Calculus 1

Appendices
A.2. Mathematical Induction—Examples and Proofs
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Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural
number n € N,

n(n—i—l)‘

n
1424 +n=) i= >

i=1
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Example A.2.1

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural
number n € N,

n

1

1+2+~~+n:§ ,':n(n;_)‘
i=1

Prove. First, we check the formula for n = 1. This gives

1
Z i=1= (1)((12)+1) = 1, which holds.
i=1
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Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural
number n € N,

n(n—i—l)‘

n
1424 +n=) i= >

i=1

Prove. First, we check the formula for n = 1. This gives

1
1)((1 1

Z i=1= ()((2)+) =1, which holds. Second, we assume the
i=1

formula holds for n = k, so that we assume

k
K)((k)+1
FPTRNE S((GES)

2

We want to show that the formula also holds for n = k + 1. Consider
142+ +k+(k+1)=(1+2+ -+ k)+ (k+1).
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Example A.2.1 (solution)

Solution (continued). We have

(1424 +k) +(k+1)

- (5) e

i=1

= <k(k2+1)> + (k + 1) by the induction hypothesis
_ k(k+1)  2(k+1) k(k+1)+2(k+1) (k+1)(k+2)
2 2 2 B 2
(k+1)((k+1)+1) n(n+1)

- 5 = 5 where n = k + 1.

So the formula holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Example A.2.A

Example A.2.A. Prove that for differentiable functions of x,
uy, Us, ..., U, we have
duq dus dup

d
&[U1+U2+"'+Un] d7+a+“+dx.
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Example A.2.A. Derivative of a Sum

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x,
uy, Us, ..., U, we have

it up oo toug = G G dUn
dx' b2 " A dx dx

Proof. First, we check the formula for n = 1. This gives di[ul] = %,
which holds. Notice also that %[ul + w] = ‘g’l d”2 by the Derivative

Sum Rule (Theorem 3.3.E), so that the result also holds for n=2.

T
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Example A.2.A. Derivative of a Sum

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x,
uy, Us, ..., U, we have

it up oo toug = G G dUn
dx' b2 " A dx dx

Proof. First, we check the formula for n = 1. This gives di[ul] = %,
which holds. Notice also that %[ul + w] = ‘g’l d”2 by the Derivative
Sum Rule (Theorem 3.3.E), so that the result also holds for n=2.
Second, we assume the formula holds for n = k, so that we assume
Dttty =% de gy %. We want to show that the
formula also holds for n = k + 1 ConS|der

T+ + -+ g+ uer] = L[ + 2+ + i) + ],
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Example A.2.A (continued)

Prove (continued). We have %[ul + Uy + -+ Uk + Uk

d
= a[(U1+U2+"'+Uk)+Uk+1]

d d _
= a[(ul +up 4w+ a[uk+1] since the result

holds for n = 2 functions
d

= <dx+c/x+“'+dx>+w<[“k+1]

by the induction hypothesis

. dU]_ dU2 duk duk+1

- dx + dx Tt dx * dx

_dup | dup du, B

== K—FK%—”-—FKWheren—k—i—l,

so the result holds for n = k 4+ 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Exercise A.2.2

1— rn+1

Exercise A.2.2. Prove that if r # 1 then 1+ r+ P = =

for every natural number n € N.
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Exercise A.2.2

1— rn+1

Exercise A.2.2. Prove that if r # 1 then 14+r+r?+... 41" = 17

for every natural number n € N.

Proof. First2, we check the formula for n = 1. This gives
14 r =12 = 020040 — 1 4 ¢ which holds.
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Exercise A.2.2

1— n+1
Exercise A.2.2. Prove that if r # 1 then 14+r+r?+... 41" = lir
—r
for every natural number n € N.
Proof. First, we check the formula for n = 1. This gives
2 _
1+r= 111’r =a {)_(1+r) =1+ r, which holds. Second, we assume the
formula holds for n = k, so th;?t we assume
k1
1+r+rP4. . +rk= 17r We want to show that the formula also
—r

holds for n = k + 1. Consider
Lbrdr?4 o+ = (1 r 24 rk) kL
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Exercise A.2.2 (continued)

1— rn+1

Exercise A.2.2. Prove that if r # 1 then 14+ r+r?+... 41" = 17

for every natural number n € N.

