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Example A.2.1

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural
number n ∈ N,

1 + 2 + · · ·+ n =
n∑

i=1

i =
n(n + 1)

2
.

Prove. First, we check the formula for n = 1. This gives
1∑

i=1

i = 1 =
(1)((1) + 1)

2
= 1, which holds.

Second, we assume the

formula holds for n = k, so that we assume

1 + 2 + · · ·+ k =
k∑

i=1

i =
(k)((k) + 1)

2
.

We want to show that the formula also holds for n = k + 1. Consider
1 + 2 + · · ·+ k + (k + 1) = (1 + 2 + · · ·+ k) + (k + 1).
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Example A.2.1

Example A.2.1 (solution)

Solution (continued). We have

(1 + 2 + · · ·+ k) + (k + 1)

=

(
k∑

i=1

i

)
+ (k + 1)

=

(
k(k + 1)

2

)
+ (k + 1) by the induction hypothesis

=
k(k + 1)

2
+

2(k + 1)

2
=

k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2
=

n(n + 1)

2
where n = k + 1.

So the formula holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Example A.2.A. Derivative of a Sum

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x ,
u1, u2, . . . , un, we have

d

dx
[u1 + u2 + · · ·+ un] =

du1

dx
+

du2

dx
+ · · ·+ dun

dx
.

Proof. First, we check the formula for n = 1. This gives d
dx [u1] = du1

dx ,

which holds. Notice also that d
dx [u1 + u2] = du1

dx + du2
dx by the Derivative

Sum Rule (Theorem 3.3.E), so that the result also holds for n = 2.

Second, we assume the formula holds for n = k, so that we assume
d
dx [u1 + u2 + · · ·+ uk ] = du1

dx + du2
dx + · · ·+ duk

dx . We want to show that the
formula also holds for n = k + 1. Consider
d
dx [u1 + u2 + · · ·+ uk + uk+1] = d

dx [(u1 + u2 + · · ·+ uk) + uk+1].
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Example A.2.A. Derivative of a Sum

Example A.2.A (continued)

Prove (continued). We have d
dx [u1 + u2 + · · ·+ uk + uk+1]

=
d

dx
[(u1 + u2 + · · ·+ uk) + uk+1]

=
d

dx
[(u1 + u2 + · · ·+ uk)] +

d

dx
[uk+1] since the result

holds for n = 2 functions

=

(
du1

dx
+

du2

dx
+ · · ·+ duk

dx

)
+

d

dx
[uk+1]

by the induction hypothesis

=
du1

dx
+

du2

dx
+ · · ·+ duk

dx
+

duk+1

dx

=
du1

dx
+

du2

dx
+ · · ·+ dun

dx
where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Exercise A.2.2

Exercise A.2.2

Exercise A.2.2. Prove that if r 6= 1 then 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
for every natural number n ∈ N.

Proof. First, we check the formula for n = 1. This gives
1 + r = 1−r2

1−r = (1−r)(1+r)
1−r = 1 + r , which holds.

Second, we assume the
formula holds for n = k, so that we assume

1 + r + r2 + · · ·+ rk =
1− rk+1

1− r
. We want to show that the formula also

holds for n = k + 1. Consider
1 + r + r2 + · · ·+ rk + rk+1 = (1 + r + r2 + · · ·+ rk) + rk+1.
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Exercise A.2.2

Exercise A.2.2 (continued)

Exercise A.2.2. Prove that if r 6= 1 then 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
for every natural number n ∈ N.

Proof (continued). We have 1 + r + r2 + · · ·+ rk + rk+1

= (1 + r + r2 + · · ·+ rk) + rk+1

=

(
1− rk+1

1− r

)
+ rk+1 by the induction hypothesis

=
1− rk+1

1− r
+

rk+1(1− r)

1− r
=

(1− rk+1) + (rk+1 − rk+2)

1− r

=
1− rk+2

1− r
=

1− rn+1

1− r
where n = k + 1,
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Exercise A.2.9. Sums of Squares

Exercise A.2.9

Exercise A.2.9. Sums of Squares
Prove Theorem 5.2.B(2):

n∑
i=1

i2 = 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
for all n ∈ N.

Proof. First, we check the formula for n = 1. This gives

12 =
(1)((1) + 1)(2(1) + 1)

6
=

6

6
= 1, which holds.

