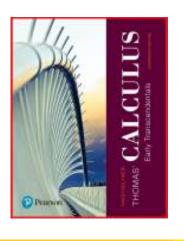
Calculus 1

Chapter 2. Limits and Continuity

2.6. Limits Involving Infinity; Asymptotes of Graphs—Examples and Proofs



Example 2.6.1(a)

Example 2.6.1(a). Prove that $\lim_{x\to\infty}\frac{1}{x}=0$.

Proof. First, notice that with P=0 we have that the domain of f contains the interval $(P,\infty)=(0,\infty)$. Let $\varepsilon>0$ be given. [We must find a number M such that for all x>M implies $\left|\frac{1}{x}-0\right|=\left|\frac{1}{x}\right|<\varepsilon$. The implication will hold if $M=1/\varepsilon$ or any larger positive number (see Figure 2.50).] Suppose $x>M=1/\varepsilon$ (notice then that x is positive). This implies $0<1/x<1/M=\varepsilon$,

or $0 < \frac{1}{x} = \left| \frac{1}{x} - 0 \right| = |f(x) - L| < \varepsilon$. Therefore $\lim_{x \to \infty} \frac{1}{x} = 0$, as claimed.

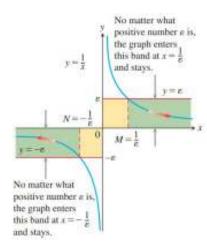


Figure 2.50

Firming 2.6

()

Calculus 1

July 25, 2020

2020 3 / 5

Exercise 2.6.1

July 23, 2020 1 / 30

Exercise 2.6.14

Exercise 2.6.14. For the rational function $f(x) = \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$, find the limit as (a) $x \to \infty$, and (b) $x \to -\infty$. Justify your computations with Theorem 2.12.

Solution. We can evaluate both limits by the same process. We have

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$$
 by the definition of f

$$= \lim_{x \to \pm \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7} \left(\frac{1/x^3}{1/x^3}\right)$$
 dividing the numerator and denominator by the highest power of x in the denominator
$$= \lim_{x \to \pm \infty} \frac{(2x^3 + 7)/x^3}{(x^3 - x^2 + x + 7)/x^3}$$

$$= \lim_{x \to \pm \infty} \frac{2x^3/x^3 + 7/x^3}{x^3/x^3 - x^2/x^3 + x/x^3 + 7/x^3}$$

Exercise 2.6.14 (continued 1)

Solution (continued).

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x^3/x^3 + 7/x^3}{x^3/x^3 - x^2/x^3 + x/x^3 + 7/x^3}$$

$$=\lim_{x\to\pm\infty}\frac{2+7/x^3}{1-1/x+1/x^2+7/x^3} \text{ since } x\to\pm\infty \text{ then we}$$
 can assume that $x\neq0$

$$= \frac{\lim_{x\to\pm\infty}(2+7/x^3)}{\lim_{x\to\pm\infty}(1-1/x+1/x^2+7/x^3)}$$
 by the Quotient Rule (Theorem 2.12(5)), assuming the denominator is not 0

$$= \frac{\lim_{x\to\pm\infty} 2 + \lim_{x\to\pm\infty} 7/x^3}{\lim_{x\to\pm\infty} 1 - \lim_{x\to\pm\infty} 1/x + \lim_{x\to\pm\infty} 1/x^2 + \lim_{x\to\pm\infty} 7/x^3)} \text{ by}$$
the Sum and Difference Rules (Theorem 2.12(1 and 2))

$$= \frac{\lim_{x \to \pm \infty} 2 + 7 \lim_{x \to \pm \infty} 1/x^3}{\lim_{x \to \pm \infty} 1 - \lim_{x \to \pm \infty} 1/x + \lim_{x \to \pm \infty} 1/x^2 + 7 \lim_{x \to \pm \infty} 1/x^3)}$$

Ca

1

July 25, 2020

()

Calculus 1

July 25, 2020

5 /

Exercise 2.6.14 (continued 2)

Solution (continued).

$$= \frac{\lim_{x\to\pm\infty} 2 + 7 \lim_{x\to\pm\infty} 1/x^3}{\lim_{x\to\pm\infty} 1 - \lim_{x\to\pm\infty} 1/x + \lim_{x\to\pm\infty} 1/x^2 + 7 \lim_{x\to\pm\infty} 1/x^3}$$
by the Constant Multiple Rule (Theorem 2.12(4))

$$= \frac{\lim_{x \to \pm \infty} 2 + 7 \left(\lim_{x \to \pm \infty} 1/x\right)^3}{\lim_{x \to \pm \infty} 1 - \lim_{x \to \pm \infty} 1/x + \left(\lim_{x \to \pm \infty} 1/x\right)^2 + 7 \left(\lim_{x \to \infty} 1/x\right)^3}$$
by the Power Rule (Theorem 2.12(6))

$$= \frac{(2) + 7(0)^3}{(1) - (0) + (0)^2 + 7(0)^3} \text{ by Example 2.6.1}$$
$$= \frac{2}{1} = \boxed{2}. \qquad \Box$$

Exercise 2.6.36

Exercise 2.6.36. Evaluate $\lim_{x\to-\infty}\frac{4-3x^3}{\sqrt{x^6+a}}$ by dividing the numerator and denominator by the (effective) highest power of x in the denominator. Justify your computations with Theorem 2.12.

