Calculus 1

Appendices

A.4. Proofs of Limit Theorems-Examples and Proofs

Theorem 2.1(4). Limit Product Rule.

2 Theorem 2.1(5). Limit Quotient Rule

Theorem 2.4. Sandwich Theorem.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x\to c} (f(x)g(x)) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to c} g(x)\right) = LM.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{x\to c} f(x) = L$ and $\sqrt{\varepsilon/3} > 0$, then there exists $\delta_1 > 0$ such that if $0 < |x - c| < \delta_1$ then $|f(x) - L| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} f(x) = L$ and $\varepsilon/(3(1 + |M|)) > 0$, then there exists $\delta_2 > 0$ such that if $0 < |x - c| < \delta_2$ then $|f(x) - L| < \varepsilon/(3(1 + |M|))$.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x\to c} (f(x)g(x)) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to c} g(x)\right) = LM.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{x\to c} f(x) = L$ and $\sqrt{\varepsilon/3} > 0$, then there exists $\delta_1 > 0$ such that if $0 < |x - c| < \delta_1$ then $|f(x) - L| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} f(x) = L$ and $\varepsilon/(3(1 + |M|)) > 0$, then there exists $\delta_2 > 0$ such that if $0 < |x - c| < \delta_2$ then $|f(x) - L| < \varepsilon/(3(1 + |M|))$. Since $\lim_{x\to c} g(x) = M$ and $\sqrt{\varepsilon/3} > 0$, then there exists $\delta_3 > 0$ such that if $0 < |x - c| < \delta_3$ then $|g(x) - M| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} g(x) = M$ and $\varepsilon/(3(1 + |L|) > 0$, then there exists $\delta_4 > 0$ such that if $0 < |x - c| < \delta_4$ then $|g(x) - M| < \varepsilon/(3(1 + |L|))$. Choose $\delta = \min\{\delta_1, \delta_2, \delta_3, \delta_4\}$.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x\to c} (f(x)g(x)) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to c} g(x)\right) = LM.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{x\to c} f(x) = L$ and $\sqrt{\varepsilon/3} > 0$, then there exists $\delta_1 > 0$ such that if $0 < |x - c| < \delta_1$ then $|f(x) - L| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} f(x) = L$ and $\varepsilon/(3(1 + |M|)) > 0$, then there exists $\delta_2 > 0$ such that if $0 < |x - c| < \delta_2$ then $|f(x) - L| < \varepsilon/(3(1 + |M|))$. Since $\lim_{x\to c} g(x) = M$ and $\sqrt{\varepsilon/3} > 0$, then there exists $\delta_3 > 0$ such that if $0 < |x - c| < \delta_3$ then $|g(x) - M| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} g(x) = M$ and $\varepsilon/(3(1 + |L|)) > 0$, then there exists $\delta_3 > 0$ such that if $0 < |x - c| < \delta_3$ then $|g(x) - M| < \sqrt{\varepsilon/3}$. Since $\lim_{x\to c} g(x) = M$ and $\varepsilon/(3(1 + |L|)) > 0$, then there exists $\delta_4 > 0$ such that if $0 < |x - c| < \delta_4$ then $|g(x) - M| < \varepsilon/(3(1 + |L|))$. Choose $\delta = \min\{\delta_1, \delta_2, \delta_3, \delta_4\}$.

Theorem 2.1(4) (continued 1)

Proof (continued). If $0 < |x - c| < \delta < \min\{\delta_1, \delta_2, \delta_3, \delta_4\}$, then f(x)g(x) - LM = (f(x)g(x) - LM) + 2(LM - LM)+(Lg(x) - Lg(x)) + (Mf(x) - Mf(x))= LM + Lg(x) - LM + Mf(x) + f(x)g(x)-Mf(x) - LM - Lg(x) + LM - LM= (LM + Mf(x) - LM) + (Lg(x) + f(x)g(x))-Lg(x)) - (LM + Mf(x) - LM) - LM= (L + (f(x) - L))M + (L + (f(x) - L))g(x)-(L + (f(x) - L))M - LM= (L + (f(x) - L))(M + (g(x) - M)) - LM= LM + L(g(x) - M)) + M(f(x) - L)+(f(x) - L)(g(x) - M) - LM= L(g(x) - M) + M(f(x) - L) + (f(x) - L)(g(x) - M).

