Appendices
A.2. Mathematical Induction—Examples and Proofs
Table of contents

1. Example A.2.1
2. Example A.2.A. Derivative of a Sum
3. Exercise A.2.2
4. Exercise A.2.9. Sums of Squares
5. Exercise A.2.10. Sums of Cubes
6. Exercise A.2.11. Proof of Theorem 5.2.A
7. Example A.2.B. General Product Rule
Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number \(n \in \mathbb{N} \),

\[
1 + 2 + \cdots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
\]

Prove. First, we check the formula for \(n = 1 \). This gives

\[
\sum_{i=1}^{1} i = 1 = \frac{(1)((1) + 1)}{2} = 1,
\]

which holds.
Example A.2.1. Use mathematical induction to prove that for natural number $n \in \mathbb{N}$,

$$1 + 2 + \cdots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Prove. First, we check the formula for $n = 1$. This gives

$$\sum_{i=1}^{1} i = 1 = \frac{(1)((1) + 1)}{2} = 1,$$

which holds. Second, we assume the formula holds for $n = k$, so that we assume

$$1 + 2 + \cdots + k = \sum_{i=1}^{k} i = \frac{(k)((k) + 1)}{2}.$$

We want to show that the formula also holds for $n = k + 1$. Consider

$$1 + 2 + \cdots + k + (k + 1) = (1 + 2 + \cdots + k) + (k + 1).$$
Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number \(n \in \mathbb{N} \),

\[
1 + 2 + \cdots + n = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2}.
\]

Prove. First, we check the formula for \(n = 1 \). This gives

\[
\sum_{i=1}^{1} i = 1 = \frac{(1)((1) + 1)}{2} = 1,
\]

which holds. Second, we assume the formula holds for \(n = k \), so that we assume

\[
1 + 2 + \cdots + k = \sum_{i=1}^{k} i = \frac{(k)((k) + 1)}{2}.
\]

We want to show that the formula also holds for \(n = k + 1 \). Consider

\[
1 + 2 + \cdots + k + (k + 1) = (1 + 2 + \cdots + k) + (k + 1).
\]
Solution (continued). We have

\[(1 + 2 + \cdots + k) + (k + 1)\]

\[= \left(\sum_{i=1}^{k} i \right) + (k + 1)\]

\[= \left(\frac{k(k + 1)}{2} \right) + (k + 1) \text{ by the induction hypothesis}\]

\[= \frac{k(k + 1)}{2} + \frac{2(k + 1)}{2} = \frac{k(k + 1) + 2(k + 1)}{2} = \frac{(k + 1)(k + 2)}{2}\]

\[= \frac{(k + 1)((k + 1) + 1)}{2} = \frac{n(n + 1)}{2} \text{ where } n = k + 1.\]

So the formula holds for \(n = k + 1\) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N}\), as claimed.
Example A.2.A. Prove that for differentiable functions of x, u_1, u_2, \ldots, u_n, we have

$$
\frac{d}{dx}[u_1 + u_2 + \cdots + u_n] = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx}.
$$

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx}[u_1 + u_2] = \frac{du_1}{dx} + \frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$.
Example A.2.A. Prove that for differentiable functions of x, u_1, u_2, \ldots, u_n, we have

$$\frac{d}{dx}[u_1 + u_2 + \cdots + u_n] = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx}.$$

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx}[u_1 + u_2] = \frac{du_1}{dx} + \frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$.

Second, we assume the formula holds for $n = k$, so that we assume

$$\frac{d}{dx}[u_1 + u_2 + \cdots + u_k] = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_k}{dx}.$$

We want to show that the formula also holds for $n = k + 1$. Consider

$$\frac{d}{dx}[u_1 + u_2 + \cdots + u_k + u_{k+1}] = \frac{d}{dx}[(u_1 + u_2 + \cdots + u_k) + u_{k+1}].$$
Example A.2.A. Prove that for differentiable functions of x, u_1, u_2, \ldots, u_n, we have
\[
\frac{d}{dx} [u_1 + u_2 + \cdots + u_n] = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx}.
\]

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx} [u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx} [u_1 + u_2] = \frac{du_1}{dx} + \frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$.
Second, we assume the formula holds for $n = k$, so that we assume
\[
\frac{d}{dx} [u_1 + u_2 + \cdots + u_k] = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_k}{dx}.
\]
We want to show that the formula also holds for $n = k + 1$. Consider
\[
\frac{d}{dx} [u_1 + u_2 + \cdots + u_k + u_{k+1}] = \frac{d}{dx} [(u_1 + u_2 + \cdots + u_k) + u_{k+1}].
\]
Example A.2.A (continued)