Solution. We have a square root of x^6 in the denominator. so the "effective" highest power of x in the denominator is 3 (think what happens when x is really large: $x^6 + 9$ is about the same size as x^6 and $\sqrt{x^6+9}$ is about the same size as x^3). We have

$$\lim_{x\to -\infty} \frac{4-3x^3}{\sqrt{x^6+9}} = \lim_{x\to -\infty} \frac{4-3x^3}{\sqrt{x^6+9}} \left(\frac{1/x^3}{1/x^3}\right) \text{ dividing the numerator and denominator by the effective highest power}$$
 of x in the denominator
$$= \lim_{x\to -\infty} \frac{(4-3x^3)/x^3}{(\sqrt{x^6+9})/x^3}$$

Calculus 1

July 25, 2020

Exercise 2.6.36 (continued 1)

Solution (continued).

$$=\lim_{x\to -\infty} \frac{(4-3x^3)/x^3}{(\sqrt{x^6+9})/x^3} = \lim_{x\to -\infty} \frac{(4-3x^3)/x^3}{(\sqrt{x^6+9})/(-\sqrt{x^6})}$$
 since $\sqrt{x^6} = |x^3| = -x^3$ for x negative
$$=\lim_{x\to -\infty} \frac{(4-3x^3)/x^3}{-\sqrt{(x^6+9)/x^6}} = \lim_{x\to -\infty} \frac{4/x^3-3x^3/x^3}{-\sqrt{x^6/x^6+9/x^6}}$$

$$=\lim_{x\to -\infty} \frac{4/x^3-3}{-\sqrt{1+9/x^6}}$$
 since $x\to -\infty$ then we can assume that $x\ne 0$
$$\lim_{x\to -\infty} (4/x^3-3)$$
 by the Quotient Rule (Theorem 2.12(5)), assuming the denominator is not 0

Exercise 2.6.36 (continued 2)

Solution (continued).

$$= \frac{\lim_{x \to -\infty} (4/x^3) - \lim_{x \to -\infty} 3}{-\lim_{x \to -\infty} (\sqrt{1+9/x^6})}$$
 by the Difference Rule and the Constant Multiple Rule, Theorem 2.12(2 and 4)

$$= \frac{\lim_{x\to-\infty} (4/x^3) - \lim_{x\to-\infty} 3}{-\sqrt{\lim_{x\to-\infty} (1+9/x^6)}}$$
 by the Root Rule, Theorem 2.12(7)

$$= \frac{4 \lim_{x \to -\infty} (1/x^3) - \lim_{x \to -\infty} 3}{-\sqrt{\lim_{x \to -\infty} (1) + 9 \lim_{x \to -\infty} (1/x^6)}} \text{ by the Sum Rule and}$$

Constant Multiple Rule, Theorem 2.12(1 and 4)

$$= \frac{4\left(\lim_{x\to-\infty} 1/x\right)^3 - \lim_{x\to-\infty} 3}{-\sqrt{\lim_{x\to-\infty} (1) + 9\left(\lim_{x\to-\infty} 1/x\right)^6}}$$
 by the Power Rule, Theorem 2.12(6)

Calculus 1

Calculus 1

Exercise 2.6.36 (continued 3)

Exercise 2.6.36. Evaluate $\lim_{x\to-\infty}\frac{4-3x^3}{\sqrt{x^6+9}}$ by dividing the numerator and denominator by the (effective) highest power of x in the denominator. Justify your computations with Theorem 2.12.

Solution (continued).

$$\lim_{x \to -\infty} \frac{4 - 3x^3}{\sqrt{x^6 + 9}} = \frac{4 \left(\lim_{x \to -\infty} 1/x \right)^3 - \lim_{x \to -\infty} 3}{-\sqrt{\lim_{x \to -\infty} (1) + 9 \left(\lim_{x \to -\infty} 1/x \right)^6}}$$

$$= \frac{4(0)^3 - (3)}{-\sqrt{(1) + 9(0)^6}} \text{ by Example 2.6.1}$$

$$= \frac{-3}{-1} = \boxed{3}. \qquad \Box$$

Calculus 1

Exercise 2.6.68

Exercise 2.6.68. Find the horizontal asymptote(s) of the graph of $y = \frac{2x}{x + 1}$. Justify your computations with Theorem 2.12.

Solution. By definition of horizontal asymptote, we are led to consider consider $\lim_{x \to \pm \infty} \frac{2x}{x+1}$. We have

$$\lim_{x\to\pm\infty}\frac{2x}{x+1} = \lim_{x\to\pm\infty}\frac{2x}{x+1}\left(\frac{1/x}{1/x}\right) \text{ dividing the numerator and denominator by the highest}$$

$$\text{power of } x \text{ in the denominator}$$

$$= \lim_{x\to\pm\infty}\frac{(2x)(1/x)}{(x+1)(1/x)} = \lim_{x\to\pm\infty}\frac{(2x/x)}{(x/x+1/x)}$$

$$= \lim_{x\to\pm\infty}\frac{2}{1+1/x} \text{ since } x\to\pm\infty \text{ then we}$$
 can assume that $x\neq 0$

Calculus 1

Exercise 2.6.68 (continued)

Solution (continued).

graph of $y = \frac{2x}{x+1}$. \square

$$\lim_{x\to\pm\infty}\frac{2x}{x+1} = \lim_{x\to\pm\infty}\frac{2}{1+1/x}$$

$$= \frac{\lim_{x\to\pm\infty}2}{\lim_{x\to\pm\infty}(1+1/x)} \text{ by the Quotient Rule}$$

$$(\text{Theorem } 2.12(5)), \text{ assuming the denominator is not } 0$$

$$= \frac{\lim_{x\to\pm\infty}2}{\lim_{x\to\pm\infty}(1)+\lim_{x\to\pm\infty}(1/x)} \text{ by the Sum Rule,}$$

$$\text{Theorem } 2.12(1)$$

$$= \frac{(2)}{(1)+(0)} = 2 \text{ by Example } 2.6.1.$$
Since $\lim_{x\to\pm\infty}\frac{2x}{x+1} = 2$, then $y=2$ is a horizontal asymptote of the

Example 2.6.4

Example 2.6.4. Find the horizontal asymptote(s) of the graph of $y = \frac{x^3 - 2}{|x|^3 + 1}$. Justify your computations with Theorem 2.12.

