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Exercise 2.5.4

Exercise 2.5.4

Exercise 2.5.4. State whether the function y = k(x) is continuous on
[−1, 3]. If not, where does it fail to be continuous and why?

Solution. First, the domain of k is the interval [−1, 3]. We analyze this
graph “anthropomorphically.” We see that as x approaches −1 from the
right (i.e., x → −1+) the graph tries to contain the point (−1, 0) and it

succeeds! So k is continuous from the right at −1 :

limx→−1+ k(x) = 0 = k(−1).
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Exercise 2.5.4

Exercise 2.5.4 (continued 1)

Solution (continued). As x approaches 3 from the left (i.e., x → 3−) the
graph tries to contain the point (3, 2) and it succeeds! So

k is continuous from the left at 3 : limx→3− k(x) = 2 = k(3).

The graph of y = k(x) on (−1, 1) is a line and as x approaches any value
c in this interval, the graph tries to pass through a point of the form
(c , f (c)) and succeeds. So

k is continuous at each of the points in (−1, 1) : limx→c k(x) = k(c) for

c ∈ (−1, 1).
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Exercise 2.5.4

Exercise 2.5.4 (continued 2)

Solution (continued). Similarly, the graph of y = k(x) on (1, 3) is a line
and as x approaches any value c in this interval, the graph tries to pass
through a point of the form (c , f (c)) and succeeds. So

k is continuous at each of the interior points in (1, 3) :

limx→c k(x) = k(c) for c ∈ (1, 3).
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Exercise 2.5.4

Exercise 2.5.4 (continued 3)

Solution (continued). Now as x approaches 1 from the left (i.e.,
x → 1−) the graph tries to contain the point (1, 3/2). As x approaches 1
from the right (i.e., x → 1+) the graph tries to contain the point (1, 0)
(and it succeeds). So the two-sided limit as x approaches 1 does not exist

and hence k is not continuous at x = 1 .

So k is continuous on the set [−1, 1) ∪ (1, 3] . �
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Example 2.5.A

Example 2.5.A

Example 2.5.A. Consider the piecewise defined function

f (x) =


x if x ∈ (−∞, 0)
0 if x = 0
x2 if x ∈ (0,∞).

Is f continuous at x = 0?

Solution. Since x = 0 is an interior point of the domain of f , we apply
part (a) of the Continuity Test. First, f (0) = 0 exists.

To address
limx→0 f (x), we use the Relation Between One-Sided and Two-Sided
Limits (Theorem 2.6). We have limx→0− f (x) = limx→0− x = (0) = 0 by
Theorem 2.2 (since x is a polynomial), and
limx→0+ f (x) = limx→0+ x2 = (0)2 = 0 by Theorem 2.2 (since x2 is a
polynomial). So, by Theorem 2.6, limx→0 f (x) = 0. Finally,
limx→0 f (x) = 0 = f (0), so by the Continuity Test,

f is continuous at x = 0 . �

() Calculus 1 September 13, 2020 7 / 21



Example 2.5.A

Example 2.5.A

Example 2.5.A. Consider the piecewise defined function

f (x) =


x if x ∈ (−∞, 0)
0 if x = 0
x2 if x ∈ (0,∞).

Is f continuous at x = 0?

Solution. Since x = 0 is an interior point of the domain of f , we apply
part (a) of the Continuity Test. First, f (0) = 0 exists. To address
limx→0 f (x), we use the Relation Between One-Sided and Two-Sided
Limits (Theorem 2.6). We have limx→0− f (x) = limx→0− x = (0) = 0 by
Theorem 2.2 (since x is a polynomial), and
limx→0+ f (x) = limx→0+ x2 = (0)2 = 0 by Theorem 2.2 (since x2 is a
polynomial). So, by Theorem 2.6, limx→0 f (x) = 0. Finally,
limx→0 f (x) = 0 = f (0), so by the Continuity Test,

f is continuous at x = 0 . �
() Calculus 1 September 13, 2020 7 / 21



Example 2.5.A

Example 2.5.A

Example 2.5.A. Consider the piecewise defined function

f (x) =


x if x ∈ (−∞, 0)
0 if x = 0
x2 if x ∈ (0,∞).

Is f continuous at x = 0?