Prove (continued). We have \(\frac{d}{dx}[u_1 + u_2 + \cdots + u_k + u_{k+1}] \)

\[
= \frac{d}{dx}[(u_1 + u_2 + \cdots + u_k) + u_{k+1}] \\
= \frac{d}{dx}[(u_1 + u_2 + \cdots + u_k)] + \frac{d}{dx}[u_{k+1}] \text{ since the result holds for } n = 2 \text{ functions} \\
= \left(\frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_k}{dx} \right) + \frac{d}{dx}[u_{k+1}] \\
\text{by the induction hypothesis} \\
= \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_k}{dx} + \frac{du_{k+1}}{dx} \\
= \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx} \text{ where } n = k + 1, \\
\text{so the result holds for } n = k + 1 \text{ and, by the mathematical induction principle, the formula holds for all } n \in \mathbb{N}, \text{ as claimed.} \]
Exercise A.2.2

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1 + r = \frac{1-r^2}{1-r} = \frac{(1-r)(1+r)}{1-r} = 1 + r$, which holds.
Exercise A.2.2. Prove that if \(r \neq 1 \) then \(1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r} \) for every natural number \(n \in \mathbb{N} \).

Proof. First, we check the formula for \(n = 1 \). This gives
\[
1 + r = \frac{1-r^2}{1-r} = \frac{(1-r)(1+r)}{1-r} = 1 + r, \text{ which holds.}
\]
Second, we assume the formula holds for \(n = k \), so that we assume
\[
1 + r + r^2 + \cdots + r^k = \frac{1 - r^{k+1}}{1 - r}. \]
We want to show that the formula also holds for \(n = k + 1 \). Consider
\[
1 + r + r^2 + \cdots + r^k + r^{k+1} = (1 + r + r^2 + \cdots + r^k) + r^{k+1}.
\]
Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives

$$1 + r = \frac{1 - r^2}{1 - r} = \frac{(1-r)(1+r)}{1-r} = 1 + r,$$

which holds. Second, we assume the formula holds for $n = k$, so that we assume

$$1 + r + r^2 + \cdots + r^k = \frac{1 - r^{k+1}}{1 - r}.$$

We want to show that the formula also holds for $n = k + 1$. Consider

$$1 + r + r^2 + \cdots + r^k + r^{k+1} = (1 + r + r^2 + \cdots + r^k) + r^{k+1}.$$
Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof (continued). We have $1 + r + r^2 + \cdots + r^k + r^{k+1}$

\[
= \left(1 + r + r^2 + \cdots + r^k\right) + r^{k+1} \\
= \left(\frac{1 - r^{k+1}}{1 - r}\right) + r^{k+1} \text{ by the induction hypothesis} \\
= \frac{1 - r^{k+1}}{1 - r} + \frac{r^{k+1}(1 - r)}{1 - r} = \frac{(1 - r^{k+1}) + (r^{k+1} - r^{k+2})}{1 - r} \\
= \frac{1 - r^{k+2}}{1 - r} = \frac{1 - r^{n+1}}{1 - r} \text{ where } n = k + 1,
\]

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed. \qed
Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}$ for every natural number $n \in \mathbb{N}$.

Proof (continued). We have $1 + r + r^2 + \cdots + r^k + r^{k+1}$

\[
= (1 + r + r^2 + \cdots + r^k) + r^{k+1}
\]

\[
= \left(\frac{1 - r^{k+1}}{1 - r} \right) + r^{k+1} \quad \text{by the induction hypothesis}
\]

\[
= \frac{1 - r^{k+1}}{1 - r} + \frac{r^{k+1}(1 - r)}{1 - r} = \frac{(1 - r^{k+1}) + (r^{k+1} - r^{k+2})}{1 - r}
\]

\[
= \frac{1 - r^{k+2}}{1 - r} = \frac{1 - r^{n+1}}{1 - r} \quad \text{where } n = k + 1,
\]

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed. \qed
Exercise A.2.9.

Exercise A.2.9. Sums of Squares

Prove Theorem 5.2.B(2):

\[\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

for all \(n \in \mathbb{N} \).