Solution. A rational function can have only one horizontal asymptote. Since we are not given a rational function (because of the presence of the absolute value), then we consider $x \to \infty$ and $x \to -\infty$ separately. We divide the numerator and denominator by the highest (effective) power of x in the denominator. We have

$$\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} \left(\frac{1/x^3}{1/x^3}\right)$$

$$= \lim_{x \to \infty} \frac{(x^3 - 2)(1/x^3)}{(|x|^3 + 1)(1/x^3)} = \lim_{x \to \infty} \frac{x^3/x^3 - 2/x^3}{x^3/x^3 + 1/x^3} \text{ since }$$

$$x \to \infty \text{ then we can assume that } x \text{ is positive }$$
so that $|x|^3 = x^3$

Example 2.6.4 (continued 1)

Example 2.6.4 (continued 2)

Solution (continued).

$$\begin{split} \lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} &= \lim_{x \to \infty} \frac{x^3/x^3 - 2/x^3}{x^3/x^3 + 1/x^3} \\ &= \lim_{x \to \infty} \frac{1 - 2/x^3}{1 + 1/x^3} \text{ since } x \to \infty \text{ then we} \\ &= \operatorname{can assume that } x \neq 0 \\ &= \frac{\lim_{x \to \infty} (1 - 2/x^3)}{\lim_{x \to \infty} (1 + 1/x^3)} \text{ by the Quotient Rule} \\ &\qquad \text{(Theorem 2.12(5)), assuming the denominator is not 0} \\ &= \frac{\lim_{x \to \infty} (1) - \lim_{x \to \infty} (2/x^3)}{\lim_{x \to \infty} (1) + \lim_{x \to \infty} (1/x^3)} \text{ by the Sum Rule} \\ &= \operatorname{and the Difference Rule, Theorem 2.12(1 and 2)} \end{split}$$

Solution (continued).

$$\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \frac{\lim_{x \to \infty} (1) - 2 \left(\lim_{x \to \infty} (1/x) \right)^3}{\lim_{x \to \infty} (1) + \left(\lim_{x \to \infty} (1/x) \right)^3} \text{ by the Constant Mult.}$$
 Rule and the Power Rule, Theorem 2.12(4 and 6)
$$= \frac{(1) - 2(0)^3}{(1) + (0)^3} = 1 \text{ by Example 2.6.1(a)}.$$

Calculus 1

So the graph of
$$y=\frac{x^3-2}{|x|^3+1}$$
 has a horizontal asymptote of $y=1$ as $x\to\infty$.

Example 2.6.4 (continued 4)

Example 2.6.4 (continued 3)

Solution (continued). The computation is similar for $x \to -\infty$, except that for x negative we have $|x|^3 = -x^3$. We have

$$\lim_{x\to -\infty} \frac{x^3-2}{|x|^3+1} = \lim_{x\to -\infty} \frac{x^3-2}{|x|^3+1} \left(\frac{1/x^3}{1/x^3}\right)$$

$$= \lim_{x\to -\infty} \frac{(x^3-2)(1/x^3)}{(|x|^3+1)(1/x^3)} = \lim_{x\to -\infty} \frac{x^3/x^3-2/x^3}{-x^3/x^3+1/x^3} \text{ since }$$

$$x\to -\infty \text{ then we can assume that } x \text{ is negative }$$
so that $|x|^3=-x^3$

$$= \lim_{x\to -\infty} \frac{1-2/x^3}{-1+1/x^3} \text{ since } x\to -\infty \text{ then we }$$
can assume that $x\neq 0$

$$= \frac{\lim_{x\to -\infty} (1-2/x^3)}{\lim_{x\to -\infty} (-1+1/x^3)} \text{ by the Quotient Rule }$$
(Theorem 2.12(5)), assuming the denominator is not 0

Solution (continued).

$$\lim_{x\to -\infty} \frac{x^3-2}{|x|^3+1} = \frac{\lim_{x\to -\infty} (1) - \lim_{x\to -\infty} (2/x^3)}{\lim_{x\to -\infty} (-1) + \lim_{x\to -\infty} (1/x^3)} \text{ by the Sum Rule and the Difference Rule, Theorem 2.12(1 and 2)}$$

$$= \frac{\lim_{x\to -\infty} (1) - 2 \left(\lim_{x\to -\infty} (1/x)\right)^3}{\lim_{x\to -\infty} (-1) + \left(\lim_{x\to -\infty} (1/x)\right)^3} \text{ by Const. Mult.}$$
 Rule and the Power Rule, Theorem 2.12(4 and 6)
$$= \frac{(1)-2(0)^3}{(-1)+(0)^3} = -1 \text{ by Example 2.6.1(b)}.$$
 So the graph of $y = \frac{x^3-2}{|x|^3+1}$ has a horizontal asymptote of $y = -1$ as $x\to -\infty$. \square

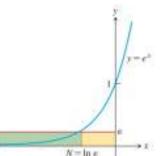
Example 2.6.5

Example 2.6.5. Use the formal definition to prove $\lim_{x \to \infty} e^x = 0$. Notice that this implies that y = 0 is a horizontal asymptote of $y = e^x$.

Proof. First, the domain of $f(x) = e^x$ is all of the real numbers \mathbb{R} , so it is defined on an interval of the form $(-\infty, P)$ (for any P). Next, let $\varepsilon > 0$. Choose $N = \ln \varepsilon$. If $x < N = \ln \varepsilon$ then $e^x < e^{\ln \varepsilon} = \varepsilon$ since e^x is an increasing function on the real numbers.

That is, if x < N then $|f(x) - 0| = |e^x - 0| = e^x < \varepsilon.$ Therefore, by definition, $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} e^x = 0$ as claimed. \square

Note. The choice of $N = \ln \varepsilon$ makes sense if we consider the graph of $y = e^x$:



Example 2.6.A

Example 2.6.A. Evaluate $\lim_{x\to\infty}\cos(1/x)$.

Solution. By Example 2.6.1(a) we have $\lim_{x\to\infty} 1/x = 0$, and by Exercise 2.5.72 we have that $\cos x$ is continuous at all points (in particular, it is continuous at 0). So by Theorem 2.6.A,

$$\lim_{x \to \infty} \cos(1/x) = \cos\left(\lim_{x \to \infty} 1/x\right) = \cos 0 = \boxed{1}.$$

Calculus 1

Exercise 2.6.92

Exercise 2.6.92. Evaluate (carefully!) $\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$. Justify your computations.

Solution. We multiply by the conjugate of the given expression divided by itself (which is defined for x "sufficiently large," namely x > 1) in order to produce a quotient and try to use some of the techniques already introduced. We have

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$$

$$= \lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right) \left(\frac{\sqrt{x^2 + x} + \sqrt{x^2 - x}}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} \right)$$

$$= \lim_{x \to \infty} \frac{(\sqrt{x^2 + x})^2 - (\sqrt{x^2 - x})^2}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{(x^2 + x) - (x^2 - x)}{\sqrt{x^2 + x} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}}$$

Example 2.6.8

Example 2.6.8. Use the Sandwich Theorem to find the horizontal asymptote of the curve $y = 2 + \frac{\sin x}{x}$.