Solution. Since x = 0 is an interior point of the domain of f , we apply
part (a) of the Continuity Test. First, f (0) = 0 exists. To address
limx→0 f (x), we use the Relation Between One-Sided and Two-Sided
Limits (Theorem 2.6). We have limx→0− f (x) = limx→0− x = (0) = 0 by
Theorem 2.2 (since x is a polynomial), and
limx→0+ f (x) = limx→0+ x2 = (0)2 = 0 by Theorem 2.2 (since x2 is a
polynomial). So, by Theorem 2.6, limx→0 f (x) = 0. Finally,
limx→0 f (x) = 0 = f (0), so by the Continuity Test,

f is continuous at x = 0 . �
() Calculus 1 September 13, 2020 7 / 21



Example 2.5.4

Example 2.5.4

Example 2.5.4. Discuss the discontinuities of (a) g(x) = int x = bxc (this

is Example 2.5.4) and (b) f (x) =
|x |
x

.

Solution. (a) Notice that at each integer n we have limx→n−bxc = n − 1

and limx→n+bxc = n. So at each integer n, bxc has a jump discontinuity .

Next, for n and integer, bxc is constant on the interval (n, n + 1) and so
the limit at such values exists (by Example 2.3.3(b), say) and equals the

function value. So bxc is continuous at all non-integer values . �
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Example 2.5.4

Example 2.5.4 (continued)

Solution. (b) Notice that for x > 0 we have f (x) =
|x |
x

= 1, and for

x < 0 we have f (x) =
|x |
x

= −1. So for c > 0 we have

limx→c f (x) = limx→c 1 = 1 = f (c), and for c < 0 we have
limx→c f (x) = limx→c −1 = −1 = f (c) (both by Example 2.3.3(b); notice
that for c 6= 0, there is an interval containing c on which f is constant).

So f (x) = |x |/x is continuous for x 6= 0 .

For c = 0, notice that
limx→0− |x |/x = limx→0−(−1) = −1 and
limx→0+ |x |/x = limx→0+(1) = 1.
So, by definition,

f (x) = |x |/x has a jump discontinuity at x = 0 .

�
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Exercise 2.5.42

Exercise 2.5.42

Exercise 2.5.42. Define h(2) in a way that extends
h(t) = (t2 + 3t − 10)/(t − 2) to be continuous at t = 2.

Solution. Notice that

lim
t→2

t2 + 3t − 10

t − 2
= lim

t→2

(t − 2)(t + 5)

t − 2
= lim

t→2
t + 5 by Dr. Bob’s Limit Theorem,

Theorem 2.2.A

= (2) + 5 = 7 by Theorem 2.2.

Since this limit exists, but h is not defined at t = 2 then h has a
removable discontinuity at t = 2. If we redefine h(2) = 7 , then we get

the continuous extension of h, as desired. �
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Exercise 2.5.72

Exercise 2.5.72

Exercise 2.5.72. In Exercise 2.5.71, it is shown that f is continuous at c
if and only if limh→0 f (h + c) = f (c). Use this, Example 2.2.11(a)(b), in
which it is shown that limθ→0 sin θ = 0 and limθ→0 cos θ = 1, and the
identities

sin(h+c) = sin h cos c +cos h sin c and cos(h+c) = cos h cos c−sin h cos c

to prove that both f (x) = sin x and g(x) = cos x are continuous at every
point x = c .

Solution. First, let c be an arbitrary point. We have

lim
h→0

sin(c + h) = lim
h→0

(sin h cos c + cos h sin c) by the addition formula

= lim
h→0

(sin h cos c) + lim
h→0

(cos h sin c) by the

Sum Rule, Theorem 2.1(1)

= cos c lim
h→0

(sin h) + sin c lim
h→0

(cos h) by the

Constant Multiple Rule, Theorem 2.1(3)
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Exercise 2.5.72

Exercise 2.5.72 (continued 1)

Solution (continued). . . .

lim
h→0

sin(c + h) = cos c lim
h→0

(sin h) + sin c lim
h→0

(cos h)

= (cos c)(0) + (sin c)(1) by Example 2.2.11(a) and (b)

= sin c .

So by Exercise 2.5.71, f (x) = sin x is continuous at every point x = c .