Proof. First, we check the formula for \(n = 1 \). This gives

\[1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6} = \frac{6}{6} = 1, \]

which holds.
Exercise A.2.9. Sums of Squares

Prove Theorem 5.2.B(2):

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6}$$

for all $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives

$$1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6} = \frac{6}{6} = 1,$$

which holds. Second, we assume the formula holds for $n = k$, so that we assume

$$1^2 + 2^2 + \cdots + k^2 = \frac{k(k + 1)(2k + 1)}{6}.$$

We want to show that the formula also holds for $n = k + 1$. Consider

$$1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 = (1^2 + 2^2 + \cdots + k^2) + (k + 1)^2.$$
Exercise A.2.9. Sums of Squares

Prove Theorem 5.2.B(2):

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \quad \text{for all } n \in \mathbb{N}.$$

Proof. First, we check the formula for $n = 1$. This gives

$$1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6} = \frac{6}{6} = 1,$$

which holds. Second, we assume the formula holds for $n = k$, so that we assume

$$1^2 + 2^2 + \cdots + k^2 = \frac{k(k + 1)(2k + 1)}{6}.$$

We want to show that the formula also holds for $n = k + 1$. Consider

$$1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 = (1^2 + 2^2 + \cdots + k^2) + (k + 1)^2.$$
Exercise A.2.9 (continuous)

Proof (continued). We have $1^2 + 2^2 + \cdots + k^2 + (k + 1)^2$

\[
= (1^2 + 2^2 + \cdots + k^2) + (k + 1)^2
\]

\[
= \left(\frac{k(k + 1)(2k + 1)}{6} \right) + (k + 1)^2 \text{ by the induction hypothesis}
\]

\[
= \frac{k(k + 1)(2k + 1)}{6} + \frac{6(k + 1)^2}{6} = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6}
\]

\[
= \frac{(k + 1)(k(2k + 1) + 6(k + 1))}{6} = \frac{(k + 1)(2k^2 + k + 6k + 6)}{6}
\]

\[
= \frac{(k + 1)(2k^2 + 7k + 6)}{6} = \frac{(k + 1)(k + 2)(2k + 3)}{6}
\]

\[
= \frac{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}{6} = \frac{n(n + 1)(2n + 1)}{6} \quad \text{where } n = k + 1,
\]

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.
Exercise A.2.10

Exercise A.2.10. Sums of Cubes
Prove Theorem 5.2.B(3):

\[
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2} \right)^2 \quad \text{for all } n \in \mathbb{N}.
\]

Solution. First, we check the formula for \(n = 1 \). This gives

\[
1^3 = \left(\frac{(1)((1) + 1)}{2} \right)^2 = 1^2, \quad \text{which holds.}
\]
Exercise A.2.10. Sums of Cubes

Prove Theorem 5.2.B(3):

\[\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2} \right)^2 \quad \text{for all } n \in \mathbb{N}. \]

Solution. First, we check the formula for \(n = 1 \). This gives

\[1^3 = \left(\frac{(1)(((1) + 1))}{2} \right)^2 = 1^2, \quad \text{which holds.} \]

Second, we assume the formula holds for \(n = k \), so that we assume \(1^3 + 2^3 + \cdots + k^3 = \left(\frac{k(k+1)}{2} \right)^2 \).

We want to show that the formula also holds for \(n = k + 1 \). Consider

\[1^3 + 2^3 + \cdots + k^3 + (k+1)^3 = (1^3 + 2^3 + \cdots + k^3) + (k+1)^3. \]
Exercise A.2.10. Sums of Cubes

Prove Theorem 5.2.B(3):

\[
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2} \right)^2 \text{ for all } n \in \mathbb{N}.
\]

Solution. First, we check the formula for \(n = 1 \). This gives

\[1^3 = \left(\frac{1(1+1)}{2} \right)^2 = 1^2,\] which holds. Second, we assume the formula holds for \(n = k \), so that we assume

\[1^3 + 2^3 + \cdots + k^3 = \left(\frac{k(k+1)}{2} \right)^2.\]

We want to show that the formula also holds for \(n = k + 1 \). Consider

\[1^3 + 2^3 + \cdots + k^3 + (k+1)^3 = (1^3 + 2^3 + \cdots + k^3) + (k+1)^3.\]
Exercise A.2.10. Sums of Cubes

