Calculus 1

Appendices
A.4. Proofs of Limit Theorems—Examples and Proofs
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule.
If limy—c f(x) =L and limy_ g(x) = M, then

lim (F(x)g(x)) = (nm f(x)> (nm g(x)) — LM.

X—C X—C X—C
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule.
If limy—c f(x) =L and limy_ g(x) = M, then

lim (F(x)g(x)) = (nm f(x)> (nm g(x)) — LM.

X—C X—C X—C

Proof. Let € > 0. Since limy_. f(x) = L and \/73 > 0, then there exists
61 > 0 such that if 0 < |x — ¢| < &1 then |f(x) — L| < \//3. Since
limy_cf(x)=Land ¢/(3(1 +|M|)) >0, then there exists d> > 0 such
that if 0 < |x — ¢| < d2 then |f(x) — L| < e/(3(1 + |[M])).

Calculus 1 August 9, 2020 3 /11



Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule.
If limy—c f(x) =L and limy_ g(x) = M, then

lim (F(x)g(x)) = (nm f(x)> (nm g(x)) — LM.

X—C X—C X—C

Proof. Let € > 0. Since limy_. f(x) = L and \/73 > 0, then there exists
61 > 0 such that if 0 < |x — ¢| < &1 then |f(x) — L| < \//3. Since
limy_cf(x)=Land ¢/(3(1 +|M|)) >0, then there exists d> > 0 such
that if 0 < |x — ¢| < 82 then |f(x) — L| < ¢/(3(1 + |M])). Since
limy—cg(x) = M and 1/¢/3 > 0, then there exists 63 > 0 such that if

0 < |x — c| < d5 then |g(x) — M| < \/£/3. Since limy_g(x) = M and
£/(3(1 4 |L]) > 0, then there exists 4 > 0 such that if 0 < |x — c| < d4
then |g(x) — M| <¢e/(3(1+|L|)). Choose § = min{d1,d2,3,04}.
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 1)

Proof (continued). If 0 < [x — ¢| < § < min{d1, 02, 93,04}, then
f(x)g(x) — LM = (f(x)g(x)—LM)+2(LM — LM)
+(Lg(x) — Lg(x)) + (Mf(x) — Mf(x))
= LM+ Lg(x) — LM + Mf(x) + f(x)g(x)
~MF(x) — LM — Lg(x) + LM — LM
= (LM + Mf(x) — LM) + (Lg(x) + f(x)g(x)
—Lg(x)) — (LM + Mf(x) — LM) — LM
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Theorem

2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 1)

Proof (continued).

F(x)g(x) — LM =

If 0 < |x —c| <9 < min{d1,d2,03,d4}, then
(F(x)g(x) — LM) +2(LM — LM)

+(Lg(x) — Lg(x)) + (Mf(x) — Mf(x))

LM + Lg(x) — LM + Mf(x) + f(x)g(x)
—Mf(x) — LM — Lg(x) + LM — LM

(LM + Mf(x) — LM) + (Lg(x) + f(x)g(x)
—Lg(x)) = (LM + Mf(x) — LM) — LM
(L+(f(x) = D)IM + (L+ (f(x) — L))g(x)
—(L+(f(x) = L))M — LM

(L+(f(x) = L))(M + (g(x) = M)) — LM
LM+ L(g(x) — M)) + M(f(x) — L)

+(f(x) = L)(g(x) = M) = LM

L(g(x) = M) + M(f(x) — L) + (f(x) — L)(g(x) — M).
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Theorem 2.1(4). Limit Product Rule.
Theorem 2.1(4) (continued 2)

Proof (continued). Since
F(x)g(x) — LM = L{g(x) — M) + M(F(x) — L) + (F(x) — L)(g(x) — M),
then by the Triangle Inequality for absolute value (see Exercise A.1.24), we
have
[f(x)g(x) — LM| < [L(g(x) = M)| + [M(f(x) — L)]
+[f(x) — Ll |g(x) = M|
LI lg(x) = M|+ [M][f(x) - L|
+[f(x) — L |g(x) = M|
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Theorem 2.1(4). Limit Product Rule.
Theorem 2.1(4) (continued 2)

Proof (continued). Since
F(x)g(x) — LM = L{g(x) — M) + M(F(x) — L) + (F(x) — L)(g(x) — M),
then by the Triangle Inequality for absolute value (see Exercise A.1.24), we
have
[f(x)g(x) — LM| < [L(g(x) = M)| + [M(f(x) — L)]
+[f(x) — Ll |g(x) = M|
= L 1g(x) = M|+ [M]|f(x) — L]
+[f(x) — L |g(x) = M|
< (A +|L)lg(x) = M|+ (1 + [M])[f(x) — L]
+|f(x) — L||g(x) — M| since |L| < 1+ |L|
and [M| <1+ |M|

< S4i4)E Esince0<]x—c|<(5
3 3 3V3
E.
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 3)

Theorem 2.1(4). Limit Product Rule.
If limy_c f(x) = L and limy_.c g(x) = M, then

|mwuwunzomfu»@mguD=LM
Proof (continued). That is, if 0 < |[x — ¢| < 0 then
|f(x)g(x) — LM| < e. Therefore, by the definition of limit,
im (F(x)g(x)) = LM,
X—C

as claimed.
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Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule.