Theorem 2.1(4) (continued 1)

Proof (continued). If $0 < |x - c| < \delta \le \min\{\delta_1, \delta_2, \delta_3, \delta_4\}$, then f(x)g(x) - LM = (f(x)g(x) - LM) + 2(LM - LM)+(Lg(x) - Lg(x)) + (Mf(x) - Mf(x))= LM + Lg(x) - LM + Mf(x) + f(x)g(x)-Mf(x) - LM - Lg(x) + LM - LM= (LM + Mf(x) - LM) + (Lg(x) + f(x)g(x))-Lg(x)) - (LM + Mf(x) - LM) - LM= (L + (f(x) - L))M + (L + (f(x) - L))g(x)-(L + (f(x) - L))M - LM= (L + (f(x) - L))(M + (g(x) - M)) - LM= LM + L(g(x) - M)) + M(f(x) - L)+(f(x)-L)(g(x)-M)-LM= L(g(x) - M) + M(f(x) - L) + (f(x) - L)(g(x) - M).

Theorem 2.1(4) (continued 2)

Proof (continued). Since f(x)g(x) - LM = L(g(x) - M) + M(f(x) - L) + (f(x) - L)(g(x) - M), then by the Triangle Inequality for absolute value (see Exercise A.1.24), we have

$$\begin{aligned} |f(x)g(x) - LM| &\leq |L(g(x) - M)| + |M(f(x) - L)| \\ &+ |f(x) - L| |g(x) - M| \\ &= |L| |g(x) - M| + |M| |f(x) - L| \\ &+ |f(x) - L| |g(x) - M| \\ &< (1 + |L|)|g(x) - M| + (1 + |M|)|f(x) - L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \end{aligned}$$

Theorem 2.1(4) (continued 2)

Proof (continued). Since f(x)g(x) - LM = L(g(x) - M) + M(f(x) - L) + (f(x) - L)(g(x) - M), then by the Triangle Inequality for absolute value (see Exercise A.1.24), we have

$$\begin{aligned} |f(x)g(x) - LM| &\leq |L(g(x) - M)| + |M(f(x) - L)| \\ &+ |f(x) - L| |g(x) - M| \\ &= |L| |g(x) - M| + |M| |f(x) - L| \\ &+ |f(x) - L| |g(x) - M| \\ &< (1 + |L|)|g(x) - M| + (1 + |M|)|f(x) - L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \\ &+ |f(x) - L| |g(x) - M| \text{ since } |L| < 1 + |L| \end{aligned}$$

Theorem 2.1(4) (continued 3)

Theorem 2.1(4). Limit Product Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x\to c} (f(x)g(x)) = \left(\lim_{x\to c} f(x)\right) \left(\lim_{x\to x} g(x)\right) = LM.$$

Proof (continued). That is, if $0 < |x - c| < \delta$ then $|f(x)g(x) - LM| < \varepsilon$. Therefore, by the definition of limit,

$$\lim_{x\to c}(f(x)g(x))=LM,$$

as claimed.

Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M},$$

 $\text{if } \lim_{x\to c} g(x) = M \neq 0.$

Proof. First, we show that $\lim_{x\to c} 1/g(x) = 1/M$. Let $\varepsilon > 0$. Since $\lim_{x\to c} g(x) = M$ by hypothesis, then there exists $\delta_1 > 0$ such that

if $0 < |x - c| < \delta_1$ then |g(x) - M| < |M|/2. (*)

Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M},$$

 $\text{if } \lim_{x\to c} g(x) = M \neq 0.$

Proof. First, we show that $\lim_{x\to c} 1/g(x) = 1/M$. Let $\varepsilon > 0$. Since $\lim_{x\to c} g(x) = M$ by hypothesis, then there exists $\delta_1 > 0$ such that

if
$$0 < |x - c| < \delta_1$$
 then $|g(x) - M| < |M|/2$. (*)

