Calculus 1

Chapter 1. Functions

1.3. Trigonometric Functions—Examples and Proofs

Table of contents

- 1 Exercise 1.3.2
- 2 Exercise 1.3.6
- 3 Exercise 1.3.31
- 4 Example 1.3.A
- 5 Exercise 1.3.68

Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π . Find the angle's radian and degree measure.

Solution. The radius is r = 8 and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = 5\pi/4$.

Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π . Find the angle's radian and degree measure.

Solution. The radius is r = 8 and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = 5\pi/4$.

To convert θ to degrees, we multiply by the conversion factor of $180^{\circ}/\pi$ (or, if you like, $(180/\pi)^{\circ}/\text{radian}$; but remember that that radians are unitless). So we have $\theta = (5\pi/4)(180^{\circ}/\pi) = \boxed{225^{\circ}}$.

Calculus 1

Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π . Find the angle's radian and degree measure.

Solution. The radius is r = 8 and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = 5\pi/4$.

To convert θ to degrees, we multiply by the conversion factor of $180^{\circ}/\pi$ (or, if you like, $(180/\pi)^{\circ}/\text{radian}$; but remember that that radians are unitless). So we have $\theta = (5\pi/4)(180^{\circ}/\pi) = \boxed{225^{\circ}}$. \Box

Exercise 1.3.6. Finish the following table of trigonometric values of some special angles:

θ	-3 π/ 2	$-\pi/3$	$-\pi/6$	$\pi/4$	$5\pi/6$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					
$\cot \theta$					
$\sec \theta$					
$\csc \theta$					

Calculus 1

Exercise 1.3.6 (continued 1)

Solution. For $\theta = -3\pi/2$, the point on the unit circle and terminal side of θ is (x, y) = (0, 1). By definition, since r = 1 on the unit circle, we have $\sin(-3\pi/2) = y/r = 1/1 = 1$, $\cos(-3\pi/2) = x/r = 0/1 = 0$, $\sec(-3\pi/2) = r/x$ is undefined, $\csc(-3\pi/2) = r/y = 1/1 = 1$, $\tan(-3\pi/2) = y/x$ is undefined, and $\cot(-3\pi/2) = x/y = 0/1 = 0$.

Exercise 1.3.6 (continued 2)

Solution (continued). For $\theta = -\pi/3$, we use the special right triangle containing an angle of $\pi/3$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (1/2, -\sqrt{3}/2)$. By definition, since r = 1 on the unit circle, we have $\sin(-\pi/3) = y/r = (-\sqrt{3}/2)/(1) = -\sqrt{3}/2$, $\cos(-\pi/3) = x/r = (1/2)/(1) = 1/2$, $\sec(-\pi/3) = r/x = (1)/(1/2) = 2$, $\csc(-\pi/3) = r/y = (1)/(-\sqrt{3}/2) = -2/\sqrt{3}$, $\tan(-\pi/3) = y/x = (-\sqrt{3}/2)/(1/2) = -\sqrt{3}$, and $\cot(-\pi/3) = x/y = (1/2)/(-\sqrt{3}/2) = -1/\sqrt{3}$.

Exercise 1.3.6 (continued 3)

Solution (continued). For $\theta = -\pi/6$, we use the special right triangle containing an angle of $\pi/6$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (\sqrt{3}/2, -1/2)$. By definition, since r = 1 on the unit circle, we have $\sin(-\pi/6) = y/r = (-1/2)/(1) = -1/2$, $\cos(-\pi/6) = x/r = (\sqrt{3}/2)/(1) = \sqrt{3}/2$, $\sec(-\pi/6) = r/x = (1)/(\sqrt{3}/2) = 2/\sqrt{3}$, $\csc(-\pi/6) = r/y = (1)/(-1/2) = -2$, $\tan(-\pi/6) = y/x = (-1/2)/(\sqrt{3}/2) = -1/\sqrt{3}$, and $\cot(-\pi/6) = x/y = (\sqrt{3}/2)/(-1/2) = -\sqrt{3}$.