If limy_.c f(x) = L and limy_,c g(x) = M, then
im f(x) _ limxocf(x) L
x—cg(x)  limecg(x) M’

if limy_cg(x) =M #0.
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Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule.
If limy_.c f(x) = L and limy_,c g(x) = M, then

i f(x) _limyc f(x) B L
eg(x)  lim_cg(x) M
if limy_cg(x) =M #0.

Proof. First, we show that limy_,.1/g(x) = 1/M. Let € > 0. Since
limy—c g(x) = M by hypothesis, then there exists J; > 0 such that

if 0 < |x —c| < 01 then |g(x) — M| < |[M|/2. (%)
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Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule.
If limy_.c f(x) = L and limy_,c g(x) = M, then

i f(x) _limyc f(x) B L
eg(x)  lim_cg(x) M
if limy_cg(x) =M #0.

Proof. First, we show that limy_,.1/g(x) = 1/M. Let € > 0. Since
limy—c g(x) = M by hypothesis, then there exists J; > 0 such that

if 0 < |x —c| < 01 then |g(x) — M| < |[M|/2. (%)

By the Triangle Inequality, |A + B| < |A| + |B| for all A,B € R (see A.1.
Real Numbers and the Real Line and Exercise A.1.24). So
Al = [(A— B) + B| < |A— B| + |B] or |A| - |B] < |A— B, and
Bl =1(A=B) =A< |A=B|+| - A[=|A— B[+ |A or
|B| — |A| < |A— B|. Therefore ||A| — |B|| < |A— B.
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Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| — |B|| < |A— B|.

T
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Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| — |B|| < |A— B|. So with A = g(x)
and B = M, we have ||g(x)| — |M|| < |g(x) — M|. Soif 0 < |x —c| < &1
then ||g(x)| — IM|| < |g(x) — M| < |[M|/2 by (). This implies

~IMIJ2 < |g(x)] - M| < [MI/2 o [M|/2 < |g(x)] < 3|M]|/2 or

IM| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M]|, and
20g(x)| < 31M] or g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x).
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Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| — |B|| < |A— B|. So with A = g(x)
and B = M, we have ||g(x)| — |M|| < |g(x) — M|. Soif 0 < |x —c| < &1
then ||g(x)| — IM|| < |g(x) — M| < |[M|/2 by (). This implies

~IMIJ2 < |g(x)] - M| < [MI/2 o [M|/2 < |g(x)] < 3|M]|/2 or

IM| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M]|, and
2|g(x)| < 3|M| or |g(x)|/3 < [M|/2 gives 2/|M| < 3/|g(x)|. Therefore, if
0 < |x — c| < 01 then

1 1 1
= g™ ) < e

where the last inequality holds since 1/|g(x)| < 1/|M] for 0 < |x — c| < 4.
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Theorem 2.1(5) (continued 2)

Proof (continued). Now (1/2)|M|?¢ > 0, so there exists 6, > 0 such that

if 0 < |x — c| < then |M — g(x)| < e|M[?/2.  (6)
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Theorem 2.1(5) (continued 2)

Proof (continued). Now (1/2)|M|?¢ > 0, so there exists 6, > 0 such that
if 0 < |x — c| < then |M — g(x)| < e|M[?/2.  (6)

Let § = min{él,éz} Then for 0 < |x — ¢| < 0, we have both

1 1 1
v |M — g(x)| by (5) and |[M — g(x)| < e|M|?/2 by
‘(X) M IMI\M\
(6). So for such x,
’ 2 a0l < 1 2 gM?
L W<« 12 _
M IMHMI (M[[M]| 2

So limy_.c l/g(x) = 1/M by the definition of limit.
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Theorem 2.1(5) (continued 2)
Proof (continued). Now (1/2)|M|?¢ > 0, so there exists 6, > 0 such that
if 0 < |x — c| < 2 then [M — g(x)| < e|M[?/2.  (6)

Let § = min{él,éz} Then for 0 < |x — ¢| < 0, we have both

1 1 1
v |M — g(x)| by (5) and |[M — g(x)| < e|M|?/2 by
‘(X) M IMI\M\
(6). So for such x,
’ 2 a0l < 1 2 gM?
L W<« 12 _
M IMHMI (M[[M]| 2

So limy_.c l/g( ) = 1/M by the definition of limit.
Finally, by the Limit Product Rule (Theorem 2.1.(4))

f 1 L
lim —= = lim f(x) lm — =L— = —,
X—C g(X) X—C ( )X—PC g(X) M M

as claimed. ]
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4

Theorem 2.4. Sandwich Theorem.

