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Exercise 1.6.10

Exercise 1.6.10

Exercise 1.6.10. Determine from its graph if the function

f (x) =

{
2− x2, x ≤ 1

x2, x > 1
is one-to-one.

Solution. The pieces of f are translations and reflections of the parabola
y = x2. The graph of y = 2− x2 is the reflection of the parabola y = x2

about the x axis (to produce y = −x2) which is then translated up by 2
units.
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Exercise 1.6.10

Exercise 1.6.10 (continued)

Solution (continued).
So we graph y = 2− x2 for x ≤ 1
and y = x2 for x > 1:

We see from the graph of y = f (x)
that it is not one-to-one because,
for example, the value 1 is attained at
two x-values (namely, x = −1 and x = 1),
and the value 2 is attained at two
x-values (namely, x = 0 and x =

√
2).

In addition, each value in (1, 2) is
attained three times! �
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Example 1.6.4

Example 1.6.4

Example 1.6.4. Find the inverse of the function y = x2, x ≥ 0. See
Figure 1.59.

Figure 1.59

Solution. We follow the two step procedure.
First, let y = x2 where x ≥ 0. Solving for
x we have

√
y =

√
x2 or

√
y = |x |

where x ≥ 0. Since |x | = x for x ≥ 0,
then

√
y = x .

Interchanging x and y gives
√

x = y ,

so that y = f −1(x) =
√

x . �
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Exercise 1.6.22

Exercise 1.6.22

Exercise 1.6.22. Here is a graph of f (x) = x2 − 2x + 1, x ≥ 1, and its
inverse. Find a formula for f −1.

Solution. We follow the two step procedure. First, let y = x2 − 2x + 1
where x ≥ 1. Then x2 − 2x + (1− y) = 0 and solving for x we have by
the quadratic equation that

x =
−(−2)±

√
(−2)2 − 4(1)(1− y)

2(1)
=

2±
√

4y

2
=

2± 2
√

y

2
= 1±√y

where x ≥ 1.
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Exercise 1.6.22

Exercise 1.6.22 (continued)

Solution.

x =
−(−2)±

√
(−2)2 − 4(1)(1− y)

2(1)
=

2±
√

4y

2
=

2± 2
√

y

2
= 1±√y

where x ≥ 1. Since x ≥ 1, then we must have x = 1 +
√

y .

Interchanging x and y give y = 1 +
√

x , so that y = f −1(x) = 1 +
√

x .
�
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Exercise 1.6.44

Exercise 1.6.44

Exercise 1.6.44. Use the properties of logarithms to write the expressions
as a single term: (a) ln sec θ + ln cos θ, (b) ln(8x + 4)− 2 ln c ,
(c) 3 ln 3

√
t2 − 1− ln(t + 1).

Solution. (a) We have

ln sec θ + ln cos θ = ln(sec θ cos θ) by Theorem 1.6.1(1)

= ln

(
1

cos θ
cos θ

)
since sec θ = 1/ cos θ

= ln 1 if cos θ > 0

= 0 if θ ∈ ((2n − 1/2)π + (2n + 1/2)π) where n ∈ Z .

(b) We have

ln(8x + 4)− 2 ln c = ln(8x + 4)− ln c2 by Theorem 1.6.1(4)

= ln

(
8x + 4

c2

)
by Theorem 1.6.1(2).
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Exercise 1.6.44

Exercise 1.6.44 (continued)

Exercise 1.6.44. Use the properties of logarithms to write the expressions
as a single term: (a) ln sec θ + ln cos θ, (b) ln(8x + 4)− 2 ln c ,
(c) 3 ln 3

√
t2 − 1− ln(t + 1).

Solution (continued). (c) We have

3 ln
3
√

t2 − 1− ln(t + 1) = ln
(

3
√

t2 − 1
)3
− ln(t + 1)

by Theorem 1.6.1(4)

= ln(t2 − 1)− ln(t + 1)

= ln
t2 − 1

t + 1
by Theorem 1.6.1(2)

= ln
(t − 1)(t + 1)

t + 1
= ln(t − 1) .

�
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Exercise 1.6.54

Exercise 1.6.54

Exercise 1.6.54. Solve for y in terms of x :
ln(y2 − 1)− ln(y + 1) = ln(sin x).

Solution. By Theorem 1.6.1(2) we have that

ln(y2 − 1)− ln(y + 1) = ln(sin x) implies ln

(
y2 − 1

y + 1

)
= ln(sin x) or

ln

(
(y − 1)(y + 1)

y + 1

)
= ln(sin x) or ln(y − 1) = ln(sin x).

We can

exponentiate both sides of this equation to get e ln(y−1) = e ln(sin x) or
y − 1 = sin x where y > 1 (we could also use the fact that the natural
logarithm is one-to-one to conclude this; notice that we need y > 1 since
the original equation involves ln(y − 1)). So y = 1 + sin x where y > 1, or
y = 1 + sin x where sin x > 0. That is,

y = 1 + sin x where x ∈ (2nπ, (2n + 1)π) for n ∈ Z . �
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Example 1.6.7

Example 1.6.7

Example 1.6.7. The half-life of a radioactive element is the time
expected to pass until half of the radioactive nuclei present in a sample
decay. The half-life is a constant that does not depend on the number of
radioactive nuclei initially present in the sample, but only on the
radioactive substance. So with the amount of radioactive nuclei present at
time t given by y = y0e

−kt find the half-life.

Solution. The question is t =? when y = y0/2. So we consider
y0/2 = y0e

−kt , which implies 1/2 = e−kt . Taking a natural logarithm of
both sides of the equation gives ln(1/2) = ln(e−kt) or ln(1/2) = −kt or

t = (ln(1/2))/(−k) or t = (ln(2−1))/(−k) = (− ln 2)/(−k) = (ln 2)/k .

In Example 1.5.4, we saw that for Carbon-14, k = 1.2× 10−4. So the
half-life of Carbon-14 is (ln 2)/(1.2× 10−4) ≈ 5776 years.
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Exercise 1.6.72

Exercise 1.6.72

Exercise 1.6.72. Find the exact value of each expression: (a) cos−1(1/2),
(b) cos−1(−1/

√
2), (c) cos−1(

√
3/2).

Solution. (a) With θ = cos−1(1/2), we need cos θ = 1/2 and θ ∈ [0, π].

Our knowledge of special angles tells us that θ = π/3 (see 1.3.

Trigonometric Functions; see Figure 1.41). �

(c) With θ = cos−1(
√

3/2), we need cos θ =
√

3/2 and θ ∈ [0, π]. Our

knowledge of special angles tells us that θ = π/6 (see 1.3. Trigonometric

Functions; see Figure 1.41). �
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Exercise 1.6.72

Exercise 1.6.72 (continued)

Exercise 1.6.72. Find the exact value of each expression: (a) cos−1(1/2),
(b) cos−1(−1/

√
2), (c) cos−1(

√
3/2).

Solution. (b) With θ = cos−1(−1/
√

2), we need cos θ = −1/
√

2 and
θ ∈ [0, π]. Since cos θ = −1/

√
2 < 0, then in fact θ ∈ [π/2, π]. Our

knowledge of special angles tells us that cos π/4 = 1/
√

2 (see 1.3.
Trigonometric Functions; see Figure 1.41), so θ must be a second

quadrant angle with reference angle π/4. Hence, θ = 3π/4 . �
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