequality property (1)) (12x − 24) + 24 < (5x − 30) + 24 or (simplifying)
12x < 5x − 6. Subtracting 5x from both sides we have (by inequality
property (2)) (12x)− 5x < (5x − 6)− 5x or (simplifying) 7x < −6.
Multiplying both sides by 1/7 we have (by inequality property (3)
(1/7)(7x) < (1/7)(−6) or (simplifying) x < −6/7.
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Exercise A.1.6

Exercise A.1.6 (continued)

Exercise A.1.6. Find all x ∈ R satisfying
4

5
(x − 2) <

1

3
(x − 6) and show

the solution set on the real number line.

Solution (continued). . . . x < −6/7. So the solution set is

{x ∈ R | x < −6/7} or the interval (−∞,−6/7) . On the real number

line this set is:

�
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Exercise A.1.24. A proof of The Triangle Inequality

Exercise A.1.24

Exercise A.1.24. A proof of the Triangle Inequality.
Give the reason justifying each of the numbered steps in the following
proof of the Triangle Inequality.

|a + b|2 = (a + b)2 (1)

= a2 + 2ab + b2

≤ a2 + 2|a| |b|+ b2 (2)

= |a|2 + 2|a| |b|+ |b|2 (3)

= (|a|+ |b|)2

|a + b| ≤ |a|+ |b| (4)

Solution. Since (a + b)2 ≥ 0 then (a + b)2 = |(a + b)2| by the definition
of absolute value. By absolute value property (2),
|(a + b)2| = |(a + b)(a + b)| = |a + b| |a + b| = |a + b|2 and so step (1) is
justified.
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Exercise A.1.24. A proof of The Triangle Inequality

Exercise A.1.24 (continued 1)

|a + b|2 = (a + b)2 (1)

= a2 + 2ab + b2

≤ a2 + 2|a| |b|+ b2 (2)

= |a|2 + 2|a| |b|+ |b|2 (3)

= (|a|+ |b|)2

|a + b| ≤ |a|+ |b| (4)

Solution (continued). By the definition of absolute value, if x ≥ 0 then
|x | = x , and if x < 0 (in which case −x > 0 by inequality property (4))
then |x | = −x > 0 > x ; in both cases, x ≤ |x |. So, with x = ab, we have
ab ≤ |ab| and (by absolute value property (2)) |ab| = |a| |b|. Hence,
ab ≤ |ab| = |a| |b| and so (by inequality property (3)) 2ab ≤ 2|a| |b|. Then
(by inequality property (1)) a2 + b2 + (2ab) ≤ a2 + b2 + (2|a| |b|) and so
step (2) is justified.
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Exercise A.1.24. A proof of The Triangle Inequality

Exercise A.1.24 (continued 2)

|a + b|2 = (a + b)2 (1)

= a2 + 2ab + b2

≤ a2 + 2|a| |b|+ b2 (2)

= |a|2 + 2|a| |b|+ |b|2 (3)

= (|a|+ |b|)2

|a + b| ≤ |a|+ |b| (4)

Solution (continued). Since x2 ≥ 0 then x2 = |x2| by the definition of
absolute value. By absolute value property (2), |x2| = |xx | = |x | |x | and so
x2 = |x |2. With x = a we have a2 = |a|2 and with x = b we have
b2 = |b|2. So a2 + 2|a| |b|+ b2 = |a|2 + 2|a| |b|+ |b|2 and step (3) is
justified.

() Calculus 1 August 9, 2020 7 / 12



Exercise A.1.24. A proof of The Triangle Inequality

Exercise A.1.24 (continued 3)

|a + b|2 = (a + b)2 (1)

= a2 + 2ab + b2

≤ a2 + 2|a| |b|+ b2 (2)

= |a|2 + 2|a| |b|+ |b|2 (3)

= (|a|+ |b|)2

|a + b| ≤ |a|+ |b| (4)

Solution (continued). Since |a + b|2 ≤ (|a|+ |b|)2, then taking square
roots of both sides and using the fact that the square root function is an
increasing function on non-negative numbers (so it preserves inequalities
involving non-negative numbers), we have

√
(|a + b|)2 ≤

√
(|a|+ |b|)2 or,

since
√

x2 = |x |, ||a + b|| ≤ ||a|+ |b||. Since |a + b| ≥ 0 then
||a + b|| = |a + b|, and since |a|+ |b| ≥ 0 then ||a|+ |b|| = |a|+ |b|.
Therefore, |a + b| ≤ |a|+ |b| and step (4) is justified. �
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Exercise A.1.12

Exercise A.1.12

Exercise A.1.12. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |3y − 7| < 4.

Solution. By the relationship of intervals to absolute values (property (6))
we have that |3y − 7| < 4 is equivalent to −4 < 3y − 7 < 4. Adding 7 to
each of the three parts (by inequality property (1)) we have
(−4) + 7 < (3y − 7) + 7 < (4) + 7 or (simplifying) 3 < 3y < 11.