We also have

lim
h→0

cos(c + h) = lim
h→0

(cos h cos c − sin h cos c) by the addition formula

= lim
h→0

(cos h cos c)− lim
h→0

(sin h sin c) by the

Difference Rule, Theorem 2.1(2)

= cos c lim
h→0

(cos h)− sin c lim
h→0

(sin h) by the

Constant Multiple Rule, Theorem 2.1(3)
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Exercise 2.5.72

Exercise 2.5.72 (continued 2)

Exercise 2.5.72. In Exercise 2.5.71, it is shown that f is continuous at c
if and only if limh→0 f (h + c) = f (c). Use this, Example 2.2.11(a)(b), in
which it is shown that limθ→0 sin θ = 0 and limθ→0 cos θ = 1, and the
identities

sin(h+c) = sin h cos c +cos h sin c and cos(h+c) = cos h cos c−sin h cos c

to prove that both f (x) = sin x and g(x) = cos x are continuous at every
point x = c .

Solution (continued). . . .

lim
h→0

cos(c + h) = cos c lim
h→0

(cos h)− sin c lim
h→0

(sin h)

= (cos c)(1)− (sin c)(0) by Example 2.2.11(a) and (b)

= cos c .

So by Exercise 2.5.71, g(x) = cos x is continuous at every point x = c . �
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Exercise 2.5.26

Exercise 2.5.26

Exercise 2.5.26. Consider the function h(x) = 4
√

3x − 1. At what points
is f continuous and why? Explain by considering interior points and
endpoints of the domain.

Solution. The domain of h(x) = 4
√

3x − 1 is all x satisfying 3x − 1 ≥ 0;
that is, all x ≥ 1/3. Define g(x) = 4

√
x and f (x) = 3x − 1, so that

h = g ◦ f : h(x) = 4
√

3x − 1 = 4
√

f (x) = g(f (x)).

For c an interior point of
the domain of h (so c > 1/3) we have that f (x) = 3x − 1 is continuous at
c by Theorem 2.5.A, since f is a polynomial function. For such c ,
f (c) = 3c − 1 > 0. Now g(x) = 4

√
x is defined on an open interval

containing f (c) (say on the interval (f (c)/2, f (c) + 1) since this interval
only contains positive numbers), so by Theorem 2.8(7), “Roots,”g is
continuous at f (c). So, by Compositions of Continuous Functions
(Theorem 2.9) h = g ◦ f , or

h(x) = g(f (x)) = 4
√

3x − 1, is continuous at all interior points c > 1/3

of the domain of h.
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Exercise 2.5.26

Exercise 2.5.26 (continued)

Solution (continued). For the left-hand endpoint c = 1/3 of the domain
of h, we use the Continuity Test. Now 3x − 1 ≥ 0 on an open interval of
the form (1/3, 1/3 + δ) (we could take δ = 1, for example), so by the
Root Rule (Theorem 2.1(7)) applied to the one-sided limit limx→1/3+ h(x)
we have

lim
x→1/3+

h(x) = lim
x→1/3+

4
√

3x − 1 = 4

√
lim

x→1/3+
(3x − 1) =

4
√

0 = 0 = h(1/3).

Notice that we must use the version of the Root Rule stated in these notes
and not the version stated in the text book.

So, by the Continuity Test we have that

h(x) = g(f (x)) = 4
√

3x − 1 is continuous at the left-hand endpoint c = 1/3

of the domain of h.
We can say that h is continuous on its domain [1/3,∞) , with the

understanding that we have continuity from the right at the endpoint 1/3
of the domain. �
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Theorem 2.10. Limits of Continuous Functions

Theorem 2.10

Theorem 2.10. Limits of Continuous Functions.
If g is continuous at the point b and lim

x→c
f (x) = b, the

lim
x→c

g(f (x)) = g(b) = g
(

lim
x→c

f (x)
)

.

Proof. Let ε > 0. Since g is continuous at b by hypothesis, then
limy→b g(y) = g(b).

So by the (formal) definition of limit, there exists
δ1 > 0 such that

0 < |y − b| < δ1 implies |g(y)− g(b)| < ε.

Since limx→c f (x) = b by hypothesis, then there exists δ > 0 such that

0 < |x − c | < δ implies |f (x)− b| < δ1

(here, δ1 plays the role of an arbitrary positive ε > 0). Let y = f (x).
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Theorem 2.10. Limits of Continuous Functions

Theorem 2.10 (continued)

Proof (continued). Then we have that

0 < |x − c | < δ implies |f (x)− b| < δ1 or |y − b| < δ1 which implies

|g(y)− g(b)| < ε or |g(f (x))− g(b)| < ε.