T T



Exercise A.2.2 (continued)

1— n+1
Exercise A.2.2. Prove that if r # 1 then 14+ r+r?+... 41" = lir
—r

for every natural number n € N.
Proof (continued). We have 1 +r 4 r? ... 4 rk 4 rk+l

= (Q4r+r+- )4t

1— rk+1
= (1> + r**1 by the induction hypothesis
—r
B 1— rk+1 rk+1(1 _ r) B (1 _ rk+1) 4 (rk+1 _ rk+2)
 1—r 1—-r 1—r
1— rk+2 1— rn+1

= e where n = k+ 1,

so the result holds for n = k 4+ 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. ]
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Exercise A.2.9

Exercise A.2.9. Sums of Squares
Prove Theorem 5.2.B(2):

n

1)(2 1
z:i2:12+22+...+n2:n(nJr )6(n+ ) for all n e N.
i=1
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Exercise A.2.9. Sums of Squares

Exercise A.2.9

Exercise A.2.9. Sums of Squares
Prove Theorem 5.2.B(2):

n

1)(2 1
z:i2:12+22+...+n2:n(nJr )6(n+ ) for all n e N.
i=1

Proof. First, we check the formula for n = 1. This gives

12 = (D) + 16)(2(1) +1) _ g — 1, which holds.

T
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Exercise A.2.9

Exercise A.2.9. Sums of Squares
Prove Theorem 5.2.B(2):

n

1)(2 1
ZI2:12+22++n2:n(n+ )(n+ )fora”nEN
i=1

6

Proof. First, we check the formula for n = 1. This gives

1° = (M) + 1) +1) = 9 = 1, which holds. Second, we assume

the formula holds for n = k, so that we assume
k(k+1)2k+1
24024 k2= (k+1)(2k +1)

also holds for n = k + 1. Consider
P22 4 kP (k+ 12 =12+ 22+ + k) + (k+ 1)2

. We want to show that the formula
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Exercise A.2.9 (continuous)

Proof (continued). We have 12 422 4 ... 4+ k? + (k + 1)?

= (P+22+- 4+ k) +(k+1)
<k(k—|—1)(2k+1)

6
k(k+1)(2k+1)  6(k+ 1)  k(k+1)(2k+1) +6(k + 1)?
6 T T 6
(k+1)(k(2k +1) +6(k+1))  (k+1)(2k* + k + 6k + 6)

6 6
(k+1)(2k?> + 7k +6)  (k+1)(k +2)(2k + 3)

- 6 - 6
(kD) +D)RKHD ) a2kl
= 6 = 6 where n = kK + 1,

> + (k 4+ 1)? by the induction hypothesis

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Exercise A.2.10

Exercise A.2.10. Sums of Cubes
Prove Theorem 5.2.B(3):

n 2

1
E I3:13+23++n3:<r7(r72—”> foraIInEN.
i=1
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Exercise A.2.10. Sums of Cubes

Exercise A.2.10

Exercise A.2.10. Sums of Cubes
Prove Theorem 5.2.B(3):

n 2

1
E I3:13+23++n3:<r7(r72—”> foraIInEN.
i=1

Solution. First, we check the formula for n = 1. This gives

13— <(1)((12)+1))2 — 12, which holds.
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Exercise A.2.10

Exercise A.2.10. Sums of Cubes
Prove Theorem 5.2.B(3):

n 2

1
E I3:13+23++n3:<r7(r72—”> foraIInEN.
i=1

Solution. First, we check the formula for n = 1. This gives
o <(1)((1) +1)

2
> ) =12, which holds. Second, we assume the formula

k(k + 1)\ 2
holds for n = k, so that we assume B+284.4k3= (2H> .