Second, we assume

the formula holds for n = k, so that we assume

12 + 22 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
. We want to show that the formula

also holds for n = k + 1. Consider
12 + 22 + · · ·+ k2 + (k + 1)2 = (12 + 22 + · · ·+ k2) + (k + 1)2.
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Exercise A.2.9. Sums of Squares

Exercise A.2.9 (continuous)

Proof (continued). We have 12 + 22 + · · ·+ k2 + (k + 1)2

= (12 + 22 + · · ·+ k2) + (k + 1)2

=

(
k(k + 1)(2k + 1)

6

)
+ (k + 1)2 by the induction hypothesis

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6
=

k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6
=

(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6
=

(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
=

n(n + 1)(2n + 1)

6
where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Exercise A.2.10. Sums of Cubes

Exercise A.2.10

Exercise A.2.10. Sums of Cubes
Prove Theorem 5.2.B(3):

n∑
i=1

i3 = 13 + 23 + · · ·+ n3 =

(
n(n + 1)

2

)2

for all n ∈ N.

Solution. First, we check the formula for n = 1. This gives

13 =

(
(1)((1) + 1)

2

)2

= 12, which holds.

Second, we assume the formula

holds for n = k, so that we assume 13 + 23 + · · ·+ k3 =

(
k(k + 1)

2

)2

.

We want to show that the formula also holds for n = k + 1. Consider
13 + 23 + · · ·+ k3 + (k + 1)3 = (13 + 23 + · · ·+ k3) + (k + 1)3.
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Exercise A.2.10. Sums of Cubes

Exercise A.2.10 (continued)

Solution. We have 13 + 23 + · · ·+ k3 + (k + 1)3

= (13 + 23 + · · ·+ k3) + (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3 by the induction hypothesis

=

(
k(k + 1)

2

)2

+
4(k + 1)3

4
=

k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1))

4
=

(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4
=

(k + 1)2((k + 1) + 1)2

4

=

(
(k + 1)((k + 1) + 1)

2

)2

=

(
n(n + 1)

2

)2

where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11

Exercise A.2.11. Prove Theorem 5.2.A, “Algebra for Finite Sums.”

1 Sum Rule:
n∑

i=1

(ai + bi ) =
n∑

i=1

ai +
n∑

i=1

bi

2 Difference Rule:
n∑

i=1

(ai − bi ) =
n∑

i=1

ai −
n∑

i=1

bi

3 Constant Multiple Rule:
n∑

i=1

cai = c
n∑

i=1

ai

4 Constant Value Rule:
n∑

i=1

c = nc
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 1)

Sum Rule:
n∑

i=1

(ai + bi ) =
n∑

i=1

ai +
n∑

i=1

bi

Solution. First, we check the formula for n = 1. This gives
(a1 + b1) = (a1) + (b1), which holds. Second, we assume the formula

holds for n = k, so that we assume
k∑

i=1

(ai + bi ) =
k∑

i=1

ai +
k∑

i=1

bi . We

want to show that the formula also holds for n = k + 1. Consider
k+1∑
i=1

(ai + bi ) =

(
k∑

i=1

(ai + bi )

)
+ (ak+1 + bk+1).
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 2)

Solution (continued). We have
k+1∑
i=1

(ai + bi )

=

(
k∑

i=1

(ai + bi )

)
+ (ak+1 + bk+1)

=

(
k∑

i=1

ai +
k∑

i=1

bi

)
+ (ak+1 + bk+1) by the induction hypothesis

=

(
k∑

i=1

ai + ak+1

)
+

(
k∑

i=1

bi + bk+1

)
by associativity and commutivity of addition in R

=
k+1∑
i=1

ai +
k+1∑
i=1

bi =
n∑

i=1

ai +
n∑

i=1

bi where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 3)

Difference Rule:
n∑

i=1

(ai − bi ) =
n∑

i=1

ai −
n∑

i=1

bi

Solution. First, we check the formula for n = 1. This gives
(a1 − b1) = (a1)− (b1), which holds. Second, we assume the formula

holds for n = k, so that we assume
k∑

i=1

(ai − bi ) =
k∑

i=1

ai −
k∑

i=1

bi . We

want to show that the formula also holds for n = k + 1. Consider
k+1∑
i=1

(ai − bi ) =

(
k∑

i=1

(ai − bi )

)
+ (ak+1 − bk+1).
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 4)

Solution (continued). We have
k+1∑
i=1

(ai − bi )

=

(
k∑

i=1

(ai − bi )

)
+ (ak+1 − bk+1)

=

(
k∑

i=1

ai −
k∑

i=1

bi

)
+ (ak+1 − bk+1) by the induction hypothesis

=

(
k∑

i=1

ai + ak+1

)
−

(
k∑

i=1

bi + bk+1

)
by associativity and commutivity of addition in R

=
k+1∑
i=1

ai −
k+1∑
i=1

bi =
n∑

i=1

ai −
n∑

i=1

bi where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.