That is, for all ε > 0 there exists δ > 0 such that

0 < |x − c | < δ implies |g(f (x))− g(b)| < ε.

Therefore, by the definition of limit, we have
limx→c g(f (x)) = g(b) = g (limx→c f (x)), as claimed.
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Exercise 2.5.34

Exercise 2.5.34

Exercise 2.5.34. Is the function continuous at the point being

approached: lim
t→0

sin
(π

2
cos(tan t)

)
? Explain.

Solution. First, since tan t is continuous on its domain by Theorem 2.5.B
then by the definition of continuity we have limt→0 tan t = tan 0 = 0; that
is, 0 = tan 0 = tan (limt→0 t) = limt→0 tan t.

Second, since π
2 cos u is continuous at u = tan 0 = 0 (by Theorem 2.5.B

and Theorem 2.8(4)), then by Limits of Continuous Functions (Theorem
2.10), we have limt→0

π
2 cos(tan t) = π

2 cos (limt→0 tan t) = π
2 cos(0) = π

2 .

Third, since sin v is continuous at v = π
2 cos(tan 0) = π/2 (by Theorem

2.5.B), then by Limits of Continuous Functions (Theorem 2.10), we have
limt→0 sin

(
π
2 cos(tan t)

)
= sin

(
limt→0

π
2 cos(tan t)

)
= sin

(
π
2

)
= 1.

So limt→0 sin
(

π
2 cos(tan t)

)
= 1 = sin

(
π
2 cos(tan 0)

)
and so yes the

function is continuous at t = 0. �
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Exercise 2.5.56

Exercise 2.5.56

Exercise 2.5.56. Prove that the equation cos x = x has at least one
solution. Give reasons for your answer.

Proof. Let f (x) = cos x − x . Since cos x is continuous by Theorem 2.5.B
and x is continuous by Theorem 2.5.A, then f is continuous by Theorem
2.8(2), “Differences.”

If we can find a and b such that f (a) > 0 and
f (b) < 0, then the Intermediate Value Theorem will imply that there exists
c between a and b such that f (c) = 0. We try a = 0 and b = π/2 (think
about the graphs of y = cos x and y = x). Then
f (a) = f (0) = cos(0)− (0) = 1− 0 = 1 > 0 and
f (b) = f (π/2) = cos(π/2)− (π/2) = 0− π/2 = −π/2 < 0. Since y0 is
between f (a) = 1 and f (b) = −π/2, then by the Intermediate Value
Theorem there exists c ∈ [a, b] = [0, π/2] such that f (c) = y0 = 0. That
is, there is some c ∈ [0, π/2] such that f (c) = cos(c)− (c) = 0, or
cos c = c as desired.
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Exercise 2.5.68. Stretching a Rubber Band

Exercise 2.5.68

Exercise 2.5.68. Stretching a Rubber Band.
Is it true that if you stretch a rubber band by moving one end to the right
and the other to the left, some point of the band will end up in its original
position? Give mathematical reasons for your answer.

Solution. Let the rubber band lie on the interval [a, b] on the x-axis of a
Cartesian coordinate system. Label the points on the rubber band
according to the x coordinate of the point on the x-axis where it lies (so
the left end of the rubber band is labeled a and the right endpoint is
labeled b).

When the rubber band is stretched, let g(x) represent the new
coordinate on the x-axis which corresponds to the point that was originally
at point x .
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Exercise 2.5.68. Stretching a Rubber Band

Exercise 2.5.68 (continued)

Exercise 2.5.68. Stretching a Rubber Band.
Is it true that if you stretch a rubber band by moving one end to the right
and the other to the left, some point of the band will end up in its original
position? Give mathematical reasons for your answer.

Solution (continued). Implicit in the physics here is that g is a
continuous function (the rubber doesn’t break, for example). Since the left
end was moved to the left, then g(a) < a. Since the right end was moved
to the right, then g(b) > b. Consider the function f (x) = g(x)− x (this is
the “signed distance” that the point moves to the right). Then f is
continuous by Theorem 2.8(2), “Differences.” Notice that
f (a) = g(a)− a < 0 and f (b) = g(b)− b > 0. Since 0 is between
f (a) < 0 and f (b) > 0 then by the Intermediate Value Theorem, there is
c ∈ [a, b] such that f (c) = g(c)− c = 0. That is, there is a point x = c
on the rubber band that is in its original position after the rubber band is
stretched (i.e., c = g(c)). Yes , it is true. �
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