Calculus 1

Chapter 2. Limits and Continuity

2.4. One-Sided Limits—Examples and Proofs

Calculus 1 September 7, 2020 1/1

 $y = \sqrt{4 - x^2}$

Example 2.4.

Example 2.4.1 (continued 1)

Solution (continued). For any other c with -2 < c < 2, we see that the function tries to pass though the points $(c, f(c)) = (c, \sqrt{4 - (c)^2})$ (and succeeds) so that by Dr. Bob's Anthropomorphic

so that by Dr. Bob's Anthropomorphic Definition of Limit (or the informal definition or the formal definition), the (two-sided) limit exists for each such c.

Notice that the two-sided limit (or simply "limit") at $c=\pm 2$ does not exist. This is because there is not an open interval containing $c=\pm 2$ on which f is defined, except possibly at $c=\pm 2$; notice that f(x) is not defined for x<-2 and f(x) is not defined for x>+2.

Example 2.4.1

Example 2.4.1

Example 2.4.1. The domain of $f(x) = \sqrt{4 - x^2} = \sqrt{(2 - x)(2 + x)}$ is [-2, 2]; its graph is the semicircle given here:

Solution. We see from the graph of y = f(x) that, as x approaches -2 from the right (i.e., from the positive side), the graph of the function tries to contain the point (-2,0). So by an anthropomorphic version of one-sided

 $y = \sqrt{4 - x^2}$

limits (or the informal definition), $\lim_{x\to -2^+} \sqrt{4-x^2}=0$. Similarly, as x approaches +2 from the left (i.e., from the negative side), the graph of the function tries to contain the point (+2,0). So by an anthropomorphic version of one sided limits (or the informal definition), $\lim_{x\to +2^-} \sqrt{4-x^2}=0$. Notice that in both cases, the graph succeeds in containing these points (though this is irrelevant to the existence of the limit).

() Calculus 1 September 7, 2020 3 / 18

Example 2.4

Example 2.4.1 (continued 2)

Note. As just argued, neither $\lim_{x\to -2^-} f(x)$ nor $\lim_{x\to +2^+} f(x)$ exist. This shows that the evaluation of limits is more complicated than substituting in a value when there is no division by 0. If we substitute $x=\pm 2$ into $f(x)=\sqrt{4-x^2}$ then we simply get $f(\pm 2)=0$ (and 0 is the value of the one-sided limits which exist); but these are not the values of the two-sided limits since these do not exist! The problem that arises in the two sided limits is the square roots of negatives. Notice that when x is "close to" -2 then x could be less than -2 yielding square roots of negatives for $f(x)=\sqrt{4-x^2}$. Similarly when x is "close to" +2 then x could be greater than +2 yielding square roots of negatives for $f(x)=\sqrt{4-x^2}$. This is why the two-sided limits don't exist. \square

Calculus 1 September 7, 2020 4 / 18 () Calculus 1 September 7, 2020 5 / 18

Exercise 2.4.10

Exercise 2.4.10. Consider

$$f(x) = \begin{cases} x, & -1 \le x < 0 \text{ or } 0 < x \le 1\\ 1, & x = 0\\ 0, & x < -1 \text{ or } x > 1 \end{cases}$$

Graph y = f(x).

- (a) What are the domain and range of f?
- (b) At what points c, if any, does $\lim_{x\to c} f(x)$ exist?
- (c) At what points does the left-hand limit exist but not the right-hand limit?
- (d) At what points does the right-hand limit exist but not the left-hand limit?

September 7, 2020

Calculus 1

Calculus 1

September 7, 2020 7 / 18

Exercise 2.4.10 (continued 2)

$$f(x) = \begin{cases} x, & -1 \le x < 0 \text{ or } 0 < x \le 1 \\ 1, & x = 0 \\ 0, & x < -1 \text{ or } x > 1 \end{cases}$$

Solution (continued). For $c=\pm 1$ there is no single point through which that the graph of f tries to pass for x near c, so for these c values the limit does not exist. So $\lim_{x\to c} f(x)$ exists for $c \in (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. \square

(c,d) Notice that for all c, the graph of f tries to pass through some point as x approaches c from the left (by a one-sided version of Dr. Bob's Anthropomorphic Definition of Limit, or by the Informal Definition of Left-Hand Limits). So $\lim_{x\to c^-} f(x)$ exists for all c.

Exercise 2.4.10 (continued 1)

$$f(x) = \begin{cases} x, & -1 \le x < 0 \text{ or } 0 < x \le 1\\ 1, & x = 0\\ 0, & x < -1 \text{ or } x > 1 \end{cases}$$

Solution. (a) We see from the graph that the domain of f is all of \mathbb{R} and the range of f is [-1,1]. \square

(b) We use Dr. Bob's Anthropomorphic Definition of Limit to explore $\lim_{x\to c} f(x)$. For c<-1 and c>1 the graph of f tries (and succeeds) to pass through the point (c, 0) so for these c values the limit exists. For -1 < c < 1 the graph of f tries to pass through the point (c, c) (and succeeds, except when c=0) so for these c values the limit exists.