Solution. We have
\[1^3 + 2^3 + \cdots + k^3 + (k + 1)^3 \]

\[
= (1^3 + 2^3 + \cdots + k^3) + (k + 1)^3 \\
= \left(\frac{k(k + 1)}{2} \right)^2 + (k + 1)^3 \text{ by the induction hypothesis} \\
= \left(\frac{k(k + 1)}{2} \right)^2 + \frac{4(k + 1)^3}{4} = \frac{k^2(k + 1)^2 + 4(k + 1)^3}{4} \\
= \frac{(k + 1)^2(k^2 + 4(k + 1))}{4} = \frac{(k + 1)^2(k^2 + 4k + 4)}{4} \\
= \frac{(k + 1)^2(k + 2)^2}{4} = \frac{(k + 1)^2((k + 1) + 1)^2}{4} \\
= \left(\frac{(k + 1)((k + 1) + 1)}{2} \right)^2 = \left(\frac{n(n + 1)}{2} \right)^2 \text{ where } n = k + 1, \\
\]

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed.

1. **Sum Rule:** \[\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \]

2. **Difference Rule:** \[\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \]

3. **Constant Multiple Rule:** \[\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i \]

4. **Constant Value Rule:** \[\sum_{i=1}^{n} c = nc \]
Solution. First, we check the formula for $n = 1$. This gives
$(a_1 + b_1) = (a_1) + (b_1)$, which holds. Second, we assume the formula holds for $n = k$, so that we assume
$k\sum_{i=1}^{k} (a_i + b_i) = \sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i$. We want to show that the formula also holds for $n = k + 1$. Consider $k+1\sum_{i=1}^{k+1} (a_i + b_i) = \left(\sum_{i=1}^{k} (a_i + b_i)\right) + (a_{k+1} + b_{k+1}).$
Exercise A.2.11 (continued 1)

Sum Rule: \[\sum_{i=1}^{n}(a_i + b_i) = \sum_{i=1}^{n}a_i + \sum_{i=1}^{n}b_i \]

Solution. First, we check the formula for \(n = 1 \). This gives \((a_1 + b_1) = (a_1) + (b_1)\), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \(\sum_{i=1}^{k}(a_i + b_i) = \sum_{i=1}^{k}a_i + \sum_{i=1}^{k}b_i \). We want to show that the formula also holds for \(n = k + 1 \). Consider

\[\sum_{i=1}^{k+1}(a_i + b_i) = \left(\sum_{i=1}^{k}(a_i + b_i) \right) + (a_{k+1} + b_{k+1}) \].
Solution (continued). We have \(\sum_{i=1}^{k+1} (a_i + b_i) \)

\[
\begin{align*}
&= \left(\sum_{i=1}^{k} (a_i + b_i) \right) + (a_{k+1} + b_{k+1}) \\
&= \left(\sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i \right) + (a_{k+1} + b_{k+1}) \text{ by the induction hypothesis} \\
&= \left(\sum_{i=1}^{k} a_i + a_{k+1} \right) + \left(\sum_{i=1}^{k} b_i + b_{k+1} \right) \\
&\quad \text{by associativity and commutativity of addition in } \mathbb{R} \\
&= \sum_{i=1}^{k+1} a_i + \sum_{i=1}^{k+1} b_i = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \text{ where } n = k + 1,
\end{align*}
\]

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed.
Exercise A.2.11 (continued 3)

Difference Rule: \[\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \]

Solution. First, we check the formula for \(n = 1 \). This gives
\[(a_1 - b_1) = (a_1) - (b_1), \]
which holds. Second, we assume the formula holds for \(n = k \), so that we assume \[\sum_{i=1}^{k} (a_i - b_i) = \sum_{i=1}^{k} a_i - \sum_{i=1}^{k} b_i. \]
We want to show that the formula also holds for \(n = k + 1 \). Consider
\[\sum_{i=1}^{k+1} (a_i - b_i) = \left(\sum_{i=1}^{k} (a_i - b_i) \right) + (a_{k+1} - b_{k+1}). \]
Exercise A.2.11 (continued 3)

Difference Rule: \[\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \]

