Calculus 1

Appendices
A.4. Proofs of Limit Theorems—Examples and Proofs
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Theorem 2.1(4) (continued 1)

Proof (continued). If 0 < |x — ¢| < 6 < min{d1, d2, 93,04}, then

f(x)g(x) — LM = (f(x)g(x)—LM)+2(LM — LM)
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+(Lg(x) — Lg(x)) + (Mf(x) — Mf(x))
= LM+ Lg(x) — LM+ Mf(x) + f(x)g(x)

—Mf(x) — LM — Lg(x) + LM — LM

= (LM + Mf(x) — LM) + (Lg(x) + f(x)g(x)
—Lg(x)) — (LM + Mf(x) — LM) — LM
= (L+(f(x) = L)M+ (L+ (f(x) — L))g(x)

—(L+ (f(x) = LYM — LM

= (L+(f(x) = L)M + (g(x) = M)) — LM

= LM+ L(g(x) — M)) + M(f(x) — L)
+(f(x) — L)(g(x) — M) — LM
= Llg(x) — M)+ M(f(x) — L) + (f(x) — L)(g(x) — M).
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule.
If limy_cf(x) =L and limy_. g(x) = M, then

im (F(x)g(x)) = (lim £(x)) (lim g(x)) = LM.

X—C

Proof. Let ¢ > 0. Since lim,_. f(x) = L and 1/£/3 > 0, then there exists
61 > 0 such that if 0 < |x — c| < &1 then |f(x) — L| < \//3. Since
limy—c f(x) = L and ¢/(3(1 + |M])) > O, then there exists d> > 0 such
that if 0 < |x — ¢| < d2 then |f(x) — L| < ¢/(3(1 + |M])). Since

limy_.c g(x) = M and \/2/3 > 0, then there exists d3 > 0 such that if

0 < |x — c| < 85 then |g(x) — M| < \/2/3. Since limy_.c g(x) = M and
e/(3(1 + |L]) > 0, then there exists d4 > 0 such that if 0 < |x — ¢| < 04
then |g(x) — M| <¢/(3(1 +|L|)). Choose § = min{d1,d2,63,04}.

Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 2)

Proof (continued). Since
f(x)g(x) — LM = L(g(x) — M) + M(f(x) — L) + (f(x) — L)(g(x) — M),
then by the Triangle Inequality for absolute value (see Exercise A.1.24), we
have
[f(x)g(x) = LM| < [L(g(x) — M)| + [M(f(x) — L)|
+[f(x) — Ll [g(x) = M|
= L 1g(x) = M|+ [M]|f(x) — L]
+[f(x) — Ll [g(x) = M|
< (A +|L)lg(x) = M|+ (1 + [M])[f(x) — L]
+|f(x) — L| |g(x) — M| since |L| < 1+ |L]
and [M| <1+ |M|
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Theorem 2.1(4) (continued 3)

Theorem 2.1(4). Limit Product Rule.
If limg—c f(x) = L and limy_.c g(x) = M, then

lim (F(x)g(x)) = (nm f(x)) ( lim g(x)) — LM.

X—C X—C

Proof (continued). That is, if 0 < |x — ¢| < § then
|f(x)g(x) — LM| < e. Therefore, by the definition of limit,

lim (F(x)g(x)) = LM,

X—C

as claimed. ]
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Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| — |B|| < |A— B|. So with A = g(x)
and B = M, we have ||g(x)| — |M|| < |g(x) — M|. Soif 0 < |x —c| < &1
then ||g(x)| — [M|| < |g(x) — M| < |M|/2 by (x). This implies

—|M|/2 < [g(x)| — IM[ < [M]|/2 or |[M|/2 < |g(x)| < 3|M]/2 or

IM| < 2|g(x)] < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and
2|g(x)| < 3|M| or |g(x)|/3 < [M]|/2 gives 2/|M| < 3/|g(x)|. Therefore, if
0 < |x — ¢| < 01 then

ORI

11 1
:M|g(x)|M ()\<|M||M|!M g, (5)

where the last inequality holds since 1/|g(x)| < 1/|M] for 0 < |x —c| < 1.
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Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5)
Theorem 2.1(5). Limit Quotient Rule.
If limy_cf(x) =L and limy_.. g(x) = M, then
| f(x) _limye f(x) B A
x—cg(x)  limecg(x) M’
if limy_cg(x) =M #0.