Solution. First, $-1 \le \sin x \le 1$ for all real numbers. Let g(x) = 2 - 1/x, $f(x) = 2 + \frac{\sin x}{x}$, and h(x) = 2 + 1/x. Then $g(x) \le f(x) \le h(x)$ for all real numbers, except 0, and so these inequalities hold on $(-\infty, P) = (-\infty, 0)$ and $(P, \infty) = (0, \infty)$. Now $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} (2-1/x) = 2 - (0) = 2 = L$ and $\lim_{x\to\pm\infty} h(x) = \lim_{x\to\pm\infty} (2+1/x) = 2+(0) = 2 = L$, by Example 2.6.1. So by Theorem 2.6.B, $\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} 2 + \frac{\sin x}{x} = 2$. Therefore, y=2 is a horizontal asymptote of the graph of $y=2+\frac{\sin x}{x}$.

Calculus 1

Exercise 2.6.92

Exercise 2.6.92

Exercise 2.6.92 (continued 1)

Solution (continued).

$$= \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} \left(\frac{1/x}{1/x}\right) \text{ dividing the numerator and denominator by the effective highest power}$$

$$= \lim_{x \to \infty} \frac{(2x)/x}{(\sqrt{x^2 + x} + \sqrt{x^2 - x})/x} = \lim_{x \to \infty} \frac{(2x)/x}{(\sqrt{x^2 + x} + \sqrt{x^2 - x})/\sqrt{x^2}}$$
since $x \to \infty$ then we can assume that x is positive
so that $\sqrt{x^2} = |x| = x$

$$= \lim_{x \to \infty} \frac{(2x)/x}{\sqrt{x^2 + x}/\sqrt{x^2 + x}/\sqrt{x^2 + x}/\sqrt{x^2 + x}}$$

Calculus 1 July 25

Evercise

Exercise 2.6.92 (continued 3)

Solution (continued).

$$=\frac{\lim_{x\to\infty}2}{\lim_{x\to\infty}\sqrt{1+1/x}+\lim_{x\to\infty}\sqrt{1-1/x})}$$

$$=\frac{\lim_{x\to\infty}2}{\sqrt{\lim_{x\to\infty}(1+1/x)}+\sqrt{\lim_{x\to\infty}(1-1/x)}} \text{ by the Root Rule,}$$

$$=\frac{1}{\sqrt{\lim_{x\to\infty}(1+1/x)}+\sqrt{\lim_{x\to\infty}(1-1/x)}}$$
Theorem 2.12(7) (notice that both $1+1/x$ and $1-1/x$ are nonnegative for $x\geq 1$)
$$=\frac{\lim_{x\to\infty}2}{\sqrt{\lim_{x\to\infty}1+\lim_{x\to\infty}(1/x)}+\sqrt{\lim_{x\to\infty}1-\lim_{x\to\infty}(1/x)})}$$
by the Sum and Difference Rules, Theorem 2.12(1 and 2)
$$=\frac{(2)}{\sqrt{(1)+(0)}+\sqrt{(1)-(0)}}=\frac{2}{1+1}=\boxed{1}.$$

Exercise 2.6.92 (continued 2)

Solution (continued).

$$=\lim_{x\to\infty}\frac{(2x)/x}{\sqrt{(x^2+x)/x^2}+\sqrt{(x^2-x)/x^2}}$$

$$=\lim_{x\to\infty}\frac{(2x)/x}{\sqrt{x^2/x^2+x/x^2}+\sqrt{x^2/x^2-x/x^2}}$$

$$=\lim_{x\to\infty}\frac{2}{\sqrt{1+1/x}+\sqrt{1-1/x}}\text{ since }x\to\infty\text{ then we}$$

$$\text{can assume that }x\neq0$$

$$=\frac{\lim_{x\to\infty}2}{\lim_{x\to\infty}(\sqrt{1+1/x}+\sqrt{1-1/x})}\text{ by the Quotient Rule}$$

$$(\text{Theorem 2.12(5)}), \text{ assuming the denominator is not 0}$$

$$=\frac{\lim_{x\to\infty}2}{\lim_{x\to\infty}\sqrt{1+1/x}+\lim_{x\to\infty}\sqrt{1-1/x})}\text{ by the Sum Rule,}$$

$$\text{Theorem 2.12(1)}$$

Exercise 2

Exercise 2.6.108

Exercise 2.6.108. Consider the rational function $y = \frac{x^2 - 1}{2x + 4}$. Find the oblique asymptote.

Solution. First, we perform long division to get:

So
$$y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4}$$
 where $x/2 - 1$ is a linear term. If we show that $\lim_{x \to \pm \infty} 3/(2x + 4) = 0$ then we can conclude that $y = x/2 - 1$ is the oblique asymptote for the graph of $y = (x^2 - 1)/(2x + 4)$.

() Calculus 1 July 25, 2020 24 / 50 () Calculus 1 July 25, 2020 25 / 50

Exercise 2.6.108 (continued 1)

Solution (continued). Next,

$$\lim_{x \to \pm \infty} \frac{3}{2x+4} = \lim_{x \to \pm \infty} \frac{3}{2x+4} \left(\frac{1/x}{1/x}\right) \text{ dividing the numerator and denominator by the highest power}$$

$$= \lim_{x \to \pm \infty} \frac{(3)(1/x)}{(2x+4)(1/x)} = \lim_{x \to \pm \infty} \frac{3/x}{2x/x+4/x}$$

$$= \lim_{x \to \pm \infty} \frac{3/x}{2 + 4/x} \text{ since } x \to \pm \infty \text{ then we}$$
can assume that $x \neq 0$

$$= \frac{3 \lim_{x \to \pm \infty} 1/x}{\lim_{x \to \pm \infty} 2 + 4 \lim_{x \to \pm \infty} 1/x}$$
 by the Sum, Constant, Multiple and Quotient Rules, Theorem 2.12(1, 4, & 5)
$$= \frac{3(0)}{1 + 1} = 0$$
 by Example 2.6.1

= $\frac{3(0)}{(2)+4(0)}=0$ by Example 2.6.1.

