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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4)

Theorem 2.1(4). Limit Product Rule.
If limx→c f (x) = L and limx→c g(x) = M, then

lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
) (

lim
x→c

g(x)
)

= LM.

Proof. Let ε > 0. Since limx→c f (x) = L and
√

ε/3 > 0, then there exists
δ1 > 0 such that if 0 < |x − c | < δ1 then |f (x)− L| <

√
ε/3. Since

limx→c f (x) = L and ε/(3(1 + |M|)) > 0, then there exists δ2 > 0 such
that if 0 < |x − c | < δ2 then |f (x)− L| < ε/(3(1 + |M|)).

Since
limx→c g(x) = M and

√
ε/3 > 0, then there exists δ3 > 0 such that if

0 < |x − c | < δ3 then |g(x)−M| <
√

ε/3. Since limx→c g(x) = M and
ε/(3(1 + |L|) > 0, then there exists δ4 > 0 such that if 0 < |x − c | < δ4

then |g(x)−M| < ε/(3(1 + |L|)). Choose δ = min{δ1, δ2, δ3, δ4}.
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 1)

Proof (continued). If 0 < |x − c | < δ ≤ min{δ1, δ2, δ3, δ4}, then

f (x)g(x)− LM = (f (x)g(x)− LM) + 2(LM − LM)

+(Lg(x)− Lg(x)) + (Mf (x)−Mf (x))

= LM + Lg(x)− LM + Mf (x) + f (x)g(x)

−Mf (x)− LM − Lg(x) + LM − LM

= (LM + Mf (x)− LM) + (Lg(x) + f (x)g(x)

−Lg(x))− (LM + Mf (x)− LM)− LM

= (L + (f (x)− L))M + (L + (f (x)− L))g(x)

−(L + (f (x)− L))M − LM

= (L + (f (x)− L))(M + (g(x)−M))− LM

= LM + L(g(x)−M)) + M(f (x)− L)

+(f (x)− L)(g(x)−M)− LM

= L(g(x)−M) + M(f (x)− L) + (f (x)− L)(g(x)−M).
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 2)

Proof (continued). Since
f (x)g(x)− LM = L(g(x)−M) + M(f (x)− L) + (f (x)− L)(g(x)−M),
then by the Triangle Inequality for absolute value (see Exercise A.1.24), we
have

|f (x)g(x)− LM| ≤ |L(g(x)−M)|+ |M(f (x)− L)|
+|f (x)− L| |g(x)−M|

= |L| |g(x)−M|+ |M| |f (x)− L|
+|f (x)− L| |g(x)−M|

< (1 + |L|)|g(x)−M|+ (1 + |M|)|f (x)− L|
+|f (x)− L| |g(x)−M| since |L| < 1 + |L|
and |M| < 1 + |M|

<
ε

3
+

ε

3
+

√
ε

3

√
ε

3
since 0 < |x − c | < δ

= ε.
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Theorem 2.1(4). Limit Product Rule.

Theorem 2.1(4) (continued 3)

Theorem 2.1(4). Limit Product Rule.
If limx→c f (x) = L and limx→c g(x) = M, then

lim
x→c

(f (x)g(x)) =
(

lim
x→c

f (x)
) (

lim
x→x

g(x)
)

= LM.

Proof (continued). That is, if 0 < |x − c | < δ then
|f (x)g(x)− LM| < ε. Therefore, by the definition of limit,

lim
x→c

(f (x)g(x)) = LM,

as claimed.

() Calculus 1 August 9, 2020 6 / 11



Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5)

Theorem 2.1(5). Limit Quotient Rule.
If limx→c f (x) = L and limx→c g(x) = M, then

lim
x→c

f (x)

g(x)
=

limx→c f (x)

limx→c g(x)
=

L

M
,

if limx→c g(x) = M 6= 0.

Proof. First, we show that limx→c 1/g(x) = 1/M. Let ε > 0. Since
limx→c g(x) = M by hypothesis, then there exists δ1 > 0 such that

if 0 < |x − c | < δ1 then |g(x)−M| < |M|/2. (∗)

By the Triangle Inequality, |A + B| ≤ |A|+ |B| for all A,B ∈ R (see A.1.
Real Numbers and the Real Line and Exercise A.1.24). So
|A| = |(A− B) + B| ≤ |A− B|+ |B| or |A| − |B| ≤ |A− B|, and
|B| = |(A− B)− A| ≤ |A− B|+ | − A| = |A− B|+ |A| or
|B| − |A| ≤ |A− B|. Therefore ||A| − |B|| ≤ |A− B|.
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Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| − |B|| ≤ |A− B|. So with A = g(x)
and B = M, we have ||g(x)| − |M|| ≤ |g(x)−M|. So if 0 < |x − c | < δ1

then ||g(x)| − |M|| ≤ |g(x)−M| < |M|/2 by (∗). This implies
−|M|/2 < |g(x)| − |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or
|M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and
2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|.

