Calculus 1

Appendices

A.2. Mathematical Induction—Examples and Proofs

Table of contents

- [Example A.2.1](#page-2-0)
- [Example A.2.A. Derivative of a Sum](#page-6-0)
- [Exercise A.2.2](#page-10-0)
- [Exercise A.2.9. Sums of Squares](#page-15-0)
- [Exercise A.2.10. Sums of Cubes](#page-19-0)
- [Exercise A.2.11. Proof of Theorem 5.2.A](#page-23-0)
- [Example A.2.B. General Product Rule](#page-36-0)

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number $n \in \mathbb{N}$,

$$
1+2+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}.
$$

Prove. First, we check the formula for $n = 1$. This gives \sum 1 $i=1$ $i = 1 = \frac{(1)((1) + 1)}{2} = 1$, which holds.

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number $n \in \mathbb{N}$,

$$
1+2+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}.
$$

Prove. First, we check the formula for $n = 1$. This gives \sum $\sum_{i=1}^1 i = 1 = \frac{(1)((1)+1)}{2} = 1$, which holds. Second, we assume the $i=1$ formula holds for $n = k$, so that we assume

$$
1+2+\cdots+k=\sum_{i=1}^k i=\frac{(k)((k)+1)}{2}.
$$

We want to show that the formula also holds for $n = k + 1$. Consider $1 + 2 + \cdots + k + (k + 1) = (1 + 2 + \cdots + k) + (k + 1).$

Example A.2.1

Example A.2.1. Use mathematical induction to prove that for natural number $n \in \mathbb{N}$,

$$
1+2+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}.
$$

Prove. First, we check the formula for $n = 1$. This gives \sum $\sum_{i=1}^{1} i = 1 = \frac{(1)((1) + 1)}{2} = 1$, which holds. Second, we assume the $i=1$ formula holds for $n = k$, so that we assume

$$
1+2+\cdots+k=\sum_{i=1}^k i=\frac{(k)((k)+1)}{2}.
$$

We want to show that the formula also holds for $n = k + 1$. Consider $1 + 2 + \cdots + k + (k + 1) = (1 + 2 + \cdots + k) + (k + 1).$

Example A.2.1 (solution)

Solution (continued). We have

$$
(1+2+\cdots+k)+(k+1)
$$

= $\left(\sum_{i=1}^{k} i\right) + (k+1)$
= $\left(\frac{k(k+1)}{2}\right) + (k+1)$ by the induction hypothesis
= $\frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$
= $\frac{(k+1)((k+1)+1)}{2} = \frac{n(n+1)}{2}$ where $n = k+1$.

So the formula holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

H

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x , u_1, u_2, \ldots, u_n , we have

$$
\frac{d}{dx}[u_1+u_2+\cdots+u_n]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_n}{dx}.
$$

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx}[u_1+u_2]=\frac{du_1}{dx}+\frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$.

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x , u_1, u_2, \ldots, u_n , we have

$$
\frac{d}{dx}[u_1+u_2+\cdots+u_n]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_n}{dx}.
$$

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx}[u_1+u_2]=\frac{du_1}{dx}+\frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$. Second, we assume the formula holds for $n = k$, so that we assume $\frac{d}{dx}[u_1+u_2+\cdots+u_k]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_k}{dx}.$ We want to show that the formula also holds for $n = k + 1$. Consider $\frac{d}{dx}[u_1+u_2+\cdots+u_k+u_{k+1}]=\frac{d}{dx}[(u_1+u_2+\cdots+u_k)+u_{k+1}].$

Example A.2.A

Example A.2.A. Prove that for differentiable functions of x , u_1, u_2, \ldots, u_n , we have

$$
\frac{d}{dx}[u_1+u_2+\cdots+u_n]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_n}{dx}.
$$