By the Triangle Inequality, $|A + B| \le |A| + |B|$ for all $A, B \in \mathbb{R}$ (see A.1. Real Numbers and the Real Line and Exercise A.1.24). So $|A| = |(A - B) + B| \le |A - B| + |B|$ or $|A| - |B| \le |A - B|$, and $|B| = |(A - B) - A| \le |A - B| + |-A| = |A - B| + |A|$ or $|B| - |A| \le |A - B|$. Therefore $||A| - |B|| \le |A - B|$.

Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)} = \frac{L}{M},$$

 $\text{if } \lim_{x\to c} g(x) = M \neq 0.$

Proof. First, we show that $\lim_{x\to c} 1/g(x) = 1/M$. Let $\varepsilon > 0$. Since $\lim_{x\to c} g(x) = M$ by hypothesis, then there exists $\delta_1 > 0$ such that

if
$$0 < |x - c| < \delta_1$$
 then $|g(x) - M| < |M|/2$. (*)

By the Triangle Inequality, $|A + B| \le |A| + |B|$ for all $A, B \in \mathbb{R}$ (see A.1. Real Numbers and the Real Line and Exercise A.1.24). So $|A| = |(A - B) + B| \le |A - B| + |B|$ or $|A| - |B| \le |A - B|$, and $|B| = |(A - B) - A| \le |A - B| + |-A| = |A - B| + |A|$ or $|B| - |A| \le |A - B|$. Therefore $||A| - |B|| \le |A - B|$.

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore $||A| - |B|| \le |A - B|$. So with A = g(x) and B = M, we have $||g(x)| - |M|| \le |g(x) - M|$. So if $0 < |x - c| < \delta_1$ then $||g(x)| - |M|| \le |g(x) - M| < |M|/2$ by (*). This implies -|M|/2 < |g(x)| - |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or |M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and 2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|.

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore $||A| - |B|| \le |A - B|$. So with A = g(x) and B = M, we have $||g(x)| - |M|| \le |g(x) - M|$. So if $0 < |x - c| < \delta_1$ then $||g(x)| - |M|| \le |g(x) - M| < |M|/2$ by (*). This implies -|M|/2 < |g(x)| - |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or |M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and 2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|. Therefore, if $0 < |x - c| < \delta_1$ then

$$\left|\frac{1}{g(x)} - \frac{1}{M}\right| = \left|\frac{M - g(x)}{Mg(x)}\right|$$

$$= \frac{1}{|M|} \frac{1}{|g(x)|} |M - g(x)| < \frac{1}{|M|} \frac{2}{|M|} |M - g(x)|, \qquad (5)$$

where the last inequality holds since 1/|g(x)| < 1/|M| for $0 < |x - c| < \delta_1$.

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore $||A| - |B|| \le |A - B|$. So with A = g(x) and B = M, we have $||g(x)| - |M|| \le |g(x) - M|$. So if $0 < |x - c| < \delta_1$ then $||g(x)| - |M|| \le |g(x) - M| < |M|/2$ by (*). This implies -|M|/2 < |g(x)| - |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or |M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and 2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|. Therefore, if $0 < |x - c| < \delta_1$ then

$$\left| \frac{1}{g(x)} - \frac{1}{M} \right| = \left| \frac{M - g(x)}{Mg(x)} \right|$$
$$= \frac{1}{|M|} \frac{1}{|g(x)|} |M - g(x)| < \frac{1}{|M|} \frac{2}{|M|} |M - g(x)|, \quad (5)$$

where the last inequality holds since 1/|g(x)| < 1/|M| for $0 < |x - c| < \delta_1$.