Calculus 1 July 25,

Exercise 2.6.108 (continued 2)

Exercise 2.6.108. Consider the rational function $y = \frac{x^2 - 1}{2x + 4}$. Find the oblique asymptote.

Solution (continued). Since
$$y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4}$$
 and
$$\lim_{x \to \pm \infty} \frac{3}{2x + 4} = 0$$
, then $y = \frac{x}{2} - 1$ is an oblique asymptote of the graph of $y = \frac{x^2 - 1}{2x + 4}$. Notice that the function $f(x) = \frac{x^2 - 1}{2x + 4}$ is not defined at $x = -2$. With $y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4}$, the term $\frac{3}{2x + 4}$ is positive for x large and positive, and is negative for x large and negative. So the graph of $y = \frac{x^2 - 1}{2x + 4}$ lies above the oblique asymptote $y = \frac{x}{2} - 1$ for x large and positive, and lies below the oblique asymptote for x large and negative.

Exercise 2.6.10

Exercise 2.6.108 (continued 3)

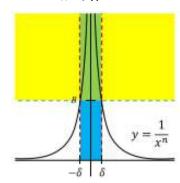
Solution (continued). A crude graph of $y = \frac{x^2 - 1}{2x + 4}$ which reflects the oblique asymptote (but does not reflect other subtle details of the graph) is as follows (we'll explore the graph in more detail later):



Example 2.6.B

Example 2.6.B. For *n* a positive even integer, prove that $\lim_{x\to 0}\frac{1}{x^n}=\infty$.

Solution. First, $f(x) = 1/x^n$ is defined for all x except 0, so there is an open interval containing c = 0 on which f is defined, except at c = 0 itself (say the interval (-1,1)). Let B be a positive real number. Choose $\delta = 1/B^{1/n}$. Then for $0 < |x - c| = |x - 0| = |x| < \delta = 1/B^{1/n}$, we have $1/|x| > B^{1/n}$ (since the function 1/x is decreasing for x > 0) and so $1/|x|^n > B$ (since the function x^n is increasing for $x \ge 0$).



(since the function x^n is increasing for $x \ge 0$). Since n is even, then $|x|^n = x^n$ and so we have $f(x) = 1/x^n = 1/|x|^n > B$. So, by definition, $\lim_{x \to 0} \frac{1}{x^n} = \infty$, as claimed.

Exercise 2.6.54

Exercise 2.6.54. Consider $f(x) = \frac{x}{x^2 - 1}$. Find (a) $\lim_{x \to 1^+} f(x)$, (b) $\lim_{x\to 1^-} f(x)$, (c) $\lim_{x\to -1^+} f(x)$, and (d) $\lim_{x\to -1^-} f(x)$.

Solution. First, $f(x) = \frac{x}{x^2 - 1}$ is a rational function of the form f(x) = p(x)/q(x) where p(x) = x and $q(x) = x^2 - 1$.

(a) We have $\lim_{x\to 1^+} p(x) = \lim_{x\to 1^+} x = 1 \neq 0$ and $\lim_{x\to 1^+} q(x) = \lim_{x\to 1^+} (x^2 - 1) = (1)^2 - 1 = 0$, by Theorem 2.2 for one-sided limits. So by Dr. Bob's Infinite Limits Theorem,

 $\lim_{x\to 1^+}\frac{p(x)}{q(x)}=\lim_{x\to 1^+}\frac{x}{x^2-1}=\pm\infty; \text{ we just need to determine if the limit is}$ $+\infty$ or $-\infty$. We do so by analyzing the sign of $\frac{x}{x^2-1}=\frac{x}{(x-1)(x+1)}$ for "appropriate" x (since $x \to 1^+$, then appropriate x are close to 1 and slightly greater than 1). For such x, we have x is positive (in fact, x is "close to" 1), x-1 is positive (since x is greater than 1; so x-1 is positive and "close to" 0), and x + 1 is positive (in fact, x is "close to" 2).

Exercise 2.6.54 (continued 2)

Solution (continued). For such x, we have x is positive (in fact, x is "close to" 1), x-1 is negative (since x is less than 1; so x-1 is negative and "close to" 0), and x + 1 is positive (in fact, x is "close to" 2). Combining the factors we can again conclude the following little sign diagram: $\frac{x}{x^2-1}=\frac{x}{(x-1)(x+1)}\Rightarrow \frac{(+)}{(-)(+)}=-$. Since we know $\lim_{x\to 1^-}\frac{x}{x^2-1}=\pm\infty$ and we know for x close to 1 and slightly less than 1 that $\frac{x}{x^2-1}$ is negative, then we conclude that $\lim_{x\to 1^-}\frac{x}{x^2-1}=-\infty$. \square

(c) We have $\lim_{x\to -1^+} p(x) = \lim_{x\to -1^+} x = -1 \neq 0$ and $\lim_{x\to -1^+} q(x) = \lim_{x\to -1^+} (x^2-1) = (-1)^2 - 1 = 0$, by Theorem 2.2 for one-sided limits. So by Dr. Bob's Infinite Limits Theorem

 $\lim_{x\to -1^+}\frac{p(x)}{q(x)}=\lim_{x\to -1^+}\frac{x}{x^2-1}=\pm\infty; \text{ we just need to determine if the limit}$ is $+\infty$ or $-\infty$.

Exercise 2.6.54 (continued 1)

Solution (continued). Combining the factors we can conclude the following little sign diagram (not an actual equation):

$$\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \frac{(+)}{(+)(+)} = +$$
. Since we know

 $\lim_{x\to 1^+}\frac{x}{x^2-1}=\pm\infty$ and we know for x close to 1 and slightly greater than

1 that $\frac{x}{x^2-1}$ is positive, then we conclude that $\lim_{x\to 1^+} \frac{x}{x^2-1} = \infty$. \square

(b) We have $\lim_{x\to 1^-} p(x) = \lim_{x\to 1^-} x = 1 \neq 0$ and $\lim_{x\to 1^-} q(x) = \lim_{x\to 1^-} (x^2 - 1) = (1)^2 - 1 = 0$, by Theorem 2.2 for one-sided limits. So by Dr. Bob's Infinite Limits Theorem,

 $\lim_{x\to 1^-}\frac{p(x)}{q(x)}=\lim_{x\to 1^-}\frac{x}{x^2-1}=\pm\infty; \text{ we just need to determine if the limit is}$ $+\infty$ or $-\infty$. We do so, again, by analyzing the sign of $\frac{x}{x^2-1}=\frac{x}{(x-1)(x+1)}$ for "appropriate" x (since $x\to 1^-$, then appropriate x are close to 1 and slightly less than 1).