Proof. First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \frac{du_1}{dx}$, which holds. Notice also that $\frac{d}{dx}[u_1+u_2]=\frac{du_1}{dx}+\frac{du_2}{dx}$ by the Derivative Sum Rule (Theorem 3.3.E), so that the result also holds for $n = 2$. Second, we assume the formula holds for $n = k$, so that we assume $\frac{d}{dx}[u_1+u_2+\cdots+u_k]=\frac{du_1}{dx}+\frac{du_2}{dx}+\cdots+\frac{du_k}{dx}.$ We want to show that the formula also holds for $n = k + 1$. Consider $\frac{d}{dx}[u_1+u_2+\cdots+u_k+u_{k+1}]=\frac{d}{dx}[(u_1+u_2+\cdots+u_k)+u_{k+1}].$

Example A.2.A (continued)

Prove (continued). We have $\frac{d}{dx}[u_1 + u_2 + \cdots + u_k + u_{k+1}]$

$$
= \frac{d}{dx}[(u_1 + u_2 + \dots + u_k) + u_{k+1}]
$$

\n
$$
= \frac{d}{dx}[(u_1 + u_2 + \dots + u_k)] + \frac{d}{dx}[u_{k+1}]
$$
 since the result
\nholds for $n = 2$ functions
\n
$$
= \left(\frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx}\right) + \frac{d}{dx}[u_{k+1}]
$$

\nby the induction hypothesis
\n
$$
= \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx} + \frac{du_{k+1}}{dx}
$$

\n
$$
= \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_n}{dx}
$$
 where $n = k + 1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$ $1 - r$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1 + r = \frac{1-r^2}{1-r} = \frac{(1-r)(1+r)}{1-r} = 1 + r$, which holds.

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$ $1 - r$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1 + r = \frac{1-r^2}{1-r} = \frac{(1-r)(1+r)}{1-r} = 1 + r$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $1 + r + r^2 + \cdots + r^k = \frac{1 - r^{k+1}}{1}$ $\frac{1}{1-r}$. We want to show that the formula also holds for $n = k + 1$. Consider $1 + r + r^2 + \dots + r^k + r^{k+1} = (1 + r + r^2 + \dots + r^k) + r^{k+1}.$

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$ $1 - r$ for every natural number $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1+r=\frac{1-r^2}{1-r}=\frac{(1-r)(1+r)}{1-r}=1+r$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $1 + r + r^2 + \cdots + r^k = \frac{1 - r^{k+1}}{1}$ $\frac{1}{1-r}$. We want to show that the formula also holds for $n = k + 1$. Consider $1 + r + r^2 + \cdots + r^k + r^{k+1} = (1 + r + r^2 + \cdots + r^k) + r^{k+1}.$

Exercise A.2.2 (continued)

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$ $1 - r$ for every natural number $n \in \mathbb{N}$.

Proof (continued). We have $1 + r + r^2 + \cdots + r^k + r^{k+1}$

$$
= (1 + r + r2 + \dots + rk) + rk+1
$$

\n
$$
= \left(\frac{1 - rk+1}{1 - r}\right) + rk+1
$$
 by the induction hypothesis
\n
$$
= \frac{1 - rk+1}{1 - r} + \frac{rk+1(1 - r)}{1 - r} = \frac{(1 - rk+1) + (rk+1 - rk+2)}{1 - r}
$$

\n
$$
= \frac{1 - rk+2}{1 - r} = \frac{1 - rn+1}{1 - r}
$$
 where $n = k + 1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.2 (continued)

Exercise A.2.2. Prove that if $r \neq 1$ then $1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$ $1 - r$ for every natural number $n \in \mathbb{N}$.