We want to show that the formula also holds for n = k + 1. Consider
B34+ 43+ (k+1P=134+22 4+ + k3 + (k+1)3.
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Exercise A.2.10 (continued)
Solution. We have 13 +23 + ... + k3 + (k +1)°
(B+23 4+ + K3+ (k+ 1)

— <k(k2+1)>2 + (k+ 1)3 by the induction hypothesis
(k)N Ak 1) KRk +1)2 4k +1)3
N ( 2 ) L N 4
 (k+ 12K+ 4(k+1))  (k+1)*(K2+4k+4)
- 4 N 4
_ (K 12(k+2)>  (k+1)((k+1)+1)
4 4

(k+1)((k+1D+D\?  [n(n+1))?

= ( 5 ) :<2> where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11

Exercise A.2.11. Prove Theorem 5.2.A, “Algebra for Finite Sums.”

05umRu/e:Zn:a,+b Za,+2b

i=1
@ Difference Rule: Z(a; — b)) = Z aj — Z b;
i=1 i=1

i=1

© Constant Multiple Rule: Z caj=c Z aj
i=1 i=1

n
@ Constant Value Rule: Z c = nc
i=1
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 1)

n n

Sum Rule: En:(a,- +b)=> ai+» b

i=1 i=1 i=1

Solution. First, we check the formula for n = 1. This gives
(a1 + b1) = (a1) + (b1), which holds.

Caleulus 1 October 5, 2020
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 1)

Sum Rule: En:(a; + b,‘) = En: aj + i b;
i=1 i=1

i=1

Solution. First, we check the formula for n = 1. This gives
(a1 + b1) = (a1) + (b1), which holds. Second we assume the formula

holds for n = k, so that we assumez a,+b)—Za,+Zb We

=1 i=1 i=1
want to show that the formula also hoIds for n = k + 1. Consider

k+1 k
Z(a; + b)) = (Z(ai + bi)> + (ak+1 + bk+1)-

i=1 i=1
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 2)

k+1
Solution (continued). We have Z(a,- + b))

K i=1
- (Z(a,- + b,-)) + (a1 + brt1)

i=1

k k
= (Z ai + Z b,-) + (ak+1 + bk+1) by the induction hypothesis

k k
= (Z aj + 3k+1> + (Z bi + bk+1>
i=1 i=1

by associativity and commutivity of addition in R
k+1 k+1

- Za,+2b _Za,+2b where n = k + 1,

so the result holds for n= k —|— 1 and by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 3)

n n

Difference Rule: En:(a; — b)) = Z aj — Z b;

i=1 i=1 i=1

Solution. First, we check the formula for n = 1. This gives
(31 — bl) = (al) — (bl), which holds.
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16 / 25



Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 3)

Difference Rule: En:(a; — b)) = En: aj — 2”: b;
i=1 i=1

i=1

Solution. First, we check the formula for n = 1. This gives

(a1 — b1) = (a1) — (b1), which holds. Second we assume the formula
holds for n = k, so that we assume Z aj — bj) = Za, Z b;. We
=1 i=1 i=1

want to show that the formula also hoIds for n = k + 1. Consider

k+1 k
> (ai— bi) = <Z(3i - b;)> + (ak+1 — br+1)-

i=1 i=1
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 4)

k+1
Solution (continued). We have Z(a,- — by)

K i=1
— (Z(a,- — b,-)) + (ak+1 — bk+1)

i=1

K k
= (Z aj — Z b,-) + (ak+1 — bk+1) by the induction hypothesis
i= i=1

k k
= (Z aj + 3k+1> - (Z bj + bk+1>
i=1 i=1

by associativity and commutivity of addition in R
k+1 k+1

- Za, Zb_Za, Zb where n = k + 1,

so the result holds for n= k —|— 1 and by the mathematical induction
principle, the formula holds for all n € N, as claimed. O
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 5)

n n
Constant Multiple Rule: Z ca; = CZ aj
i=1 i=1

Solution. First, we check the formula for n = 1. This gives (ca1) = c(a1),
which holds.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 5)

