Calculus 1

Appendices

A.2. Mathematical Induction—Examples and Proofs

Calculus 1

October 5, 2020

Example A.2.1 (solution)

Solution (continued). We have

$$(1+2+\cdots+k)+(k+1)$$
=\(\sum_{i=1}^k i\sum_{+} + (k+1)\)
=\(\sum_{i=

So the formula holds for n = k + 1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number $n \in \mathbb{N}$.

$$1+2+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}.$$

Prove. First, we check the formula for n = 1. This gives

$$\sum_{i=1}^{1} i = 1 = \frac{(1)((1)+1)}{2} = 1$$
, which holds. Second, we assume the

formula holds for n = k, so that we assume

$$1+2+\cdots+k=\sum_{i=1}^k i=\frac{(k)((k)+1)}{2}.$$

Calculus 1

We want to show that the formula also holds for n = k + 1. Consider $1+2+\cdots+k+(k+1)=(1+2+\cdots+k)+(k+1).$

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x, u_1, u_2, \ldots, u_n , we have

$$\frac{d}{dx}[u_1+u_2+\cdots+u_n]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_n}{dx}.$$

Proof. First, we check the formula for n=1. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$ which holds. Notice also that $\frac{d}{dx}[u_1 + u_2] = \frac{du_1}{dx} + \frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for n = 2. Second, we assume the formula holds for n = k, so that we assume $\frac{d}{dx}[u_1+u_2+\cdots+u_k]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_k}{dx}.$ We want to show that the formula also holds for $n = \hat{k} + 1$. Consider $\frac{d}{dx}[u_1 + u_2 + \dots + u_k + u_{k+1}] = \frac{d}{dx}[(u_1 + u_2 + \dots + u_k) + u_{k+1}].$

Calculus 1

October 5, 2020 Calculus 1

October 5, 2020 5 / 25

October 5, 2020

Exercise A.2.2

Example A.2.A (continued)

Prove (continued). We have $\frac{d}{dv}[u_1 + u_2 + \cdots + u_k + u_{k+1}]$

$$= \frac{d}{dx}[(u_1 + u_2 + \dots + u_k) + u_{k+1}]$$

$$= \frac{d}{dx}[(u_1 + u_2 + \dots + u_k)] + \frac{d}{dx}[u_{k+1}] \text{ since the result}$$
holds for $n = 2$ functions
$$= \left(\frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx}\right) + \frac{d}{dx}[u_{k+1}]$$
by the induction hypothesis
$$= \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx} + \frac{du_{k+1}}{dx}$$

$$= \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_n}{dx} \text{ where } n = k+1,$$

so the result holds for n=k+1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

 $H \in \mathbb{N}$, as Claimed.

Calculus 1 October 5, 2020

6 / 25

Exercise A.2.

Exercise A.2.2 (continued)

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof (continued). We have $1 + r + r^2 + \cdots + r^k + r^{k+1}$

$$= (1 + r + r^{2} + \dots + r^{k}) + r^{k+1}$$

$$= \left(\frac{1 - r^{k+1}}{1 - r}\right) + r^{k+1} \text{ by the induction hypothesis}$$

$$= \frac{1 - r^{k+1}}{1 - r} + \frac{r^{k+1}(1 - r)}{1 - r} = \frac{(1 - r^{k+1}) + (r^{k+1} - r^{k+2})}{1 - r}$$

$$= \frac{1 - r^{k+2}}{1 - r} = \frac{1 - r^{n+1}}{1 - r} \text{ where } n = k + 1,$$

so the result holds for n=k+1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.2

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for n=1. This gives $1+r=\frac{1-r^2}{1-r}=\frac{(1-r)(1+r)}{1-r}=1+r$, which holds. Second, we assume the formula holds for n=k, so that we assume $1+r+r^2+\cdots+r^k=\frac{1-r^{k+1}}{1-r}$. We want to show that the formula also holds for n=k+1. Consider $1+r+r^2+\cdots+r^k+r^{k+1}=(1+r+r^2+\cdots+r^k)+r^{k+1}$