Proof (continued). We have $1 + r + r^2 + \cdots + r^k + r^{k+1}$

$$
= (1 + r + r2 + \dots + rk) + rk+1
$$

\n
$$
= \left(\frac{1 - rk+1}{1 - r}\right) + rk+1
$$
 by the induction hypothesis
\n
$$
= \frac{1 - rk+1}{1 - r} + \frac{rk+1(1 - r)}{1 - r} = \frac{(1 - rk+1) + (rk+1 - rk+2)}{1 - r}
$$

\n
$$
= \frac{1 - rk+2}{1 - r} = \frac{1 - rn+1}{1 - r}
$$
 where $n = k + 1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.9. Sums of Squares Prove Theorem 5.2.B(2):

$$
\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \cdots + n^{2} = \frac{n(n+1)(2n+1)}{6}
$$
 for all $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6}$ $\frac{1(2(1) + 1)}{6} = \frac{6}{6}$ $\frac{6}{6}$ = 1, which holds.

Exercise A.2.9. Sums of Squares Prove Theorem 5.2.B(2):

$$
\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \cdots + n^{2} = \frac{n(n+1)(2n+1)}{6}
$$
 for all $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6}$ $\frac{(1)(2(1)+1)}{6}=\frac{6}{6}$ $\frac{8}{6}$ = 1, which holds. Second, we assume the formula holds for $n = k$, so that we assume $1^2+2^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}$. We want to show that the formula 6 also holds for $n = k + 1$. Consider $1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = (1^2 + 2^2 + \cdots + k^2) + (k+1)^2$.

Exercise A.2.9. Sums of Squares Prove Theorem 5.2.B(2):

$$
\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \cdots + n^{2} = \frac{n(n+1)(2n+1)}{6}
$$
 for all $n \in \mathbb{N}$.

Proof. First, we check the formula for $n = 1$. This gives $1^2 = \frac{(1)((1) + 1)(2(1) + 1)}{6}$ $\frac{(1)(2(1)+1)}{6} = \frac{6}{6}$ $\frac{8}{6}$ = 1, which holds. Second, we assume the formula holds for $n = k$, so that we assume $1^2+2^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}$ $\frac{1}{6}$. We want to show that the formula also holds for $n = k + 1$. Consider $1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = (1^2 + 2^2 + \cdots + k^2) + (k+1)^2$.

Exercise A.2.9 (continuous)

Proof (continued). We have $1^2 + 2^2 + \cdots + k^2 + (k+1)^2$

$$
= (1^2 + 2^2 + \dots + k^2) + (k+1)^2
$$

\n
$$
= \left(\frac{k(k+1)(2k+1)}{6}\right) + (k+1)^2
$$
 by the induction hypothesis
\n
$$
= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}
$$

\n
$$
= \frac{(k+1)(k(2k+1) + 6(k+1))}{6} = \frac{(k+1)(2k^2 + k + 6k + 6)}{6}
$$

\n
$$
= \frac{(k+1)(2k^2 + 7k + 6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}
$$

\n
$$
= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} = \frac{n(n+1)(2n+1)}{6}
$$
 where $n = k+1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.10. Sums of Cubes Prove Theorem 5.2.B(3):

$$
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \text{ for all } n \in \mathbb{N}.
$$

Solution. First, we check the formula for $n = 1$. This gives $1^3 = \left(\frac{(1)((1) + 1)}{2}\right)$ 2 $\bigg\}^2 = 1^2$, which holds.

Exercise A.2.10. Sums of Cubes Prove Theorem 5.2.B(3):

$$
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \text{ for all } n \in \mathbb{N}.
$$

Solution. First, we check the formula for $n = 1$. This gives $1^3 = \left(\frac{(1)((1) + 1)}{2}\right)$ 2 $\bigg\}^2=1^2$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $1^3 + 2^3 + \cdots + k^3 = \left(\frac{k(k+1)}{2}\right)^3$ 2 $\Big)^2$. We want to show that the formula also holds for $n = k + 1$. Consider

 $1^3 + 2^3 + \cdots + k^3 + (k+1)^3 = (1^3 + 2^3 + \cdots + k^3) + (k+1)^3$.