n n
Constant Multiple Rule: Z ca; = CZ aj
i=1 i=1

Solution. First, we check the formula for n = 1. This gives (ca1) = c(a1),

which holds. Second, we assume the formula holds for n = k, so that we
k k

assume Z caj = CZ a;. We want to show that the formula also holds

=1 =1
k+1

k
for n = k + 1. Consider Z caj = Z caj + cagy1-
i=1 i=1
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 6)

k+1
Solution (continued). We have Z caj
i=1

k
= E caj + Cak41
i=1

k
= c Z aj + caky1 by the induction hypothesis
i=1

k
= c (Z aj + ak+1> since multiplication distributes over addition in R
i=1

k+1 n
= ¢ (Za,-) :cZa,- where n = k + 1,
i=1 i=1

so the result holds for n = k 4+ 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. ]
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 7)

n
Constant Value Rule: Z c=nc
i=1

Solution. First, we check the formula for n = 1. This gives (c) = 1c,
which holds.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 7)

n
Constant Value Rule: Z c=nc
i=1

Solution. First, we check the formula for n = 1. This gives (c) = 1c,

which holds. Second, we assume the formula holds for n = k, so that we
k

assume Z ¢ = kc. We want to show that the formula also holds for
i=1

k+1 k
n=k+1. Considech: <Zc> + c.

i=1 i=1
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 8)

k+1
Solution (continued). We have Z c

= kc + c by the induction hypothesis
= (k + 1)c since multiplication distributes over addition in R

= nc where n=k+1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed. ]
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Example A.2.B. General Product Rule

Example A.2.B. Prove the General Product Rule (see Exercise 3.3.77 for

motivation of this result): For differentiable functions vy, up,

have that the derivative of the product uyus - - - u, exists and

d
) (w) - ()] =

[u1](u2)(u3) - - (Un—1)(un)
+(un)[wa](us) - - - (un—1)(un)
+(ur)(u2)[ug] - (un—1)(un) + -
+(u1)(u2)(u3) - - - [up_1](un)
+(u1)(u2)(u3) - - - (un—1)[uy

Calculus 1 October 5, 2020
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Example A.2.B. General Product Rule

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation
n

notation: uiuy - -+ u, = H u;. We can then express the claim of this
i=1

g ] -3 T w

i=1 j=1  i=1,i#j

theorem as

Calculus 1 October 5, 2020
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Example A.2.B. General Product Rule

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation
n

notation: uiuy - -+ u, = H u;. We can then express the claim of this

i=1
theorem as
d n n n
g ] -3 T w
i=1 j=1  i=1,i#j
First, we check the formula for n = 1. This gives
1 1
d
d—[ul] = Z u; H uj = uj, which holds. For clarity, we also check the
Ix
j=1 i=1,i#l

formula for n =2 This gives

—[u1u2] = Z H uj = [u}](u2) + (v1)[uh], which holds by the
= i=1,i#j
Derivative Product Rule (Theorem 3.3.G).

Calculus 1 October 5, 2020 23 / 25



Example A.2.B. General Product Rule

Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for n = k, so that

k k k
d /
we assume - [H u,-] = E uj H u;. We want to show that the

i=1 j=1  i=1,i#j
formula also holds for n = k + 1.

T
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Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for n = k, so that

k k k
d /
we assume - [H u,-] = E uj H u;. We want to show that the

i=1 j=1  i=l,i#j
formula also holds for n = k + 1. Consider

)

k k
- dix [H ”/] (Uks1) + (H u,-) [ULH] by the Derivative Rule

i=1 i=1
for Products (Theorem 3.3.G)

k
= Z H ui | (uks+1) + <H u,-) [t};1] by induction hypothesis

= i=1,i#j i=1
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Example A.2.B (continued 3)

g [kt
Proof (continued). ... ™ [H u;]
X

i=1

k k
= Z uj{. H ui | (Uks1) <H u,) [Uhy1]

Jj=1 i=Li#j
k k+1 k+1
/ /
= g uj Uj + Uy q H uj
j=1  i=1,i#j i=1,i#k+1
k+1 k+1
= uj H up = E uj H ui where n =k +1,
j=1 i=1,i#j j=1 i=1,i#j

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n € N, as claimed.

Caleulus 1 October 5, 2020
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