Exercise 2.6.54 (continued 3)

Solution (continued). We analyze the sign of $\frac{x}{x^2-1} = \frac{x}{(x-1)(x+1)}$ for "appropriate" x (since $x \to -1^+$, then appropriate x are close to -1and slightly greater than -1). For such x, we have x is negative (in fact, x is "close to" -1), x-1 is negative (in fact, x-1 is "close to" -2), and x+1 is positive (since x is greater than -1; so x+1 is positive and "close" to" 0). Combining the factors we get the sign diagram:

$$\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)}{(-)(+)} = +$$
. Since we know

 $\lim_{x \to 1^-} \frac{x}{x^2-1} = \pm \infty$ and we know for x close to -1 and slightly greater

than -1 that $\frac{x}{x^2-1}$ is positive, then we conclude that $\lim_{x \to -1^+} \frac{x}{x^2 - 1} = \infty \ . \ \Box$

Exercise 2.6.54 (continued 4)

Solution (continued). (d) We have

 $\lim_{x\to -1^-} p(x) = \lim_{x\to -1^-} x = -1 \neq 0$ and $\lim_{x\to -1^-} q(x) = \lim_{x\to -1^-} (x^2-1) = (-1)^2-1=0$, by Theorem 2.2 for one-sided limits. So by Dr. Bob's Infinite Limits Theorem,

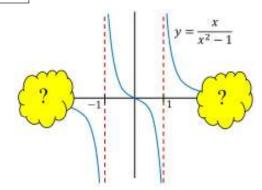
 $\lim_{x\to -1^-} \frac{p(x)}{q(x)} = \lim_{x\to -1^-} \frac{x}{x^2-1} = \pm \infty; \text{ we just need to determine if the}$ limit is $+\infty$ or $-\infty$. We analyze the sign of $\frac{x}{x^2-1} = \frac{x}{(x-1)(x+1)}$ for "appropriate" x (since $x\to -1^-$, then appropriate x are close to -1 and slightly less than -1). For such x, we have x is negative (in fact, x is "close to" -1), x-1 is negative (in fact, x-1 is "close to" -2), and x+1 is negative (since x is less than -1; so x+1 is positive and "close to" -1). Combining the factors we get the sign diagram:

$$\frac{x}{x^2-1} = \frac{x}{(x-1)(x+1)} \Rightarrow \frac{(-)}{(-)(-)} = -.$$

Exercise 2.6.54 (continued 5)

Solution (continued). Since we know $\lim_{x\to 1^-}\frac{x}{x^2-1}=\pm\infty$ and we know for x close to -1 and slightly less than -1 that $\frac{x}{x^2-1}$ is negative, then we conclude that $\lim_{x\to -1^-}\frac{x}{x^2-1}=-\infty$. \square

Note. We know a lot about $f(x) = \frac{x}{x^2 - 1}$ and can get a reasonable graph of y = f(x) by graphing its vertical asymptotes (notice also that f(0) = 0; we did not explore what happens for |x| "large"):



F : 0.0

us 1 July 25, 2020 34

Exercise 2.6.70

Exercise 2.6.70. Consider $y = f(x) = \frac{2x}{x^2 - 1}$. Find the domain, horizontal asymptote(s), vertical asymptotes, graph y = f(x) in such a way as to reflect the asymptotic behavior, and find the range of f.

Solution. First, the domain of
$$y = f(x) = \frac{2x}{x^2 - 1} = \frac{2x}{(x+1)(x-1)}$$
 is all real x except for -1 and 1; the domain is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. For the horizontal asymptote(s), we consider $\lim_{x \to \pm \infty} f(x)$. We have

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1}$$

$$= \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1} \left(\frac{1/x^2}{1/x^2} \right) \text{ dividing the numerator and denominator by the highest power}$$
of x in the denominator

Exercise 2.6.70 (continued 1)

Solution (continued).

$$\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} \frac{(2x)/x^2}{(x^2-1)/x^2} = \lim_{x\to\pm\infty} \frac{2/x}{1-1/x^2} \text{ since } x\to\infty$$
 then we can assume that $x\neq 0$
$$= \frac{\lim_{x\to\pm\infty} 2/x}{\lim_{x\to\pm\infty} (1-1/x^2)} \text{ by the Quotient Rule}$$
 (Theorem 2.12(5)), assuming the denominator is not 0
$$= \frac{2\lim_{x\to\pm\infty} 1/x}{\lim_{x\to\pm\infty} 1-(\lim_{x\to\pm\infty} 1/x)^2} \text{ by the Difference,}$$
 Constant Mult., and Power Rules, Theorem 2.12(2, 4, 6)
$$= \frac{2(0)}{1-(0)^2} = \frac{0}{1} = 0 \text{ by Example 2.6.1.}$$

So
$$y = 0$$
 is a horizontal asymptote of $y = \frac{2x}{x^2 - 1}$.