Theorem 2.1(5) (continued 2)

Proof (continued). Now $(1/2)|\mathcal{M}|^2\varepsilon > 0$, so there exists $\delta_2 > 0$ such that

if
$$0 < |x - c| < \delta_2$$
 then $|M - g(x)| < \varepsilon |M|^2/2$. (6)

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for $0 < |x - c| < \delta$, we have both $\left|\frac{1}{g(x)} - \frac{1}{M}\right| < \frac{1}{|M|}\frac{2}{|M|}|M - g(x)|$ by (5) and $|M - g(x)| < \varepsilon |M|^2/2$ by (6). So for such x,

$$\left|\frac{1}{g(x)}-\frac{1}{M}\right|<\frac{1}{|M|}\frac{2}{|M|}|M-g(x)|<\frac{1}{|M|}\frac{2}{|M|}\frac{\varepsilon|M|^2}{2}=\varepsilon.$$

So $\lim_{x\to c} 1/g(x) = 1/M$ by the definition of limit.

Theorem 2.1(5) (continued 2)

Proof (continued). Now $(1/2)|\mathcal{M}|^2\varepsilon > 0$, so there exists $\delta_2 > 0$ such that

if
$$0 < |x - c| < \delta_2$$
 then $|M - g(x)| < \varepsilon |M|^2/2$. (6)

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for $0 < |x - c| < \delta$, we have both $\left|\frac{1}{g(x)} - \frac{1}{M}\right| < \frac{1}{|M|} \frac{2}{|M|} |M - g(x)|$ by (5) and $|M - g(x)| < \varepsilon |M|^2/2$ by (6). So for such x,

$$\left|\frac{1}{g(x)}-\frac{1}{M}\right|<\frac{1}{|M|}\frac{2}{|M|}|M-g(x)|<\frac{1}{|M|}\frac{2}{|M|}\frac{\varepsilon|M|^2}{2}=\varepsilon.$$

So $\lim_{x\to c} 1/g(x) = 1/M$ by the definition of limit. Finally, by the Limit Product Rule (Theorem 2.1.(4))

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} f(x) \lim_{x \to c} \frac{1}{g(x)} = L \frac{1}{M} = \frac{L}{M},$$

as claimed.

Theorem 2.1(5) (continued 2)

Proof (continued). Now $(1/2)|\mathcal{M}|^2\varepsilon > 0$, so there exists $\delta_2 > 0$ such that

if
$$0 < |x - c| < \delta_2$$
 then $|M - g(x)| < \varepsilon |M|^2/2$. (6)

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for $0 < |x - c| < \delta$, we have both $\left|\frac{1}{g(x)} - \frac{1}{M}\right| < \frac{1}{|M|} \frac{2}{|M|} |M - g(x)|$ by (5) and $|M - g(x)| < \varepsilon |M|^2/2$ by (6). So for such x,

$$\left|\frac{1}{g(x)}-\frac{1}{M}\right|<\frac{1}{|M|}\frac{2}{|M|}|M-g(x)|<\frac{1}{|M|}\frac{2}{|M|}\frac{\varepsilon|M|^2}{2}=\varepsilon.$$

So $\lim_{x\to c} 1/g(x) = 1/M$ by the definition of limit. Finally, by the Limit Product Rule (Theorem 2.1.(4))

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}f(x)\lim_{x\to c}\frac{1}{g(x)}=L\frac{1}{M}=\frac{L}{M},$$

as claimed.

Theorem 2.4. Sandwich Theorem.

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval *I* containing c, except possibly at x = c itself. Suppose also that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} f(x) = L$.

Solution. We give proofs for right-hand and left-hand one-sided limits. Let $\varepsilon > 0$.

Theorem 2.4. Sandwich Theorem.

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval *I* containing c, except possibly at x = c itself. Suppose also that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} f(x) = L$.

Solution. We give proofs for right-hand and left-hand one-sided limits. Let $\varepsilon > 0$.

Suppose $\lim_{x\to c^+} g(x) = \lim_{x\to c^+} h(x) = L$. Then there exists $\delta_1 > 0$ such that if $c < x < c + \delta_1$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c < x < c + \delta_2$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c < x < c + \delta$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$.

Theorem 2.4. Sandwich Theorem.