Exercise 1.3.6 (continued 4)

Solution (continued). For $\theta = \pi/4$, we use the special right triangle containing an angle of $\pi/4$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (\sqrt{2}/2, \sqrt{2}/2)$. By definition, since r = 1 on the unit circle, we have $\sin(\pi/4) = y/r = (\sqrt{2}/2)/(1) = \sqrt{2}/2$, $\cos(\pi/4) = x/r = (\sqrt{2}/2)/(1) = \sqrt{2}/2$, $\sec(\pi/4) = r/x = (1)/(\sqrt{2}/2) = \sqrt{2}$, $\csc(\pi/4) = r/y = (1)/(\sqrt{2}/2) = \sqrt{2}$, $\tan(\pi/4) = y/x = (\sqrt{2}/2)/(\sqrt{2}/2) = 1$, and $\cot(\pi/4) = x/y = (\sqrt{2}/2)/(\sqrt{2}/2) = 1$.

Exercise 1.3.6 (continued 5)

Solution (continued). For $\theta = 5\pi/6$, we use the special right triangle containing an angle of $5\pi/6$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (-\sqrt{3}/2, 1/2)$. By definition, since r = 1 on the unit circle, we have $\sin(5\pi/6) = y/r = (1/2)/(1) = 1/2$, $\cos(5\pi/6) = x/r = (-\sqrt{3}/2)/(1) = -\sqrt{3}/2$, $\sec(5\pi/6) = r/x = (1)/(-\sqrt{3}/2) = -2/\sqrt{3}$, $\csc(5\pi/6) = r/y = (1)/(1/2) = 2$, $\tan(5\pi/6) = y/x = (1/2)/(-\sqrt{3}/2) = -1/\sqrt{3}$, and $\cot(5\pi/6) = x/y = (-\sqrt{3}/2)/(1/2) = -\sqrt{3}$.

Exercise 1.3.6 (continued 6)

Solution (continued). We therefore have:

θ	$-3\pi/2$	$-\pi/3$	$-\pi/{f 6}$	$\pi/4$	$5\pi/6$
$\sin \theta$	1	$-\sqrt{3}/2$	-1/2	$\sqrt{2}/2$	1/2
$\cos \theta$	0	1/2	$\sqrt{3}/2$	$\sqrt{2}/2$	$-\sqrt{3}/2$
an heta	UND	$-\sqrt{3}$	$-1/\sqrt{3}$	1	$-1/\sqrt{3}$
$\cot \theta$	0	$-1/\sqrt{3}$	$-\sqrt{3}$	1	$-\sqrt{3}$
$\sec\theta$	UND	2	$2/\sqrt{3}$	$\sqrt{2}$	$-2/\sqrt{3}$
$\csc\theta$	1	$-2/\sqrt{3}$	-2	$\sqrt{2}$	2

Calculus 1

Exercise 1.3.31. Use the addition formulas to derive the identity $\cos\left(x - \frac{\pi}{2}\right) = \sin x$.

Solution. We have the formula $\cos(A - B) = \cos A \cos B + \sin A \sin B$, so with A = x and $B = \pi/2$ we have $\cos(x - \pi/2) = \cos x \cos \pi/2 + \sin x \sin \pi/2 = \cos x(0) + \sin x(1) = \sin x$.

Exercise 1.3.31. Use the addition formulas to derive the identity $\cos\left(x - \frac{\pi}{2}\right) = \sin x.$

Solution. We have the formula cos(A - B) = cos A cos B + sin A sin B, so with A = x and $B = \pi/2$ we have $cos(x - \pi/2) = cos x cos \pi/2 + sin x sin \pi/2 = cos x(0) + sin x(1) = sin x$. \Box

Notice that x and $x - \pi/2$ are complementary angles since $(x) + (x - \pi/2) = \pi/2$. So this exercise shows that the sine of an angle equals the **co**sine of its **co**mplement; *this* is why cosine is called "**co**sine."

Exercise 1.3.31. Use the addition formulas to derive the identity $\cos\left(x - \frac{\pi}{2}\right) = \sin x.$

Solution. We have the formula $\cos(A - B) = \cos A \cos B + \sin A \sin B$, so with A = x and $B = \pi/2$ we have $\cos(x - \pi/2) = \cos x \cos \pi/2 + \sin x \sin \pi/2 = \cos x(0) + \sin x(1) = \sin x$. \Box

Notice that x and $x - \pi/2$ are complementary angles since $(x) + (x - \pi/2) = \pi/2$. So this exercise shows that the sine of an angle equals the **co**sine of its **co**mplement; *this* is why cosine is called "**co**sine."

Example 1.3.A

Example 1.3.A. For any angle θ measured in radians, we have $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$.

Solution. As in Figure 1.47, we put θ in standard position. Since the circle is a unit circle (that is, r = 1), then $|\theta|$ equals the length of the circular arc *AP*.