) Calculus 1 July 25, 2020 36 / 50 () Calculus 1 July 25, 2020 37 / 50

Exercise 2.6.70 (continued 2)

Solution (continued). Now $f(x) = \frac{2x}{x^2 - 1} = \frac{2x}{(x+1)(x-1)}$ is a rational function with $\lim_{x \to -1} 2x = -2 \neq 0$, $\lim_{x \to -1} x^2 - 1 = 0$, and $\lim_{x \to 1} x^2 - 1 = 0$ (each by Theorem 2.2), so by Dr. Bob's Infinite Limits Theorem (applied to rational functions)

f has vertical asymptotes at x=-1 and x=1. We explore the vertical asymptotes by taking one-sided limits to determine if the limit is $+\infty$ or $-\infty$. We analyze the sign of $\frac{2x}{x^2-1}=\frac{2x}{(x-1)(x+1)}$ for "appropriate" x in each case. For $x\to -1^+$, the appropriate x are close to -1 and slightly greater than -1. For such x, we have 2x is negative (in fact, 2x is "close to" -2), x-1 is negative (in fact, x-1 is "close to" -2), and x+1 is positive (since x is greater than -1; so x+1 is positive and "close to" -2). Combining the factors we get the sign diagram:

$$\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)}{(-)(+)} = +. \text{ So } [\lim_{x \to -1^+} f(x) = \infty].$$

alculus 1 July 25, 2020 38 / 5

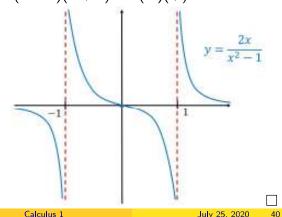
Exampl

Exercise 2.6.70 (continued 4)

Solution (continued). For $x \to 1^-$, the appropriate x are close to 1 and slightly less than 1. For such x, we have 2x is positive (2x is "close to" 2), x-1 is negative (since x is less than 1; so x-1 is negative and "close to" 0), and x+1 is positive (x+1 is "close to" 2). Combining the factors we get the sign diagram: $\frac{2x}{x^2-1} = \frac{2x}{(x-1)(x+1)} \Rightarrow \frac{(+)}{(-)(+)} = -$. So

$$\lim_{x\to 1^-} f(x) = -\infty$$

We have the graph (notice the range is all real numbers):



Exercise 2.6.70 (continued 3)

Solution (continued). For $x \to -1^-$, the appropriate x are close to -1 and slightly less than -1. For such x, we have 2x is negative (2x is "close to" -2), x-1 is negative (x-1 is "close to" -2), and x+1 is negative (since x is less than -1; so x+1 is negative and "close to" -2). Combining the factors we get the sign diagram:

$$\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)}{(-)(-)} = -. \text{ So } [\lim_{x \to -1^-} f(x) = -\infty].$$

For $x \to 1^+$, the appropriate x are close to 1 and slightly greater than 1. For such x, we have 2x is positive (2x is "close to" 2), x-1 is positive (since x is greater than 1; so x-1 is positive and "close to" 0), and x+1 is positive (x+1 is "close to" 2). Combining the factors we get the sign diagram: $\frac{2x}{x} = \frac{2x}{x} \Rightarrow \frac{(+)}{x} = x + x = x$

diagram:
$$\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(+)}{(+)(+)} = +.$$
 So $\lim_{x \to 1^+} f(x) = \infty$.

Example 2.6.20 (continued)

Solution (continued).

$$\begin{split} \lim_{x \to \pm \infty} \frac{f(x)}{g(x)} &= \lim_{x \to \pm \infty} \left(1 - \frac{2}{3x} + \frac{3}{3x^2} - \frac{5}{3x^3} + \frac{6}{3x^4}\right) \\ &= \lim_{x \to \pm \infty} 1 - \frac{2}{3} \lim_{x \to \pm \infty} \frac{1}{x} + \left(\lim_{x \to \pm \infty} \frac{1}{x}\right)^2 - \frac{5}{3} \left(\lim_{x \to \pm \infty} \frac{1}{x}\right)^3 \\ &+ 2 \left(\lim_{x \to \pm \infty} \frac{1}{x}\right)^4 \text{ by the Sum, Difference,} \\ &\quad \text{Constant Multiple, and Power Rules,} \\ &\quad \text{Theorem 2.12(1, 2, 4, 6)} \\ &= 1 - \frac{2}{3}(0) + (0)^2 - \frac{5}{3}(0)^3 + 2(0)^4 = 1 \text{ by Example 2.6.1.} \end{split}$$

Since the limit is 1, then g is a dominant term of f, as claimed. \square

Calculus 1 July 25

Exercise 2.6.108 (again)

Exercise 2.6.108 (again). Consider the rational function $y = \frac{x^2 - 1}{2x + a}$. Find all asymptotes and graph in a way that reflects the asymptotic behavior.

Solution. We saw above that the graph of $y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4}$ has $y = \frac{x}{2} - 1$ as an oblique asymptote as $x \to \pm \infty$. We now explore vertical asymptotes. By the Quotient Rule, Theorem 2.1(5), $\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2 - 1}{2x + 4} = \frac{c^2 - 1}{2c + 4}$ for $c \neq -2$. So by definition, f is continuous on its domain $(-\infty, -2) \cup (-2, \infty)$. By Dr. Bob's Infinite Limits Theorem (applied to rational function f), since $\lim_{x\to -2} x^2 - 1 = (-2)^2 - 1 = 3 \neq 0$ and $\lim_{x\to -2} 2x + 4 = x(-2) + 4 = 0$ (by Theorem 2.2), we see that $\lim_{x\to -2^{\pm}} f(x) = \pm \infty$ and so the graph has a vertical asymptote of x = -2. We explore one-sided limits to see if the

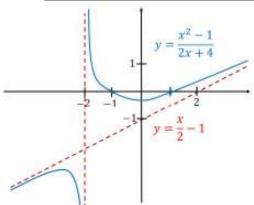
Exercise 2.6.108 (again, continued 2)

Solution (continued). Combining the factors we get the sign diagram:

$$\frac{x^2 - 1}{2x + 4} \Rightarrow \frac{(+)}{(-)} = -. \text{ So } \left[\lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} \frac{x^2 - 1}{2x + 4} = -\infty \right]. \text{ So the}$$

graph is:

limits are ∞ or $-\infty$.



Exercise 2.6.108 (again, continued 1)

Solution (continued). For $\lim_{x\to -2^+} f(x)$, we analyze the sign of $\frac{x^2-1}{2x+4}$ for "appropriate" x (since $x \to -2^+$, then appropriate x are close to -2and slightly greater than -2). For such x, we have $x^2 - 1$ is positive (in fact, $x^2 - 1$ is "close to" 3) and 2x + 4 is positive (since x is greater than -2; so 2x + 4 is positive and "close to" 0). Combining the factors we get the sign diagram: $\frac{x^2-1}{2x+4} \Rightarrow \frac{(+)}{(+)} = +$. So

$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \frac{x^2 - 1}{2x + 4} = \infty.$$

For $\lim_{x\to -2^-} f(x)$, we analyze the sign of $\frac{x^2-1}{2x+4}$ for "appropriate" x(since $x \to -2^-$, then appropriate x are close to -2 and slightly less than -2). For such x, we have $x^2 - 1$ is positive (in fact, $x^2 - 1$ is "close to" 3) and 2x + 4 is negative (since x is less than -2; so 2x + 4 is negative and "close to" 0).