Proof. First, we show that limy_..1/g(x) =1/M. Let € > 0. Since
limy—c g(x) = M by hypothesis, then there exists J; > 0 such that

if 0 < |x — ¢| < 41 then [g(x) — M| < |[M|/2. (%)

By the Triangle Inequality, |A + B| < |A| + |B| for all A,B € R (see A.L.
Real Numbers and the Real Line and Exercise A.1.24). So
|[Al=|(A—B)+B|<|A—B|+|B|or |A|— |B| <|A— B|, and
IBl=|(A-=B)— Al <|A=B|+|—A =|A—=B|+|A| or

|B| — |A| < |A— BJ. Therefore ||A] — |B|| < |A— B].
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Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 2)

Proof (continued). Now (1/2)|M|?¢ > 0, so there exists 6, > 0 such that
if 0 < |x — c| < 8> then |M — g(x)| < ¢|M|?/2. (6)

Let §= min{617 a0} Then for 0 < |x — ¢| < 4, we have both

o M = 0] by (5) and [M — g(x)] < el MP/2 by

‘ (x) IMIIMI
(6). oforsuchx

‘1 1<12|M g()|<125|/vl|2
— = —_— — gx
glx)  M{ ~ [M|[M| IM[[M] 2

So limy_.c1/g(x) = 1/M by the definition of limit.
Finally, by the Limit Product Rule (Theorem 2.1.(4))

f 1 L
lim —2 = lim f(x) lm 5=ty =
as claimed. O]
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4

Theorem 2.4. Sandwich Theorem.

Suppose that g(x) < f(x) < h(x) for all x in some open interval /
containing ¢, except possibly at x = ¢ itself. Suppose also that
limy—c g(x) = limyx_c h(x) = L. Then )!lnc f(x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let e > 0.

Suppose lim,_, .+ g(x) = lim,_ .+ h(x) = L. Then there exists 4; > 0 such
that if ¢ < x < ¢+ d1 and x € [ then |g(x) — L| < &. There also exists

d2 > 0 such that if ¢ < x < ¢+ J2 and x € [ then |h(x) — L| < e. With

d = min{d1, 02}, we have that if c < x < ¢+ ¢ and x € [ then both

lg(x) — L] < e and |h(x) — L| < ¢; that is, both L — ¢ < g(x) < L+ ¢ and
L—e<h(x)<L+e Soifc<x<c+dandx e/, then
L—e<g(x)<f(x)<h(x)<L+e andsoL—ec<f(x)<L+eor
|f(x) — L| < e. Therefore, by the definition of limit, lim,_, .+ f(x) = L.
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Theorem 2.4 (continued)

Solution (continued). Suppose lim,_, .- g(x) = lim,_,.- h(x) = L. Then
there exists d, > 0 such that if ¢ — 0> < x < ¢ and x € [ then

lg(x) — L| < e. There also exists d2 > 0 such that if ¢ — d>» < x < ¢ and
x € I then |h(x) — L| < e. With § = min{d1, 02}, we have that if

¢ —0 < x < candx €[ then both |g(x) — L| <e and |h(x) — L| < ¢;
that is, both L —e < g(x) < L4+ecand L —e < h(x) < L+¢. So if
c—d<x<candxel, then L —e¢ < g(x) <f(x) <h(x)<L+e¢, and
so L—e < f(x) < L+eor|f(x)—L| <e. Therefore, by the definition of
limit, lim,_,.- f(x) = L.

If limy—cg(x) = limy_c h(x) = L, then by the above results for one sided
limits we have lim,_, .+ f(x) = lim,_ .- f(x) = L and by Theorem 2.6
(Relation Between One-Sided and Two-Sided Limits) we have

limy—c f(x) = L, as claimed. O
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