Therefore, if
0 < |x − c | < δ1 then ∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =

∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣
=

1

|M|
1

|g(x)|
|M − g(x)| < 1

|M|
2

|M|
|M − g(x)|, (5)

where the last inequality holds since 1/|g(x)| < 1/|M| for 0 < |x − c | < δ1.

() Calculus 1 August 9, 2020 8 / 11



Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| − |B|| ≤ |A− B|. So with A = g(x)
and B = M, we have ||g(x)| − |M|| ≤ |g(x)−M|. So if 0 < |x − c | < δ1

then ||g(x)| − |M|| ≤ |g(x)−M| < |M|/2 by (∗). This implies
−|M|/2 < |g(x)| − |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or
|M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and
2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|. Therefore, if
0 < |x − c | < δ1 then ∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =

∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣
=

1

|M|
1

|g(x)|
|M − g(x)| < 1

|M|
2

|M|
|M − g(x)|, (5)

where the last inequality holds since 1/|g(x)| < 1/|M| for 0 < |x − c | < δ1.

() Calculus 1 August 9, 2020 8 / 11



Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 1)

Proof (continued). Therefore ||A| − |B|| ≤ |A− B|. So with A = g(x)
and B = M, we have ||g(x)| − |M|| ≤ |g(x)−M|. So if 0 < |x − c | < δ1

then ||g(x)| − |M|| ≤ |g(x)−M| < |M|/2 by (∗). This implies
−|M|/2 < |g(x)| − |M| < |M|/2 or |M|/2 < |g(x)| < 3|M|/2 or
|M| < 2|g(x)| < 3|M|. Now |M| < 2|g(x)| gives 1/|g(x)| < 2/|M|, and
2|g(x)| < 3|M| or |g(x)|/3 < |M|/2 gives 2/|M| < 3/|g(x)|. Therefore, if
0 < |x − c | < δ1 then ∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =

∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣
=

1

|M|
1

|g(x)|
|M − g(x)| < 1

|M|
2

|M|
|M − g(x)|, (5)

where the last inequality holds since 1/|g(x)| < 1/|M| for 0 < |x − c | < δ1.

() Calculus 1 August 9, 2020 8 / 11



Theorem 2.1(5). Limit Quotient Rule

Theorem 2.1(5) (continued 2)

Proof (continued). Now (1/2)|M|2ε > 0, so there exists δ2 > 0 such that

if 0 < |x − c | < δ2 then |M − g(x)| < ε|M|2/2. (6)

Let δ = min{δ1, δ2}. Then for 0 < |x − c | < δ, we have both∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ <
1

|M|
2

|M|
|M − g(x)| by (5) and |M − g(x)| < ε|M|2/2 by

(6). So for such x ,∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ <
1

|M|
2

|M|
|M − g(x)| < 1

|M|
2

|M|
ε|M|2

2
= ε.

So limx→c 1/g(x) = 1/M by the definition of limit.

Finally, by the Limit Product Rule (Theorem 2.1.(4))

lim
x→c

f (x)

g(x)
= lim

x→c
f (x) lim

x→c

1

g(x)
= L

1

M
=

L

M
,

as claimed.
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4

Theorem 2.4. Sandwich Theorem.
Suppose that g(x) ≤ f (x) ≤ h(x) for all x in some open interval I
containing c , except possibly at x = c itself. Suppose also that
limx→c g(x) = limx→c h(x) = L. Then lim

x→c
f (x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let ε > 0.

Suppose limx→c+ g(x) = limx→c+ h(x) = L. Then there exists δ1 > 0 such
that if c < x < c + δ1 and x ∈ I then |g(x)− L| < ε. There also exists
δ2 > 0 such that if c < x < c + δ2 and x ∈ I then |h(x)− L| < ε. With
δ = min{δ1, δ2}, we have that if c < x < c + δ and x ∈ I then both
|g(x)− L| < ε and |h(x)− L| < ε; that is, both L− ε < g(x) < L + ε and
L− ε < h(x) < L + ε. So if c < x < c + δ and x ∈ I , then
L− ε < g(x) ≤ f (x) ≤ h(x) < L + ε, and so L− ε < f (x) < L + ε or
|f (x)− L| < ε. Therefore, by the definition of limit, limx→c+ f (x) = L.
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limx→c g(x) = limx→c h(x) = L. Then lim

x→c
f (x) = L.