Calculus 1 October 5, 2020 7 / 25

Exercise A.2.9. Sums of Square

Exercise A.2.9

Exercise A.2.9. Sums of Squares

Prove Theorem 5.2.B(2):

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \text{ for all } n \in \mathbb{N}.$$

Proof. First, we check the formula for n=1. This gives $1^2=\frac{(1)((1)+1)(2(1)+1)}{6}=\frac{6}{6}=1$, which holds. Second, we assume the formula holds for n=k, so that we assume $1^2+2^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}$. We want to show that the formula also holds for n=k+1. Consider $1^2+2^2+\cdots+k^2+(k+1)^2=(1^2+2^2+\cdots+k^2)+(k+1)^2$.

Proof (continued). We have
$$1^2 + 2^2 + \dots + k^2 + (k+1)^2$$

$$= (1^2 + 2^2 + \dots + k^2) + (k+1)^2$$

$$= \left(\frac{k(k+1)(2k+1)}{6}\right) + (k+1)^2 \text{ by the induction hypothesis}$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$= \frac{(k+1)(k(2k+1) + 6(k+1))}{6} = \frac{(k+1)(2k^2 + k + 6k + 6)}{6}$$

$$= \frac{(k+1)(2k^2 + 7k + 6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6} = \frac{n(n+1)(2n+1)}{6} \text{ where } n = k+1,$$

so the result holds for n = k + 1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Calculus 1

Exercise A.2.10 (continued)

Solution. We have
$$1^3 + 2^3 + \dots + k^3 + (k+1)^3$$

$$= (1^3 + 2^3 + \dots + k^3) + (k+1)^3$$

$$= \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 \text{ by the induction hypothesis}$$

$$= \left(\frac{k(k+1)}{2}\right)^2 + \frac{4(k+1)^3}{4} = \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$$

$$= \frac{(k+1)^2(k^2 + 4(k+1))}{4} = \frac{(k+1)^2(k^2 + 4k + 4)}{4}$$

$$= \frac{(k+1)^2(k+2)^2}{4} = \frac{(k+1)^2((k+1)+1)^2}{4}$$

$$= \left(\frac{(k+1)((k+1)+1)}{2}\right)^2 = \left(\frac{n(n+1)}{2}\right)^2 \text{ where } n = k+1,$$

so the result holds for n = k + 1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.10

Exercise A.2.10. Sums of Cubes

Prove Theorem 5.2.B(3):

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \text{ for all } n \in \mathbb{N}.$$

Solution. First, we check the formula for n = 1. This gives

$$1^3 = \left(\frac{(1)((1)+1)}{2}\right)^2 = 1^2$$
, which holds. Second, we assume the formula

holds for
$$n = k$$
, so that we assume $1^3 + 2^3 + \cdots + k^3 = \left(\frac{k(k+1)}{2}\right)^2$.

Calculus 1

We want to show that the formula also holds for n = k + 1. Consider $1^3 + 2^3 + \cdots + k^3 + (k+1)^3 = (1^3 + 2^3 + \cdots + k^3) + (k+1)^3$

October 5, 2020

Exercise A.2.11

Exercise A.2.11. Prove Theorem 5.2.A, "Algebra for Finite Sums."

- Sum Rule: $\sum (a_i + b_i) = \sum a_i + \sum b_i$
- 2 Difference Rule: $\sum_{i=1}^{n} (a_i b_i) = \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i$
- **3** Constant Multiple Rule: $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$
- **1** Constant Value Rule: $\sum c = nc$

10 / 25

October 5, 2020

Exercise A.2.11 (continued 1)

Sum Rule:
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Solution. First, we check the formula for n=1. This gives $(a_1+b_1)=(a_1)+(b_1)$, which holds. Second, we assume the formula holds for n=k, so that we assume $\sum_{i=1}^k (a_i+b_i)=\sum_{i=1}^k a_i+\sum_{i=1}^k b_i$. We want to show that the formula also holds for n=k+1. Consider $\sum_{i=1}^{k+1} (a_i+b_i)=\left(\sum_{i=1}^k (a_i+b_i)\right)+(a_{k+1}+b_{k+1})$.