Exercise A.2.10. Sums of Cubes Prove Theorem 5.2.B(3):

$$
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \text{ for all } n \in \mathbb{N}.
$$

Solution. First, we check the formula for $n = 1$. This gives $1^3 = \left(\frac{(1)((1) + 1)}{2}\right)$ 2 $\bigg\}^2=1^2$, which holds. Second, we assume the formula

holds for $n = k$, so that we assume $1^3 + 2^3 + \cdots + k^3 = \left(\frac{k(k+1)}{2}\right)$ 2 $\big)^2$. We want to show that the formula also holds for $n = k + 1$. Consider $1^3 + 2^3 + \cdots + k^3 + (k+1)^3 = (1^3 + 2^3 + \cdots + k^3) + (k+1)^3$.

Exercise A.2.10 (continued)

Solution. We have $1^3+2^3+\cdots+ k^3+(k+1)^3$ $= (1^3 + 2^3 + \cdots + k^3) + (k+1)^3$ $=\begin{pmatrix} k(k+1) \\ 2 \end{pmatrix}$ 2 $\bigg)^2 + (k+1)^3$ by the induction hypothesis $=\begin{pmatrix} k(k+1) \\ 2 \end{pmatrix}$ 2 $\bigg)^2 + \frac{4(k+1)^3}{4}$ $\frac{(k+1)^3}{4} = \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$ 4 $=\frac{(k+1)^2(k^2+4(k+1))}{4}$ $\frac{(k+4)(k+1)}{4} = \frac{(k+1)^2(k^2+4k+4)}{4}$ 4 $=\frac{(k+1)^2(k+2)^2}{4}$ $\frac{k^2(k+2)^2}{4} = \frac{(k+1)^2((k+1)+1)^2}{4}$ 4 $=\frac{(k+1)((k+1)+1)}{2}$ 2 $\bigg\}^2 = \bigg(\frac{n(n+1)}{2}\bigg)$ 2 $\bigg\}^2$ where $n = k + 1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.11. Prove Theorem 5.2.A, "Algebra for Finite Sums."

\n- **6** Sum Rule:
$$
\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i
$$
\n- **8** Difference Rule: $\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$
\n- **9** Constant Multiple Rule: $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$
\n- **9** Constant Value Rule: $\sum_{i=1}^{n} c = nc$
\n

Exercise A.2.11 (continued 1)

Sum Rule:
$$
\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(a_1 + b_1) = (a_1) + (b_1)$, which holds. Second, we assume the formula holds for $n = k$, so that we assume \sum k $i=1$ $(a_i + b_i) = \sum$ k $i=1$ $a_i + \sum$ k $i=1$ bi . We want to show that the formula also holds for $n = k + 1$. Consider \sum $k+1$ $i=1$ $(a_i + b_i) = \left(\sum_{i=1}^k a_i\right)^2$ $i=1$ $(a_i + b_i)$! $+$ (a_{k+1} + b_{k+1}).

Exercise A.2.11 (continued 1)

Sum Rule:
$$
\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(a_1 + b_1) = (a_1) + (b_1)$, which holds. Second, we assume the formula holds for $n=k$, so that we assume $\sum_{k=1}^{\infty}$ k $i=1$ $(a_i + b_i) = \sum$ k $i=1$ $a_i + \sum$ k $i=1$ b_i . We want to show that the formula also holds for $n = k + 1$. Consider \sum $k+1$ $i=1$ $(a_i + b_i) = \left(\sum_{i=1}^k a_i\right)^2$ $i=1$ $(a_i + b_i)$ \setminus $+$ $(a_{k+1} + b_{k+1}).$

Exercise A.2.11 (continued 2)