Exercise 2.4.10 (continued 3)

$$f(x) = \begin{cases} x, & -1 \le x < 0 \text{ or } 0 < x \le 1\\ 1, & x = 0\\ 0, & x < -1 \text{ or } x > 1 \end{cases}$$

Solution (c.d) (continued). Similarly, for all c, the graph of f tries to pass through some point as x approaches c from the right (by a one-sided version of Dr. Bob's Anthropomorphic Definition of Limit, or by the Informal Definition of Right-Hand Limits). So $\lim_{x\to c^+} f(x)$ exists for all c. Hence, there are

no points c where just one of the one-sided limits exist. \square

Note. The left-hand and right-hand limits are the same at all points c, except for $c=\pm 1$. \square

Example 2.4.3

Example 2.4.3. Prove that $\lim_{x\to 0^+} \sqrt{x} = 0$.

Proof. First, we need $f(x) = \sqrt{x}$ defined on an open interval of the form (c,b) = (0,b). The is the case since the domain of f is $[0,\infty)$ so that we have f defined on (say) (c,1) = (0,1). Now let $\varepsilon > 0$. [Not part of the proof:

We see from the graph above that in order to get f(x) within a distance of ε of L=0, we need to have x in the interval $[0,\varepsilon^2)$.] Choose $\delta=\varepsilon^2$. If $c< x< c+\delta$, or equivalently $0< x< 0+\delta=\varepsilon^2$, then (since the square root function is increasing for nonnegative inputs) $\sqrt{x}<\sqrt{\varepsilon^2}=|\varepsilon|=\varepsilon$, or equivalently $|\sqrt{x}-0|=|f(x)-L|<\varepsilon$ where L=0. Therefore, by the Formal Definitions of One-Sided Limits, $\lim_{x\to 0^+}f(x)=L$ or $\lim_{x\to 0^+}\sqrt{x}=0$.

Calculus 1

Theorem 2.7

Theorem 2.7. Limit of the Ratio $(\sin \theta)/\theta$ **as** $\theta \to 0$.

For θ in radians, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.

Proof. Suppose first that θ is positive and less than $\pi/2$. Consider the picture:

Figure 2.33

Thus, $\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$.

nus, $\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$.

Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x. Does knowing that $\lim_{x\to 2^-} f(x) = 7$ tell you anything about either $\lim_{x\to -2^-} f(x)$ or $\lim_{x\to -2^+} f(x)$? Give reasons for your answer.

Solution. Recall that an even function satisfies f(-x) = f(x). When considering $x \to 2^-$, we have x in some interval of the form $(2-\delta,2)$. That is, we consider $2-\delta < x < 2$. Then $-(2-\delta) > -x > -2$ or $-2 < -x < -2 + \delta$. Since f(x) = f(-x), the behavior of f(x) for $2-\delta < x < 2$ is the same as the behavior of f(-x) = f(x) for $-2 < -x < -2 + \delta$. So if $|f(x) - 7| < \varepsilon$ for $2-\delta < x < 2$, then $|f(-x) - 7| < \varepsilon$ for $-2 < -x < -2 + \delta$; or (substituting x for -x in the last claim) $|f(x) - 7| < \varepsilon$ for $-2 < x < -2 + \delta$. So we must have $|\lim_{x \to -2^+} f(x) = 7|$.

We know nothing about $\lim_{x\to -2^-} f(x)$; if we knew something about $\lim_{x\to -2^+} f(x)$ then we could use that information to deduce the value of $\lim_{x\to -2^-} f(x)$ using the "evenness" of f, as above. \Box

Theorem 2.7. Limit of the Ratio $(\sin \theta)/\theta$ as $\theta \rightarrow$

Theorem 2.7 (continued)

terms in this inequality by the positive number $(1/2)\sin\theta$ gives: $1<\frac{\theta}{\sin\theta}<\frac{1}{\cos\theta}$. Taking reciprocals reverses the inequalities: $\cos\theta<\frac{\sin\theta}{\theta}<1$. Since $\lim_{\theta\to0^+}\cos\theta=1$ by Example 2.2.11(b), the Sandwich Theorem (applied to the one-sided limit) gives $\lim_{\theta\to0^+}\frac{\sin\theta}{\theta}=1$. Since $\sin\theta$ and θ are both odd functions, $f(\theta)=\frac{\sin\theta}{\theta}$ is an even function and hence $\frac{\sin(-\theta)}{-\theta}=\frac{\sin\theta}{\theta}$. Therefore $\lim_{\theta\to0^-}\frac{\sin\theta}{\theta}=1=\lim_{\theta\to0^+}\frac{\sin\theta}{\theta}$, so $\lim_{\theta\to0}\frac{\sin\theta}{\theta}=1$ by Theorem 2.6 (Relation Between One-Sided and Two-Sided Limits).