Evereica A 2.11 Proof of Theorem F.2.

Exercise A.2.11 (continued 3)

Difference Rule:
$$\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$$

Calculus 1

Solution. First, we check the formula for n=1. This gives $(a_1-b_1)=(a_1)-(b_1)$, which holds. Second, we assume the formula holds for n=k, so that we assume $\sum_{i=1}^k (a_i-b_i)=\sum_{i=1}^k a_i-\sum_{i=1}^k b_i$. We want to show that the formula also holds for n=k+1. Consider $\sum_{i=1}^{k+1} (a_i-b_i)=\left(\sum_{i=1}^k (a_i-b_i)\right)+(a_{k+1}-b_{k+1})$.

Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 2)

Solution (continued). We have $\sum_{i=1}^{k+1} (a_i + b_i)$ $= \left(\sum_{i=1}^k (a_i + b_i)\right) + (a_{k+1} + b_{k+1})$ $= \left(\sum_{i=1}^k a_i + \sum_{i=1}^k b_i\right) + (a_{k+1} + b_{k+1}) \text{ by the induction hypothesis}$ $= \left(\sum_{i=1}^k a_i + a_{k+1}\right) + \left(\sum_{i=1}^k b_i + b_{k+1}\right)$ by associativity and commutativity of addition in \mathbb{R} $= \sum_{i=1}^{k+1} a_i + \sum_{i=1}^{k+1} b_i = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i \text{ where } n = k+1,$ so the result holds for n = k+1 and, by the mathematical induction

Calculus 1

Exercise A.2.11. Proof of Theorem 5.2

principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.11 (continued 4)

Solution (continued). We have $\sum_{i=1}^{k+1} (a_i - b_i)$ $= \left(\sum_{i=1}^k (a_i - b_i)\right) + (a_{k+1} - b_{k+1})$ $= \left(\sum_{i=1}^k a_i - \sum_{i=1}^k b_i\right) + (a_{k+1} - b_{k+1}) \text{ by the induction hypothesis}$ $= \left(\sum_{i=1}^k a_i + a_{k+1}\right) - \left(\sum_{i=1}^k b_i + b_{k+1}\right)$ by associativity and commutaivity of addition in \mathbb{R} $= \sum_{i=1}^{k+1} a_i - \sum_{i=1}^{k+1} b_i = \sum_{i=1}^n a_i - \sum_{i=1}^n b_i \text{ where } n = k+1,$ so the result holds for n = k+1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Calculus 1

October 5, 2020

Exercise A.2.11 (continued 5)

Constant Multiple Rule:
$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

Solution. First, we check the formula for n=1. This gives $(ca_1)=c(a_1)$, which holds. Second, we assume the formula holds for n=k, so that we assume $\sum_{i=1}^k ca_i = c\sum_{i=1}^k a_i$. We want to show that the formula also holds for n=k+1. Consider $\sum_{i=1}^{k+1} ca_i = \sum_{i=1}^k ca_i + ca_{k+1}$.

Calculus 1

October 5, 2020

18 / 25

Exercise A.2.11 (continued 7)

Constant Value Rule:
$$\sum_{i=1}^{n} c = nc$$

Solution. First, we check the formula for n = 1. This gives (c) = 1c, which holds. Second, we assume the formula holds for n = k, so that we assume $\sum_{i=1}^{k} c = kc$. We want to show that the formula also holds for

$$n = k + 1$$
. Consider $\sum_{i=1}^{k+1} c = \left(\sum_{i=1}^{k} c\right) + c$.

Exercise A.2.11 (continued 6)

Solution (continued). We have $\sum_{i=1}^{k+1} ca_i$

$$= \sum_{i=1}^k ca_i + ca_{k+1}$$

$$= c \sum_{i=1}^{k} a_i + ca_{k+1}$$
 by the induction hypothesis

$$= c\left(\sum_{i=1}^k a_i + a_{k+1}\right)$$
 since multiplication distributes over addition in $\mathbb R$

October 5, 2020

October 5, 2020

$$=$$
 $c\left(\sum_{i=1}^{k+1}a_i\right)=c\sum_{i=1}^na_i$ where $n=k+1$,

so the result holds for n=k+1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Calculus 1

Exercise A.2.11. Proof of Theorem 5.2.