Solution (continued). We have $\sum (a_i + b_i)$ $k+1$ $i=1$ $= \left(\sum_{k=1}^{k} \right)$ $i=1$ $(a_i + b_i)$ \setminus $+(a_{k+1}+b_{k+1})$ $= \left(\sum_{k=1}^{k} \right)$ $i=1$ $a_i + \sum$ k $i=1$ bi \setminus $+\left(a_{k+1}+b_{k+1}\right)$ by the induction hypothesis $= \left(\sum_{k=1}^{k} \right)$ $i=1$ $a_i + a_{k+1}\bigg) + \left(\sum^k \right)$ $i=1$ $b_i + b_{k+1}$ by associativity and commutivity of addition in $\mathbb R$ $=$ \sum $k+1$ so the result holds for $n = k + 1$ and, by the mathematical induction $a_i + \sum$ $k+1$ $i=1$ $i=1$ $b_i = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$ where $n = k + 1$, principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.11 (continued 3)

Difference Rule:
$$
\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(a_1 - b_1) = (a_1) - (b_1)$, which holds. Second, we assume the formula holds for $n = k$, so that we assume \sum k $i=1$ $(a_i - b_i) = \sum$ k $i=1$ $a_i - \sum$ k $i=1$ bi . We want to show that the formula also holds for $n = k + 1$. Consider \sum $k+1$ $i=1$ $(a_i - b_i) = \left(\sum_{i=1}^k a_i\right)^2$ $i=1$ $(a_i - b_i)$! $+$ (a_{k+1} – b_{k+1}).

Exercise A.2.11 (continued 3)

Difference Rule:
$$
\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(a_1 - b_1) = (a_1) - (b_1)$, which holds. Second, we assume the formula holds for $n=k$, so that we assume $\sum_{k=1}^{\infty}$ k $i=1$ $(a_i - b_i) = \sum$ k $i=1$ $a_i - \sum$ k $i=1$ b_i . We want to show that the formula also holds for $n = k + 1$. Consider \sum $k+1$ $i=1$ $(a_i - b_i) = \left(\sum_{i=1}^k a_i\right)^2$ $i=1$ $(a_i - b_i)$ \setminus $+$ $(a_{k+1} - b_{k+1}).$

Exercise A.2.11 (continued 4)

Solution (continued). We have \sum $k+1$ $i=1$ $(a_i - b_i)$ $= \left(\sum_{k=1}^{k} \right)$ $i=1$ $(a_i - b_i)$ \setminus $+(a_{k+1}-b_{k+1})$ $= \left(\sum_{k=1}^{k} \right)$ $i=1$ a_i – \sum k $i=1$ bi \setminus $+\left(\mathsf{a}_{k+1}-\mathsf{b}_{k+1}\right)$ by the induction hypothesis $=\left(\sum_{i=1}^{k}a_{i}+a_{k+1}\right)-\left(\sum_{i=1}^{k}b_{i}+b_{k+1}\right)^{2}$ $i=1$ $i=1$ by associativity and commutivity of addition in $\mathbb R$ $=$ \sum $k+1$ so the result holds for $n = k + 1$ and, by the mathematical induction $a_i - \sum$ $k+1$ $b_i = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$ where $n = k + 1$, principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.11 (continued 5)

$$
Constant \; Multiple \; Rule: \; \sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(ca_1) = c(a_1)$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $\sum c a_i = c \sum a_i.$ We want to show that the formula also holds k $i=1$ $i=1$ k for $n=k+1$. Consider $\sum ca_i=\sum ca_i+ca_{k+1}.$ $k+1$ k $i=1$ $i=1$

Exercise A.2.11 (continued 5)

$$
Constant \; Multiple \; Rule: \; \sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i
$$

Solution. First, we check the formula for $n = 1$. This gives $(ca_1) = c(a_1)$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $\sum c a_i = c \sum a_i.$ We want to show that the formula also holds k $i=1$ $i=1$ k for $n = k + 1$. Consider $\sum_{k=1}^{k}$ $k+1$ k $i=1$ $ca_i = \sum$ $i=1$ $ca_i + ca_{k+1}.$

Exercise A.2.11 (continued 6)