Proof (continued). Thus, $\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$. Dividing all three

10 / 18

Example 2.4.5(a)

Example 2.4.5(a) Show that $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$.

Solution. We multiply by $\frac{\cos h + 1}{\cos h + 1}$ to get

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{\cos h - 1}{h} \left(\frac{\cos h + 1}{\cos h + 1} \right)$$

$$= \lim_{h \to 0} \frac{\cos^2 h - 1}{h(\cos h + 1)} = \lim_{h \to 0} \frac{\sin^2 h}{h(\cos h + 1)}$$

$$= \lim_{h \to 0} \frac{\sin h}{h} \frac{\sin h}{\cos h + 1}$$

$$= \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{\sin h}{\cos h + 1}$$
 by Theorem 2.1(4)
(Product Rule)

Calculus 1

September 7, 2020

Evereice 2.4.2

Exercise 2.4.28

Exercise 2.4.28. Evaluate $\lim_{t\to 0} \frac{2t}{\tan t}$.

Solution. We have

$$\lim_{t\to 0} \frac{2t}{\tan t} = \lim_{t\to 0} \frac{2t}{(\sin t)/(\cos t)}$$

$$= 2 \lim_{t\to 0} \frac{t\cos t}{\sin t} \text{ by Theorem 2.1(3) Constant Multiple Rule}$$

$$= 2 \lim_{t\to 0} \frac{t}{\sin t} \lim_{t\to 0} \cos t \text{ by Theorem 2.1(4) (Product Rule)}$$

$$= 2 \lim_{t\to 0} \frac{1}{(\sin t)/t} \lim_{t\to 0} \cos t$$

$$= 2 \frac{\lim_{t\to 0} 1}{\lim_{t\to 0} (\sin t)/t} \lim_{t\to 0} \cos t \text{ by Theorem 2.1(5)}$$
(Quotient Rule)

Example 2.4.5(a) (continued)

Example 2.4.5(a) Show that $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$.

Solution (continued).

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{\sin h}{\cos h + 1}$$

$$= (1) \lim_{h \to 0} \frac{\sin h}{\cos h + 1} \text{ by Theorem 2.7}$$

$$= \frac{\lim_{h \to 0} \sin h}{\lim_{h \to 0} \cos h + 1} \text{ by Theorem 2.1(5) (Quotient Rule)}$$

$$= \frac{\sin 0}{\cos 0 + 1} = \frac{0}{1 + 1} = 0 \text{ by Example 2.2.11.}$$

Evereice 2.4.2

Exercise 2.4.28 (continued)

Exercise 2.4.28. Evaluate $\lim_{t\to 0} \frac{2t}{\tan t}$.

Solution (continued).

$$\lim_{t \to 0} \frac{2t}{\tan t} = 2 \frac{\lim_{t \to 0} 1}{\lim_{t \to 0} (\sin t)/t} \lim_{t \to 0} \cos t$$

$$= 2 \frac{(1)}{(1)} \cos 0 \text{ by Example 2.3.3(b), Theorem 2.7,}$$
and Example 2.2.11(a)(b)
$$= 2.$$

September 7, 2020

Calculus 1 September 7, 2020 16 / 18 () Calculus 1 September 7, 2020 17

Exercise 2.4.52

Exercise 2.4.52. Given $\varepsilon > 0$, find $\delta > 0$ where $I = (4 - \delta, 4)$ is such that if x lies in I, then $\sqrt{4 - x} < \varepsilon$. What limit is being verified and what is its value?

Solution. We let c=4 and $f(x)=\sqrt{4-x}$. We want $x\in(c-\delta,c)=(4-\delta,4)$ to imply $|f(x)-L|=|\sqrt{4-x}-0|=\sqrt{4-x}<\varepsilon$. So we take L=0. Now $x\in(4-\delta,4)$ means $4-\delta< x<4$ or $-\delta< x-4<0$ or $0<4-x<\delta$. The implies $\sqrt{0}<\sqrt{4-x}<\sqrt{\delta}$ since the square root function is an increasing function. Therefore we need $\sqrt{\delta}\leq\varepsilon$, or $\delta\leq\varepsilon^2$. In order to keep $I=(4-\delta,4)$ a subset of the domain of f, we take $\delta=\min\{\varepsilon^2,4\}$. We have $f(x)=\sqrt{4-x}$, c=4, and L=0. Since we consider x such that $4-\delta< x<4$, then we are considering a limit from the negative side as x approaches c=4. So the limit being verified is $\delta=\min\{\varepsilon^2,4\}$. $\delta=\max\{\varepsilon^2,4\}$. $\delta=\max\{\varepsilon^2,4\}$.

() Calculus 1 September 7, 2020 18 / 18