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval I containing c, except possibly at x = c itself. Suppose also that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} f(x) = L$.

Solution. We give proofs for right-hand and left-hand one-sided limits. Let $\varepsilon > 0$.

Suppose $\lim_{x\to c^+} g(x) = \lim_{x\to c^+} h(x) = L$. Then there exists $\delta_1 > 0$ such that if $c < x < c + \delta_1$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c < x < c + \delta_2$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c < x < c + \delta$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. So if $c < x < c + \delta$ and $x \in I$, then $L - \varepsilon < g(x) < L + \varepsilon$ or $|f(x) - L| < \varepsilon$. Therefore, by the definition of limit, $\lim_{x\to c^+} f(x) = L$.

Theorem 2.4. Sandwich Theorem.

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval I containing c, except possibly at x = c itself. Suppose also that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} f(x) = L$.

Solution. We give proofs for right-hand and left-hand one-sided limits. Let $\varepsilon > 0$.

Suppose $\lim_{x\to c^+} g(x) = \lim_{x\to c^+} h(x) = L$. Then there exists $\delta_1 > 0$ such that if $c < x < c + \delta_1$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c < x < c + \delta_2$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c < x < c + \delta$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. So if $c < x < c + \delta$ and $x \in I$, then $L - \varepsilon < g(x) < L + \varepsilon$ or $|f(x) - L| < \varepsilon$. Therefore, by the definition of limit, $\lim_{x\to c^+} f(x) = L$.

Theorem 2.4 (continued)

Solution (continued). Suppose $\lim_{x\to c^-} g(x) = \lim_{x\to c^-} h(x) = L$. Then there exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c - \delta < x < c$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. So if $c - \delta < x < c$ and $x \in I$, then $L - \varepsilon < g(x) \le f(x) \le h(x) < L + \varepsilon$, and so $L - \varepsilon < f(x) < L + \varepsilon$ or $|f(x) - L| < \varepsilon$. Therefore, by the definition of limit, $\lim_{x\to c^-} f(x) = L$.

Theorem 2.4 (continued)

Solution (continued). Suppose $\lim_{x\to c^-} g(x) = \lim_{x\to c^-} h(x) = L$. Then there exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c - \delta < x < c$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. So if $c - \delta < x < c$ and $x \in I$, then $L - \varepsilon < g(x) \le f(x) \le h(x) < L + \varepsilon$, and so $L - \varepsilon < f(x) < L + \varepsilon$ or $|f(x) - L| < \varepsilon$. Therefore, by the definition of limit, $\lim_{x\to c^-} f(x) = L$.

If $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$, then by the above results for one sided limits we have $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$ and by Theorem 2.6 (Relation Between One-Sided and Two-Sided Limits) we have $\lim_{x\to c} f(x) = L$, as claimed.

Theorem 2.4 (continued)

Solution (continued). Suppose $\lim_{x\to c^-} g(x) = \lim_{x\to c^-} h(x) = L$. Then there exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|g(x) - L| < \varepsilon$. There also exists $\delta_2 > 0$ such that if $c - \delta_2 < x < c$ and $x \in I$ then $|h(x) - L| < \varepsilon$. With $\delta = \min\{\delta_1, \delta_2\}$, we have that if $c - \delta < x < c$ and $x \in I$ then both $|g(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$; that is, both $L - \varepsilon < g(x) < L + \varepsilon$ and $L - \varepsilon < h(x) < L + \varepsilon$. So if $c - \delta < x < c$ and $x \in I$, then $L - \varepsilon < g(x) \le f(x) \le h(x) < L + \varepsilon$, and so $L - \varepsilon < f(x) < L + \varepsilon$ or $|f(x) - L| < \varepsilon$. Therefore, by the definition of limit, $\lim_{x\to c^-} f(x) = L$.

If $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$, then by the above results for one sided limits we have $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$ and by Theorem 2.6 (Relation Between One-Sided and Two-Sided Limits) we have $\lim_{x\to c} f(x) = L$, as claimed.