Exercise A.2.11 (continued 8)

Solution (continued). We have $\sum_{i=1}^{k+1} c_i$

$$=$$
 $\left(\sum_{i=1}^k c\right) + c$

- = kc + c by the induction hypothesis
- = (k+1)c since multiplication distributes over addition in $\mathbb R$
- = nc where n = k + 1,

so the result holds for n=k+1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Example A.2.B. General Product Rule

Example A.2.B. Prove the General Product Rule (see Exercise 3.3.77 for motivation of this result): For differentiable functions u_1, u_2, \ldots, u_n , we have that the derivative of the product $u_1u_2\cdots u_n$ exists and

$$\frac{d}{dx}[(u_1)(u_2)\cdots(u_n)] = [u'_1](u_2)(u_3)\cdots(u_{n-1})(u_n)
+(u_1)[u'_2](u_3)\cdots(u_{n-1})(u_n)
+(u_1)(u_2)[u'_3]\cdots(u_{n-1})(u_n) +\cdots
+(u_1)(u_2)(u_3)\cdots[u'_{n-1}](u_n)
+(u_1)(u_2)(u_3)\cdots(u_{n-1})[u'_n].$$

Calculus 1 October 5, 2020

Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for n = k, so that

we assume $\frac{d}{dx}\left[\prod_{i=1}^k u_i\right] = \sum_{j=1}^k u_j' \prod_{i=1, i \neq j}^k u_i$. We want to show that the

formula also holds for n = k + 1. Consider

$$\frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right] = \frac{d}{dx} \left[\left(\prod_{i=1}^{k} u_i \right) u_{k+1} \right]$$

$$= \frac{d}{dx} \left[\prod_{i=1}^k u_i \right] (u_{k+1}) + \left(\prod_{i=1}^k u_i \right) [u'_{k+1}] \text{ by the Derivative Rule}$$

for Products (Theorem 3.3.G)

$$= \left[\sum_{j=1}^k u_j' \prod_{i=1, i \neq j}^k u_i\right] (u_{k+1}) + \left(\prod_{i=1}^k u_i\right) [u_{k+1}'] \text{ by induction hypothesis}$$

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation notation: $u_1u_2\cdots u_n=\prod u_i$. We can then express the claim of this

theorem as

$$\frac{d}{dx}\left[\prod_{i=1}^n u_i\right] = \sum_{j=1}^n u_j' \prod_{i=1, i\neq j}^n u_i.$$

First, we check the formula for n = 1. This gives

$$\frac{d}{dx}[u_1] = \sum_{j=1}^{1} u'_j \prod_{i=1, i \neq 1}^{1} u_i = u'_1, \text{ which holds. For clarity, we also check the formula for } n = 2. \text{ This gives}$$

$$\frac{d}{dx}[u_1u_2] = \sum_{j=1}^2 u_j' \prod_{i=1, i \neq j}^2 u_i = [u_1'](u_2) + (u_1)[u_2'], \text{ which holds by the}$$

Derivative Product Rule (Theorem 3.3.G).

October 5, 2020

Example A.2.B (continued 3)

Proof (continued).
$$\dots \frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right]$$

$$= \left[\sum_{j=1}^{k} u'_{j} \prod_{i=1, i \neq j}^{k} u_{i}\right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_{i}\right) [u'_{k+1}]$$

$$= \sum_{j=1}^{k} u'_{j} \prod_{i=1, i \neq j}^{k+1} u_{i} + u'_{k+1} \prod_{i=1, i \neq k+1}^{k+1} u_{i}$$

$$= \sum_{j=1}^{k+1} u_{j} \prod_{i=1, i \neq j}^{k+1} u_{i} = \sum_{j=1}^{n} u_{j} \prod_{i=1, i \neq j}^{n} u_{i} \text{ where } n = k+1,$$

so the result holds for n = k + 1 and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.