Solution (continued). We have $\sum c a_i$ $k+1$

$$
i=1
$$
\n
$$
\sum_{i=1}^{k} ca_i + ca_{k+1}
$$
\n
$$
= c \sum_{i=1}^{k} a_i + ca_{k+1} \text{ by the induction hypothesis}
$$
\n
$$
= c \left(\sum_{i=1}^{k} a_i + a_{k+1} \right) \text{ since multiplication distributes over addition in } \mathbb{R}
$$
\n
$$
= c \left(\sum_{i=1}^{k+1} a_i \right) = c \sum_{i=1}^{n} a_i \text{ where } n = k+1,
$$

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Exercise A.2.11 (continued 7)

$$
Constant Value Rule: \sum_{i=1}^{n} c = nc
$$

Solution. First, we check the formula for $n = 1$. This gives $(c) = 1c$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $\sum c = k c.$ We want to show that the formula also holds for k $i=1$ $n = k + 1$. Consider \sum $k+1$ $i=1$ $c = \left(\sum_{k=1}^{k} a_k\right)^k$ $i=1$ c \setminus $+$ c.

Exercise A.2.11 (continued 7)

$$
Constant Value Rule: \sum_{i=1}^{n} c = nc
$$

Solution. First, we check the formula for $n = 1$. This gives $(c) = 1c$, which holds. Second, we assume the formula holds for $n = k$, so that we assume $\sum c=k c.$ We want to show that the formula also holds for k $i=1$ $n = k + 1$. Consider \sum $k+1$ $i=1$ $c = \left(\sum_{k=1}^{k} a_k\right)^k$ $i=1$ c \setminus $+ c.$

Exercise A.2.11 (continued 8)

Solution (continued). We have $\sum c$ $k+1$ $i=1$

$$
= \left(\sum_{i=1}^k c\right) + c
$$

- $=$ $k + c$ by the induction hypothesis
- $=$ $(k+1)c$ since multiplication distributes over addition in R
- $=$ *nc* where $n = k + 1$,

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.

Example A.2.B. General Product Rule

Example A.2.B. Prove the General Product Rule (see Exercise 3.3.77 for motivation of this result): For differentiable functions u_1, u_2, \ldots, u_n , we have that the derivative of the product $u_1u_2\cdots u_n$ exists and

$$
\frac{d}{dx}[(u_1)(u_2)\cdots(u_n)] = [u'_1](u_2)(u_3)\cdots(u_{n-1})(u_n) \n+ (u_1)[u'_2](u_3)\cdots(u_{n-1})(u_n) \n+ (u_1)(u_2)[u'_3]\cdots(u_{n-1})(u_n) + \cdots \n+ (u_1)(u_2)(u_3)\cdots[u'_{n-1}](u_n) \n+ (u_1)(u_2)(u_3)\cdots(u_{n-1})[u'_n].
$$

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation notation: $u_1u_2\cdots u_n=\prod_{i=1}^n u_i$. We can then express the claim of this $i=1$

theorem as

$$
\frac{d}{dx}\left[\prod_{i=1}^n u_i\right] = \sum_{j=1}^n u'_j \prod_{i=1, i\neq j}^n u_i.
$$

First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \sum_{i=1}^n$ 1 $j=1$ $i=1, i\neq 1$ u'_j \prod 1 $u_i = u'_1$, which holds. For clarity, we also check the formula for $n = 2$. This gives $\frac{d}{dx}[u_1u_2] = \sum_{i=1}^{6}$ 2 $j=1$ $i=1, i\neq j$ u'_j \prod 2 $u_i = [u'_1](u_2) + (u_1)[u'_2]$, which holds by the Derivative Product Rule (Theorem 3.3.G).