Exercise 2.6.80

Exercise 2.6.80. Find a function g that satisfies the conditions $\lim_{x\to\pm\infty}g(x)=0$, $\lim_{x\to 3^-}g(x)=-\infty$, and $\lim_{x\to 3^+}g(x)=\infty$. Graph y = g(x) in a way that reflects the asymptotic behavior.

Solution. Since we want $\lim_{x\to\pm\infty} g(x) = 0$, then the graph of y = g(x)will have y = 0 as a horizontal asymptote. Since we want $\lim_{x\to 3^-} g(x) = -\infty$ and $\lim_{x\to 3^+} g(x) = \infty$, then the graph of y = g(x)has a vertical asymptote of x = 3. We try to find a rational function, g(x) = p(x)/q(x), satisfying these conditions. If we make polynomial p of degree less than that of polynomial q, then this will give (as we will check) the horizontal asymptote y = 0. If we have x - 3 in the denominator then we should get a vertical asymptote of x = 3 (unless we also have a factor of x-3 in the numerator, which we will avoid). So we try p(x)=1 (a polynomial of degree 0), q(x) = x - 3 (a polynomial of degree 1), and g(x) = 1/(x-3) (we may have to adjust the sign of g to get the proper one sided limits at 3).

Exercise 2.6.80 (continued 1)

Solution (continued). We have

$$\lim_{x\to\pm\infty}g(x) = \lim_{x\to\pm\infty}\frac{1}{x-3} = \lim_{x\to\pm\infty}\frac{1}{x-3}\left(\frac{1/x}{1/x}\right) \text{ dividing the }$$
 numerator and denominator by the effective highest power of x in the denominator
$$= \lim_{x\to\pm\infty}\frac{1/x}{(x-3)/x} = \lim_{x\to\pm\infty}\frac{1/x}{1-3/x} \text{ since } x\to\pm\infty$$
 then we can assume that $x\neq0$
$$= \frac{\lim_{x\to\pm\infty}1/x}{\lim_{x\to\pm\infty}1-3\lim_{x\to\pm\infty}1/x} \text{ by the Difference, }$$
 Constant Mult., and Quotient Rules, Theorem 2.12(2,4,5)
$$= \frac{(0)}{1-3(0)} = \frac{0}{1} = 0 \text{ by Example 2.6.1.}$$

So y = 0 and a horizontal asymptote of the graph of y = g(x), as desired.

Exercise 2.6.80 (continued 3)

Exercise 2.6.80. Find a function g that satisfies the conditions $\lim_{x\to\pm\infty}g(x)=0$, $\lim_{x\to 3^-}g(x)=-\infty$, and $\lim_{x\to 3^+}g(x)=\infty$. Graph y = g(x) in a way that reflects the asymptotic behavior.

Solution (continued). Combining the factors we get the sign diagram:

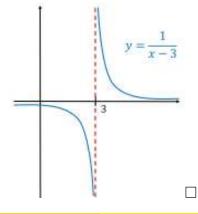
$$\frac{1}{x-3} \Rightarrow \frac{(+)}{(-)} = -. \text{ So}$$

$$\frac{1}{x-3} \Rightarrow \frac{(+)}{(-)} = -. \text{ So}$$

$$\lim_{x \to 3^{-}} g(x) = \lim_{x \to 3^{-}} \frac{1}{x-3} = -\infty,$$

as desired.

We then have the graph:



Exercise 2.6.80 (continued 2)

Solution (continued). Since $\lim_{x\to 3} 1 = 1 \neq 0$ and $\lim_{x\to 3} x - 3 = 0$ (both by Theorem 2.2, say), then by Dr. Bob's Infinite Limits Theorem (applied to rational functions) $\lim_{x\to 3^{\pm}} g(x) = \pm \infty$. We consider one-sided limits (as required by the question).

For $\lim_{x\to 3^+} g(x)$, we analyze the sign of $\frac{1}{x-3}$ for "appropriate" x (since $x \to 3^+$, then appropriate x are close to 3 and slightly greater than 3). For such x, we have 1 is positive and x-3 is positive (since x is greater than 3; so x - 3 is positive and "close to" 0). Combining the factors we get the sign diagram: $\frac{1}{x-3} \Rightarrow \frac{(+)}{(+)} = +$. So $\lim_{x \to 3^+} g(x) = \lim_{x \to 3^+} \frac{1}{x-3} = \infty$, as

desired.

For $\lim_{x\to 3^-} g(x)$, we analyze the sign of $\frac{1}{x-3}$ for "appropriate" x (since $x \to 3^-$, then appropriate x are close to 3 and slightly less than 3). For such x, we have 1 is positive and x - 3 is negative (since x is less than 3; so x-3 is negative and "close to" 0).

Exercise 2.6.102

Exercise 2.6.102. Use the formal definition of an infinite one-sided limit to prove that $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$.

Proof. Let f be a function defined on an interval (a, c), where a < c. We say that f(x) approaches negative infinity as x approaches c from the left, and we write $\lim_{x\to c^-} f(x) = -\infty$, if for every negative real number -Bthere exists a corresponding $\delta > 0$ such that for all x

$$c - \delta < x < c$$
 implies $f(x) < -B$.

(This is the solution to Exercise 2.6.99(c).) Notice that f(x) = 1/(x-2)is defined on the interval $(-\infty, 2)$ (here, c = 2). Let -B be any negative real number. Choose $\delta = 1/B > 0$. If $2 - \delta < x < 2$ then $-\delta < x - 2 < 0$ and $-1/\delta > 1/(x-2)$, since 1/x is a decreasing function for negative input values. Now $\delta = 1/B$ so $1/\delta = B$ and $-1/\delta = -B$. So $2-\delta < x < 2$ implies f(x) = 1/(x-2) < -B. Therefore, by the definition above, $\lim_{x\to 2^-} 1/(x-2) = -\infty$.