Multiplying each of the three parts by 1/3 (by inequality property (3)) we
have 3/3 < 3y/3 < 11/3 or (simplifying) 1 < y < 11/3. So the solution

set {y ∈ R | 1 < y < 11/3} or the interval (1, 11/3) . On the real

number line this set is:

�

() Calculus 1 August 9, 2020 9 / 12



Exercise A.1.12

Exercise A.1.12

Exercise A.1.12. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |3y − 7| < 4.

Solution. By the relationship of intervals to absolute values (property (6))
we have that |3y − 7| < 4 is equivalent to −4 < 3y − 7 < 4. Adding 7 to
each of the three parts (by inequality property (1)) we have
(−4) + 7 < (3y − 7) + 7 < (4) + 7 or (simplifying) 3 < 3y < 11.
Multiplying each of the three parts by 1/3 (by inequality property (3)) we
have 3/3 < 3y/3 < 11/3 or (simplifying) 1 < y < 11/3. So the solution

set {y ∈ R | 1 < y < 11/3} or the interval (1, 11/3) . On the real

number line this set is:

�

() Calculus 1 August 9, 2020 9 / 12



Exercise A.1.12

Exercise A.1.12

Exercise A.1.12. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |3y − 7| < 4.

Solution. By the relationship of intervals to absolute values (property (6))
we have that |3y − 7| < 4 is equivalent to −4 < 3y − 7 < 4. Adding 7 to
each of the three parts (by inequality property (1)) we have
(−4) + 7 < (3y − 7) + 7 < (4) + 7 or (simplifying) 3 < 3y < 11.
Multiplying each of the three parts by 1/3 (by inequality property (3)) we
have 3/3 < 3y/3 < 11/3 or (simplifying) 1 < y < 11/3. So the solution

set {y ∈ R | 1 < y < 11/3} or the interval (1, 11/3) . On the real

number line this set is:

�
() Calculus 1 August 9, 2020 9 / 12



Exercise A.1.12

Exercise A.1.12

Exercise A.1.12. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |3y − 7| < 4.

Solution. By the relationship of intervals to absolute values (property (6))
we have that |3y − 7| < 4 is equivalent to −4 < 3y − 7 < 4. Adding 7 to
each of the three parts (by inequality property (1)) we have
(−4) + 7 < (3y − 7) + 7 < (4) + 7 or (simplifying) 3 < 3y < 11.
Multiplying each of the three parts by 1/3 (by inequality property (3)) we
have 3/3 < 3y/3 < 11/3 or (simplifying) 1 < y < 11/3. So the solution

set {y ∈ R | 1 < y < 11/3} or the interval (1, 11/3) . On the real

number line this set is:

�
() Calculus 1 August 9, 2020 9 / 12



Exercise A.1.16

Exercise A.1.16

Exercise A.1.16. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |1− x | > 1.

Solution. By the relationship of intervals to absolute values (property (7))
we have that |1− x | > 1 is equivalent to 1− x < −1 or 1− x > 1. Adding
x to both sides of each inequality (by inequality property (1)) we have
(1− x) + x < (−1) + x or (1− x) + x > (1) + x , which simplifies to
1 < −1 + x or 1 > 1 + x .

Adding 1 to both sides of the first inequality
and subtracting 1 from both sides of the second inequality (by inequality
properties (1) and (2)) we have (1) + 1 < (−1 + x) + 1 or
(1)− 1 > (1 + x)− 1. This simplifies to the condition on x of 2 < x or
0 > x . We have 2 < x (or x > 2) for x ∈ (2,∞). We have 0 > x (or
x < 0) for x ∈ (−∞, 0).
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Exercise A.1.16

Exercise A.1.16 (continued)

Exercise A.1.16. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |1− x | > 1.

Solution. . . .We have 0 > x (or x < 0) for x ∈ (−∞, 0). So the solution

set is {x ∈ R | x < 0} ∪ {x ∈ R | x > 2} , or the union of intervals

(−∞, 0) ∪ (2,∞) . On the real number line this set is:

�
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Exercise A.1.16

Exercise A.1.16 (continued)

Exercise A.1.16. Express the solution set as an interval or a union of
intervals and show the solution set on the real line: |1− x | > 1.
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Exercise A.1.20

Exercise A.1.20

Exercise A.1.20. Solve the inequality (x − 1)2 < 4. Express the solution
set as an interval or a union of intervals and show them on the real line.
Use the result

√
a2 = |a|.

Solution. Since (x − 1)2 < 4, then taking square roots of both sides and
using the fact that the square root function is an increasing function on
non-negative numbers (so it preserves inequalities involving non-negative
numbers), we have

√
(x − 1)2 <

√
4 or |x − 1| < 2.

By the relationship of
intervals to absolute values (property (6)) we have that |x − 1| < 2 is
equivalent to −2 < x − 1 < 2. Adding 1 to each of the three parts (by
inequality property (1)) we have (−2) + 1 < (x − 1) + 1 < (2) + 1 or

(simplifying) −1 < x < 3. So the solution set {x ∈ R | −1 < x < 3} or

the interval (−1, 3) . On the real number line this set is:

�
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