Example A.2.B (continued 1)

Proof. We introduce a product notation, similar to the summation notation: $u_1u_2\cdots u_n=\prod_{i=1}^n u_i$. We can then express the claim of this $i=1$

theorem as

$$
\frac{d}{dx}\left[\prod_{i=1}^n u_i\right] = \sum_{j=1}^n u'_j \prod_{i=1, i\neq j}^n u_i.
$$

First, we check the formula for $n = 1$. This gives $\frac{d}{dx}[u_1] = \sum_{i=1}^n$ 1 $j=1$ $i=1, i\neq 1$ u'_j \prod 1 $u_i = u'_1$, which holds. For clarity, we also check the formula for $n = 2$. This gives $\frac{d}{dx}[u_1u_2] = \sum_{i=1}^{6}$ 2 $j=1$ u'_j \prod 2 $i=1,i\neq j$ $u_i = [u'_1](u_2) + (u_1)[u'_2]$, which holds by the Derivative Product Rule (Theorem 3.3.G).

Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for $n = k$, so that we assume $\frac{d}{dx} \left[\prod_{i=1}^k \right]$ $i=1$ ui 1 $=$ \sum k j=1 u' $_j$ \prod k $_{i=1,i\neq j}$ u_i . We want to show that the formula also holds for $n = k + 1$. Consider $\frac{d}{dx}$ $\begin{bmatrix} k \\ 1 \end{bmatrix}$ $\boldsymbol{\Pi}$ $+1$ $i=1$ U_j 1 $=\frac{d}{dx}\left[\left(\prod_{k=1}^{k}\right)\right]$ $i=1$ U_i $\left\{ \begin{array}{c} u_{k+1} \end{array} \right\}$ $=\frac{d}{dx}\left[\prod_{i=1}^{k}\right]$ $i=1$ U_i $\left(u_{k+1}\right) + \left(\prod_{k=1}^{k} \right)$ $i=1$ U_i \setminus $[u'_{k+1}]$ by the Derivative Rule for Products (Theorem 3.3.G) = Г $\overline{}$ \sum k j=1 u'_j \prod k $i=1, i\neq j$ U_i $\left(u_{k+1}\right) +\left(\prod_{k=1}^{k}\right)$ $i=1$ \bar{u}_i ! $[u'_{k+1}]$ by induction hypothesis

Example A.2.B (continued 2)

Proof (continued). Next, we assume the formula holds for
$$
n = k
$$
, so that
we assume $\frac{d}{dx} \left[\prod_{i=1}^{k} u_i \right] = \sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k} u_i$. We want to show that the
formula also holds for $n = k + 1$. Consider

$$
\frac{d}{dx} \left[\prod_{i=1}^{k+1} u_i \right] = \frac{d}{dx} \left[\left(\prod_{i=1}^{k} u_i \right) u_{k+1} \right]
$$

$$
= \frac{d}{dx} \left[\prod_{i=1}^{k} u_i \right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}]
$$
by the Derivative Rule
for Products (Theorem 3.3.G)

$$
= \left[\sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k} u_i \right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i \right) [u'_{k+1}]
$$
 by induction hypothesis

Example A.2.B (continued 3)

Proof (continued). $\ldots \frac{d}{dx} \begin{bmatrix} k \ 1 \end{bmatrix}$ Π $^{+1}$ $i=1$ ui \mathbb{I}

$$
= \left[\sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k} u_i\right] (u_{k+1}) + \left(\prod_{i=1}^{k} u_i\right) [u'_{k+1}]
$$

\n
$$
= \sum_{j=1}^{k} u'_j \prod_{i=1, i \neq j}^{k+1} u_i + u'_{k+1} \prod_{i=1, i \neq k+1}^{k+1} u_i
$$

\n
$$
= \sum_{j=1}^{k+1} u_j \prod_{i=1, i \neq j}^{k+1} u_i = \sum_{j=1}^{n} u_j \prod_{i=1, i \neq j}^{n} u_i \text{ where } n = k+1,
$$

so the result holds for $n = k + 1$ and, by the mathematical induction principle, the formula holds for all $n \in \mathbb{N}$, as claimed.