() Calculus 1 October 5, 2020 17 / 25



Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 5)

Constant Multiple Rule:
n∑

i=1

cai = c
n∑

i=1

ai

Solution. First, we check the formula for n = 1. This gives (ca1) = c(a1),
which holds. Second, we assume the formula holds for n = k, so that we

assume
k∑

i=1

cai = c
k∑

i=1

ai . We want to show that the formula also holds

for n = k + 1. Consider
k+1∑
i=1

cai =
k∑

i=1

cai + cak+1.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 6)

Solution (continued). We have
k+1∑
i=1

cai

=
k∑

i=1

cai + cak+1

= c
k∑

i=1

ai + cak+1 by the induction hypothesis

= c

(
k∑

i=1

ai + ak+1

)
since multiplication distributes over addition in R

= c

(
k+1∑
i=1

ai

)
= c

n∑
i=1

ai where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 7)

Constant Value Rule:
n∑

i=1

c = nc

Solution. First, we check the formula for n = 1. This gives (c) = 1c ,
which holds. Second, we assume the formula holds for n = k, so that we

assume
k∑

i=1

c = kc . We want to show that the formula also holds for

n = k + 1. Consider
k+1∑
i=1

c =

(
k∑

i=1

c

)
+ c .
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Exercise A.2.11. Proof of Theorem 5.2.A

Exercise A.2.11 (continued 8)

Solution (continued). We have
k+1∑
i=1

c

=

(
k∑

i=1

c

)
+ c

= kc + c by the induction hypothesis

= (k + 1)c since multiplication distributes over addition in R
= nc where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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Example A.2.B. General Product Rule

Example A.2.B. General Product Rule

Example A.2.B. Prove the General Product Rule (see Exercise 3.3.77 for
motivation of this result): For differentiable functions u1, u2, . . . , un, we
have that the derivative of the product u1u2 · · · un exists and

d

dx
[(u1)(u2) · · · (un)] = [u′1](u2)(u3) · · · (un−1)(un)

+(u1)[u
′
2](u3) · · · (un−1)(un)

+(u1)(u2)[u
′
3] · · · (un−1)(un) + · · ·

+(u1)(u2)(u3) · · · [u′n−1](un)

+(u1)(u2)(u3) · · · (un−1)[u
′
n].
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Example A.2.B. General Product Rule

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation

notation: u1u2 · · · un =
n∏

i=1

ui . We can then express the claim of this

theorem as
d

dx

[
n∏

i=1

ui

]
=

n∑
j=1

u′j

n∏
i=1,i 6=j

ui .

First, we check the formula for n = 1. This gives

d

dx
[u1] =

1∑
j=1

u′j

1∏
i=1,i 6=1

ui = u′1, which holds. For clarity, we also check the

formula for n = 2. This gives

d

dx
[u1u2] =

2∑
j=1

u′j

2∏
i=1,i 6=j

ui = [u′1](u2) + (u1)[u
′
2], which holds by the

Derivative Product Rule (Theorem 3.3.G).
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Example A.2.B. General Product Rule

Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for n = k, so that

we assume
d

dx

[
k∏

i=1

ui

]
=

k∑
j=1

u′j

k∏
i=1,i 6=j

ui . We want to show that the

formula also holds for n = k + 1. Consider

d

dx

[
k+1∏
i=1

ui

]
=

d

dx

[(
k∏

i=1

ui

)
uk+1

]

=
d

dx

[
k∏

i=1

ui

]
(uk+1) +

(
k∏

i=1

ui

)
[u′k+1] by the Derivative Rule

for Products (Theorem 3.3.G)

=

 k∑
j=1

u′j

k∏
i=1,i 6=j

ui

 (uk+1) +

(
k∏

i=1

ui

)
[u′k+1] by induction hypothesis
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Example A.2.B (continued 2)
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Example A.2.B. General Product Rule

Example A.2.B (continued 3)

Proof (continued). . . .
d

dx

[
k+1∏
i=1

ui

]

=

 k∑
j=1

u′j

k∏
i=1,i 6=j

ui

 (uk+1) +

(
k∏

i=1

ui

)
[u′k+1]

=
k∑

j=1

u′j

k+1∏
i=1,i 6=j

ui + u′k+1

k+1∏
i=1,i 6=k+1

ui

=
k+1∑
j=1

uj

k+1∏
i=1,i 6=j

ui =
n∑

j=1

uj

n∏
i=1,i 6=j

ui where n = k + 1,

so the result holds for n = k + 1 and, by the mathematical induction
principle, the formula holds for all n ∈ N, as claimed.
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