Solution. We give proofs for right-hand and left-hand one-sided limits.
Let ε > 0.

Suppose limx→c+ g(x) = limx→c+ h(x) = L. Then there exists δ1 > 0 such
that if c < x < c + δ1 and x ∈ I then |g(x)− L| < ε. There also exists
δ2 > 0 such that if c < x < c + δ2 and x ∈ I then |h(x)− L| < ε. With
δ = min{δ1, δ2}, we have that if c < x < c + δ and x ∈ I then both
|g(x)− L| < ε and |h(x)− L| < ε; that is, both L− ε < g(x) < L + ε and
L− ε < h(x) < L + ε. So if c < x < c + δ and x ∈ I , then
L− ε < g(x) ≤ f (x) ≤ h(x) < L + ε, and so L− ε < f (x) < L + ε or
|f (x)− L| < ε. Therefore, by the definition of limit, limx→c+ f (x) = L.
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4 (continued)

Solution (continued). Suppose limx→c− g(x) = limx→c− h(x) = L. Then
there exists δ2 > 0 such that if c − δ2 < x < c and x ∈ I then
|g(x)− L| < ε. There also exists δ2 > 0 such that if c − δ2 < x < c and
x ∈ I then |h(x)− L| < ε. With δ = min{δ1, δ2}, we have that if
c − δ < x < c and x ∈ I then both |g(x)− L| < ε and |h(x)− L| < ε;
that is, both L− ε < g(x) < L + ε and L− ε < h(x) < L + ε. So if
c − δ < x < c and x ∈ I , then L− ε < g(x) ≤ f (x) ≤ h(x) < L + ε, and
so L− ε < f (x) < L + ε or |f (x)− L| < ε. Therefore, by the definition of
limit, limx→c− f (x) = L.

If limx→c g(x) = limx→c h(x) = L, then by the above results for one sided
limits we have limx→c+ f (x) = limx→c− f (x) = L and by Theorem 2.6
(Relation Between One-Sided and Two-Sided Limits) we have
limx→c f (x) = L, as claimed.
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4 (continued)

Solution (continued). Suppose limx→c− g(x) = limx→c− h(x) = L. Then
there exists δ2 > 0 such that if c − δ2 < x < c and x ∈ I then
|g(x)− L| < ε. There also exists δ2 > 0 such that if c − δ2 < x < c and
x ∈ I then |h(x)− L| < ε. With δ = min{δ1, δ2}, we have that if
c − δ < x < c and x ∈ I then both |g(x)− L| < ε and |h(x)− L| < ε;
that is, both L− ε < g(x) < L + ε and L− ε < h(x) < L + ε. So if
c − δ < x < c and x ∈ I , then L− ε < g(x) ≤ f (x) ≤ h(x) < L + ε, and
so L− ε < f (x) < L + ε or |f (x)− L| < ε. Therefore, by the definition of
limit, limx→c− f (x) = L.

If limx→c g(x) = limx→c h(x) = L, then by the above results for one sided
limits we have limx→c+ f (x) = limx→c− f (x) = L and by Theorem 2.6
(Relation Between One-Sided and Two-Sided Limits) we have
limx→c f (x) = L, as claimed.
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Theorem 2.4. Sandwich Theorem.

Theorem 2.4 (continued)

Solution (continued). Suppose limx→c− g(x) = limx→c− h(x) = L. Then
there exists δ2 > 0 such that if c − δ2 < x < c and x ∈ I then
|g(x)− L| < ε. There also exists δ2 > 0 such that if c − δ2 < x < c and
x ∈ I then |h(x)− L| < ε. With δ = min{δ1, δ2}, we have that if
c − δ < x < c and x ∈ I then both |g(x)− L| < ε and |h(x)− L| < ε;
that is, both L− ε < g(x) < L + ε and L− ε < h(x) < L + ε. So if
c − δ < x < c and x ∈ I , then L− ε < g(x) ≤ f (x) ≤ h(x) < L + ε, and
so L− ε < f (x) < L + ε or |f (x)− L| < ε. Therefore, by the definition of
limit, limx→c− f (x) = L.

If limx→c g(x) = limx→c h(x) = L, then by the above results for one sided
limits we have limx→c+ f (x) = limx→c− f (x) = L and by Theorem 2.6
(Relation Between One-Sided and Two-Sided Limits) we have
limx→c f (x) = L, as claimed.
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