Solution. First, we check the formula for \(n = 1 \). This gives \((a_1 - b_1) = (a_1) - (b_1)\), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \(\sum_{i=1}^{k} (a_i - b_i) = \sum_{i=1}^{k} a_i - \sum_{i=1}^{k} b_i \). We want to show that the formula also holds for \(n = k + 1 \). Consider \(\sum_{i=1}^{k+1} (a_i - b_i) = \left(\sum_{i=1}^{k} (a_i - b_i) \right) + (a_{k+1} - b_{k+1}) \).
Solution (continued). We have \(\sum_{i=1}^{k+1} (a_i - b_i) \)

\[
= \left(\sum_{i=1}^{k} (a_i - b_i) \right) + (a_{k+1} - b_{k+1})
\]

\[
= \left(\sum_{i=1}^{k} a_i - \sum_{i=1}^{k} b_i \right) + (a_{k+1} - b_{k+1}) \text{ by the induction hypothesis}
\]

\[
= \left(\sum_{i=1}^{k} a_i + a_{k+1} \right) - \left(\sum_{i=1}^{k} b_i + b_{k+1} \right)
\]

by associativity and commutivity of addition in \(\mathbb{R} \)

\[
= \sum_{i=1}^{k+1} a_i - \sum_{i=1}^{k+1} b_i = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \text{ where } n = k + 1,
\]

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed.
Exercise A.2.11 (continued 5)

Constant Multiple Rule: \[\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i \]

Solution. First, we check the formula for \(n = 1 \). This gives \((ca_1) = c(a_1)\), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \[\sum_{i=1}^{k} ca_i = c \sum_{i=1}^{k} a_i. \] We want to show that the formula also holds for \(n = k + 1 \). Consider \[\sum_{i=1}^{k+1} ca_i = \sum_{i=1}^{k} ca_i + ca_{k+1}. \]
Constant Multiple Rule: \[\sum_{i=1}^{n} c a_i = c \sum_{i=1}^{n} a_i \]

Solution. First, we check the formula for \(n = 1 \). This gives \((ca_1) = c(a_1)\), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \(\sum_{i=1}^{k} c a_i = c \sum_{i=1}^{k} a_i \). We want to show that the formula also holds for \(n = k + 1 \). Consider \(\sum_{i=1}^{k+1} c a_i = \sum_{i=1}^{k} c a_i + c a_{k+1} \).
Exercise A.2.11 (continued 6)

Solution (continued). We have \(\sum_{i=1}^{k+1} ca_i \)

\[
\begin{align*}
&= \sum_{i=1}^{k} ca_i + ca_{k+1} \\
&= c \sum_{i=1}^{k} a_i + ca_{k+1} \text{ by the induction hypothesis} \\
&= c \left(\sum_{i=1}^{k} a_i + a_{k+1} \right) \text{ since multiplication distributes over addition in } \mathbb{R} \\
&= c \left(\sum_{i=1}^{k+1} a_i \right) = c \sum_{i=1}^{n} a_i \text{ where } n = k + 1,
\end{align*}
\]

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed.
Solution. First, we check the formula for \(n = 1 \). This gives \((c) = 1c\), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \(\sum_{i=1}^{k} c = kc \). We want to show that the formula also holds for \(n = k + 1 \). Consider \(\sum_{i=1}^{k+1} c = \left(\sum_{i=1}^{k} c \right) + c \).
Constant Value Rule: \(\sum_{i=1}^{n} c = nc \)

Solution. First, we check the formula for \(n = 1 \). This gives \((c) = 1c \), which holds. Second, we assume the formula holds for \(n = k \), so that we assume \(\sum_{i=1}^{k} c = kc \). We want to show that the formula also holds for \(n = k + 1 \). Consider \(\sum_{i=1}^{k+1} c = \left(\sum_{i=1}^{k} c \right) + c \).
Solution (continued). We have \(\sum_{i=1}^{k+1} c \)

\[
= \left(\sum_{i=1}^{k} c \right) + c
\]

\(= kc + c \) by the induction hypothesis

\(= (k + 1)c \) since multiplication distributes over addition in \(\mathbb{R} \)