Suppose that g(x) < f(x) < h(x) for all x in some open interval /
containing ¢, except possibly at x = ¢ itself. Suppose also that
limy—cg(x) = limy_c h(x) = L. Then )I(inc f(x) = L.
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Theorem 2.4

Theorem 2.4. Sandwich Theorem.

Suppose that g(x) < f(x) < h(x) for all x in some open interval /
containing ¢, except possibly at x = ¢ itself. Suppose also that
limy—cg(x) = limy_c h(x) = L. Then )I(inc f(x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let € > 0.
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Theorem 2.4

Theorem 2.4. Sandwich Theorem.

Suppose that g(x) < f(x) < h(x) for all x in some open interval /
containing ¢, except possibly at x = ¢ itself. Suppose also that
limy—cg(x) = limy_c h(x) = L. Then )I(inc f(x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let € > 0.

Suppose lim,_,.+ g(x) = lim,_ + h(x) = L. Then there exists ; > 0 such
that if ¢ < x < ¢+ 61 and x € [ then |g(x) — L| < &. There also exists

d2 > 0 such that if ¢ < x < ¢+ d2 and x € | then |h(x) — L| < e. With

0 = min{d1,d2}, we have that if c < x < ¢+ and x € [ then both

lg(x) — L| < e and |h(x) — L| < ¢; that is, both L — ¢ < g(x) < L+ ¢ and
L—e<h(x)<L+e.
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Theorem 2.4

Theorem 2.4. Sandwich Theorem.

Suppose that g(x) < f(x) < h(x) for all x in some open interval /
containing ¢, except possibly at x = ¢ itself. Suppose also that
limy—cg(x) = limy_c h(x) = L. Then )I(inc f(x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let € > 0.

Suppose lim,_,.+ g(x) = lim,_ + h(x) = L. Then there exists ; > 0 such
that if ¢ < x < ¢+ 61 and x € [ then |g(x) — L| < &. There also exists

d2 > 0 such that if ¢ < x < ¢+ d2 and x € | then |h(x) — L| < e. With

0 = min{d1,d2}, we have that if c < x < ¢+ and x € [ then both

lg(x) — L| < e and |h(x) — L| < ¢; that is, both L — ¢ < g(x) < L+ ¢ and
L—e<h(x)<L+4e Soifc<x<c+dandxel, then
L—e<g(x)<f(x)<h(x)<L+e andsoL—ec<f(x)<L+¢eor
|f(x) — L| < e. Therefore, by the definition of limit, lim, .+ f(x) = L.
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Theorem 2.4 (continued)

Solution (continued). Suppose lim,_, .- g(x) = lim,_ .- h(x) = L. Then
there exists d> > 0 such that if ¢ — d» < x < ¢ and x € [ then

lg(x) — L| < e. There also exists d> > 0 such that if c —J> < x < ¢ and
x € | then |h(x) — L| < e. With § = min{d1, 2}, we have that if

c—0d < x<cand x €[ then both |g(x) — L| < e and |h(x) — L| < ¢&;
that is, both L —e < g(x) < L+ecand L—e < h(x) < L+e¢.
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Theorem 2.4 (continued)

Solution (continued). Suppose lim,_, .- g(x) = lim,_ .- h(x) = L. Then
there exists d> > 0 such that if ¢ — d» < x < ¢ and x € [ then

lg(x) — L| < e. There also exists d> > 0 such that if c —J> < x < ¢ and
x € | then |h(x) — L| < e. With § = min{d1, 2}, we have that if

c—0d < x<cand x €[ then both |g(x) — L| < e and |h(x) — L| < ¢&;
that is, both L —e < g(x) < L+ecand L —e < h(x) < L+e¢. So if
c—d0<x<candxel, then L —¢ < g(x) <f(x) < h(x)<L+e, and
soL—e<f(x)<L+eor|f(x)—L| <e. Therefore, by the definition of
limit, lim,_, .- f(x) = L.
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Theorem 2.4 (continued)

Solution (continued). Suppose lim,_, .- g(x) = lim,_ .- h(x) = L. Then
there exists d> > 0 such that if ¢ — d» < x < ¢ and x € [ then

lg(x) — L| < e. There also exists d> > 0 such that if c —J> < x < ¢ and
x € | then |h(x) — L| < e. With § = min{d1, 2}, we have that if

c—0d < x<cand x €[ then both |g(x) — L| < e and |h(x) — L| < ¢&;
that is, both L —e < g(x) < L+ecand L —e < h(x) < L+e¢. So if
c—d0<x<candxel, then L —¢ < g(x) <f(x) < h(x)<L+e, and
soL—e<f(x)<L+eor|f(x)—L| <e. Therefore, by the definition of
limit, lim,_, .- f(x) = L.

If limy_cg(x) = limy_c h(x) = L, then by the above results for one sided
limits we have lim,_ .+ f(x) = lim,_,.- f(x) = L and by Theorem 2.6
(Relation Between One-Sided and Two-Sided Limits) we have

limy—c f(x) = L, as claimed. O
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