Example 1.3.A

Example 1.3.A. For any angle θ measured in radians, we have $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$.

Solution. As in Figure 1.47, we put θ in standard position. Since the circle is a unit circle (that is, r = 1), then $|\theta|$ equals the length of the circular arc *AP*.

Example 1.3.A (continued)

Solution (continued). We see from the figure that the length of line segment APis less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. cos 6 So by the Pythagorean Theorem (and the fact that $AP \leq |\theta|$) we have $\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \le \theta^2$. So we have both $\sin^2 \theta \le \theta^2$ and $(1-\cos\theta)^2 < \theta^2$.

sin

 $1 - \cos \theta$

0

➤ x

A(1, 0)

Example 1.3.A (continued)

Solution (continued). We see from the figure that the length of line segment APsin is less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of 0 $-\cos\theta$ length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. cos f So by the Pythagorean Theorem (and the fact that $AP < |\theta|$) we have $\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \le \theta^2$. So we have both $\sin^2 \theta \le \theta^2$ and $(1 - \cos \theta)^2 < \theta^2$. Taking square roots (and observing that the square root function is an increasing function so that it preserves inequalities), $\sqrt{\sin^2\theta} \leq \sqrt{\theta^2}$ and $\sqrt{(1-\cos\theta)^2} \leq \sqrt{\theta^2}$, or $|\sin\theta| \leq |\theta|$ and $|1 - \cos \theta| < |\theta|$. These two inequalities imply that $-|\theta| < \sin \theta < |\theta|$ and $-|\theta| < 1 - \cos \theta < |\theta|$, as claimed (see Appendix A.1. Real Numbers and the Real Line where intervals are related to absolute values). \Box

➤ X

A(1, 0)

Example 1.3.A (continued)

Solution (continued). We see from the figure that the length of line segment APsin is less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of 0 $-\cos \theta$ length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. cos (So by the Pythagorean Theorem (and the fact that $AP < |\theta|$) we have $\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \le \theta^2$. So we have both $\sin^2 \theta \le \theta^2$ and $(1 - \cos \theta)^2 < \theta^2$. Taking square roots (and observing that the square root function is an increasing function so that it preserves inequalities), $\sqrt{\sin^2\theta} \leq \sqrt{\theta^2}$ and $\sqrt{(1-\cos\theta)^2} \leq \sqrt{\theta^2}$, or $|\sin\theta| \leq |\theta|$ and $|1 - \cos \theta| \le |\theta|$. These two inequalities imply that $-|\theta| \le \sin \theta \le |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$, as claimed (see Appendix A.1. Real Numbers and the Real Line where intervals are related to absolute values). \Box

A(1, 0)

Exercise 1.3.68. The general sine curve is

$$f(x) = A \sin\left(\frac{2\pi}{B}(x-C)\right) + D.$$

For $y = \frac{1}{2}\sin(\pi x - \pi) + \frac{1}{2}$ identify A, B, C, and D and sketch the graph.

Solution. First we write $y = \frac{1}{2}\sin(\pi x - \pi) + \frac{1}{2} = \frac{1}{2}\sin(\pi(x - 1)) + \frac{1}{2} = \frac{1}{2}\sin\left(\frac{2\pi}{2}(x - 1)\right) + \frac{1}{2}.$ We have A = 1/2, B = 2, C = 1, and D = 1/2. Now A is the amplitude, B is the period, C is the horizontal shift, and y = D is the axis. ...

Exercise 1.3.68. The general sine curve is

$$f(x) = A\sin\left(\frac{2\pi}{B}(x-C)\right) + D.$$

For $y = \frac{1}{2}\sin(\pi x - \pi) + \frac{1}{2}$ identify *A*, *B*, *C*, and *D* and sketch the graph.

Solution. First we write $y = \frac{1}{2}\sin(\pi x - \pi) + \frac{1}{2} = \frac{1}{2}\sin(\pi(x-1)) + \frac{1}{2} = \frac{1}{2}\sin\left(\frac{2\pi}{2}(x-1)\right) + \frac{1}{2}.$ We have A = 1/2, B = 2, C = 1, and D = 1/2. Now A is the amplitude, B is the period, C is the horizontal shift, and y = D is the axis. ...

Exercise 1.3.68 (continued)

Solution (continued). We have A = 1/2, B = 2, C = 1, and D = 1/2. Now A is the amplitude, B is the period, C is the horizontal shift, and y = D is the axis.