\(= nc \) where \(n = k + 1 \),

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed. \(\square \)
Example A.2.B. Prove the General Product Rule (see Exercise 3.3.77 for motivation of this result): For differentiable functions u_1, u_2, \ldots, u_n, we have that the derivative of the product $u_1u_2\cdots u_n$ exists and

$$
\frac{d}{dx}[(u_1)(u_2)\cdots(u_n)] = [u_1'](u_2)(u_3)\cdots(u_{n-1})(u_n) \\
\quad + (u_1)[u_2'](u_3)\cdots(u_{n-1})(u_n) \\
\quad + (u_1)(u_2)[u_3']\cdots(u_{n-1})(u_n) + \cdots \\
\quad + (u_1)(u_2)(u_3)\cdots[u'_{n-1}](u_n) \\
\quad + (u_1)(u_2)(u_3)\cdots(u_{n-1})[u'_n].
$$
Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation notation: $u_1 u_2 \cdots u_n = \prod_{i=1}^{n} u_i$. We can then express the claim of this theorem as

$$\frac{d}{dx} \left[\prod_{i=1}^{n} u_i \right] = \sum_{j=1}^{n} u'_j \prod_{i=1,i\neq j}^{n} u_i.$$

First, we check the formula for $n = 1$. This gives

$$\frac{d}{dx} [u_1] = \sum_{j=1}^{1} u'_j \prod_{i=1,i\neq 1}^{1} u_i = u'_1,$$

which holds. For clarity, we also check the formula for $n = 2$. This gives

$$\frac{d}{dx} [u_1 u_2] = \sum_{j=1}^{2} u'_j \prod_{i=1,i\neq j}^{2} u_i = [u'_1](u_2) + (u_1)[u'_2],$$

which holds by the Derivative Product Rule (Theorem 3.3.G).
Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation notation: \(u_1 u_2 \cdots u_n = \prod_{i=1}^{n} u_i \). We can then express the claim of this theorem as

\[
\frac{d}{dx} \left[\prod_{i=1}^{n} u_i \right] = \sum_{j=1}^{n} u'_j \prod_{i=1, i \neq j}^{n} u_i.
\]

First, we check the formula for \(n = 1 \). This gives

\[
\frac{d}{dx} [u_1] = \sum_{j=1}^{1} u'_j \prod_{i=1, i \neq 1}^{1} u_i = u'_1, \text{ which holds.}
\]

For clarity, we also check the formula for \(n = 2 \). This gives

\[
\frac{d}{dx} [u_1 u_2] = \sum_{j=1}^{2} u'_j \prod_{i=1, i \neq j}^{2} u_i = [u'_1](u_2) + (u_1)[u'_2], \text{ which holds by the Derivative Product Rule (Theorem 3.3.G).}
\]
Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for \(n = k \), so that we assume
\[
\frac{d}{dx} \left[\prod_{i=1}^{k} u_i \right] = \sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k} u_i.
\]
We want to show that the formula also holds for \(n = k + 1 \). Consider
\[
\frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right] = \frac{d}{dx} \left[\left(\prod_{i=1}^{k} u_i \right) u_{k+1} \right]
\]
\[= \frac{d}{dx} \left[\prod_{i=1}^{k} u_i \right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}] \text{ by the Derivative Rule for Products (Theorem 3.3.G)}
\]
\[= \sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k} u_i (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}] \text{ by induction hypothesis}
\]
Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for \(n = k \), so that we assume

\[
\frac{d}{dx} \left[\prod_{i=1}^{k} u_i \right] = \sum_{j=1}^{k} u_j' \prod_{i=1, i \neq j}^{k} u_i.
\]

We want to show that the formula also holds for \(n = k + 1 \). Consider

\[
\frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right] = \frac{d}{dx} \left[\left(\prod_{i=1}^{k} u_i \right) u_{k+1} \right]
\]

\[
= \frac{d}{dx} \left(\prod_{i=1}^{k} u_i \right) (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}] \text{ by the Derivative Rule for Products (Theorem 3.3.G)}
\]

\[
= \left[\sum_{j=1}^{k} u_j' \prod_{i=1, i \neq j}^{k} u_i \right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}] \text{ by induction hypothesis}
\]
Proof (continued). ... \[
\frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right] \\
= \left[\sum_{j=1}^{k} u_j' \prod_{i=1, i \neq j}^{k} u_i \right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}] \\
= \sum_{j=1}^{k} u_j' \prod_{i=1, i \neq j}^{k+1} u_i + u'_{k+1} \prod_{i=1, i \neq k+1}^{k+1} u_i \\
= \sum_{j=1}^{k+1} u_j \prod_{i=1, i \neq j}^{k+1} u_i = \sum_{j=1}^{n} u_j \prod_{i=1, i \neq j}^{n} u_i \text{ where } n = k + 1,
\]

so the result holds for \(n = k + 1 \) and, by the mathematical induction principle, the formula holds for all \(n \in \mathbb{N} \), as claimed.