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Theorem 3.3.A. Derivative of a Constant Function

Theorem 3.3.A

Theorem 3.3.A. Derivative of a Constant Function.
If f has the constant value f (x) = c , then

df

dx
=

d

dx
[c] = 0.

Proof. From the definition:

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

c − c

h
= lim

h→0
0 = 0.
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Theorem 3.3.B. Power Rule for Positive Integers

Theorem 3.3.B

Theorem 3.3.B. Power Rule for Positive Integers.
If n is a positive integer, then

d

dx
[xn] = nxn−1.

Proof. Notice that

(z − x)(zn−1 + zn−2x + zn−3x2 + · · ·+ z2xn−3 + zxn−2 + xn−1)

= (zn + zn−1x + zn−2x2 + · · ·+ z3xn−3 + z2xn−2 + zxn−1)

−(zn−1x + zn−2x2 + zn−3x3 + · · ·+ z2xn−2 + zxn−1 + xn) = zn − xn.

So by the alternative formula for the definition of the derivative (see
Exercise 3.2.24) we have

f ′(x) = lim
z→x

f (z)− f (x)

z − x
= lim

z→x

zn − xn

z − x
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Theorem 3.3.B. Power Rule for Positive Integers

Theorem 3.3.B (continued)

Proof (continued).

f ′(x) = lim
z→x

f (z)− f (x)

z − x
= lim

z→x

zn − xn

z − x

= lim
z→x

1

z − x
(z − x)(zn−1 + zn−2x + zn−3x2 + · · ·

+z2xn−3 + zxn−2 + xn−1)

= lim
z→x

(zn−1 + zn−2x + zn−3x2 + · · ·+ z2xn−3 + zxn−2 + xn−1)

= (x)n−1 + (x)n−2x + (x)n−3x2 + · · ·
+(x)2xn−3 + (x)xn−2 + (x)n−1

= nxn−1,

as claimed.
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Theorem 3.3.D. Derivative Constant Multiple Rule

Theorem 3.3.D

Theorem 3.3.D. Derivative Constant Multiple Rule
If u is a differentiable function of x , and c is a constant, then

d

dx
[cu] = c

du

dx
.

Proof. Let u(x) be differentiable and define f (x) = cu(x). We want to
show that f ′(x) = cu′(x). By the definition of derivative,

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

cu(x + h)− cu(x)

h
= lim

h→0

c(u(x + h)− u(x))

h

= c lim
h→0

u(x + h)− u(x)

h
by the Constant Multiple

Rule for Limits, Theorem 2.1(3)

= cu′(x).

That is,
d

dx
[f (x)] =

d

dx
[cu(x)] = c

d

dx
[u(x)] = c

du

dx
, as claimed.
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Theorem 3.3.E. Derivative Sum Rule

Theorem 3.3.E

Theorem 3.3.E. Derivative Sum Rule
If u and v are differentiable functions of x , then their sum u + v is
differentiable at every point where u and v are both differentiable. At such
points,

d

dx
[u + v ] =

du

dx
+

dv

dx
.

Proof. Let u(x) and v(x) be differentiable and define f (x) = u(x) + v(x).
We want to show that f ′(x) = u′(x) + v ′(x). By the definition of
derivative,

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

(u(x + h) + v(x + h))− (u(x) + v(x))

h

= lim
h→0

(u(x + h)− u(x)) + (v(x + h)− v(x))

h
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Theorem 3.3.E. Derivative Sum Rule

Theorem 3.3.E (continued)

Theorem 3.3.E. Derivative Sum Rule
If u and v are differentiable functions of x , then their sum u + v is
differentiable at every point where u and v are both differentiable. At such

points,
d

dx
[u + v ] =

du

dx
+

dv

dx
.

Proof (continued).

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

(u(x + h)− u(x)) + (v(x + h)− v(x))

h

= lim
h→0

u(x + h)− u(x)

h
+ lim

h→0

v(x + h)− v(x)

h
by the Sum Rule for Limits, Theorem 2.1(1)

= u′(x) + v ′(x).

That is,
d

dx
[f (x)] =

d

dx
[u(x) + v(x)] =

d

dx
[u(x)] +

d

dx
[v(x)], as

claimed.
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Exercise 3.3.4(a)

Exercise 3.3.4(a)

Exercise 3.3.4(a). Find the derivative of w = 3z7 − 7z3 + 21z2.

Solution. We have

dw

dz
=

d

dz
[3z7 − 7z3 + 21z2] =

d

dz
[3z7] +

d

dz
[−7z3] +

d

dz
[21z2]

by the Derivative Sum Rule, Theorem 3.3.E

= 3
d

dz
[z7]− 7

d

dz
[z3] + 21

d

dz
[z2] by the Derivative Constant

Multiple Rule, Theorem 3.3.D

= 3[7z7−1]− 7[3z3−1] + 21[2z2−1] by the Derivative Power Rule

for Positive Integers, Theorem 3.3.B

= 21z6 − 21z2 + 42z . �
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Exercise 3.3.12(a)

Exercise 3.3.12(a)

Exercise 3.3.12(a). Find the derivative of r =
12

θ
− 4

θ3
+

1

θ4
.

Solution. We have

dr

dθ
=

d

dθ

[
12

θ
− 4

θ3
+

1

θ4

]
=

d

dθ

[
12

θ

]
+

d

dθ

[
− 4

θ3

]
+

d

dθ

[
1

θ4

]
by the Derivative Sum Rule, Theorem 3.3.E

= 12
d

dθ

[
1

θ

]
− 4

d

dθ

[
1

θ3

]
+

d

dθ

[
1

θ4

]
by the Derivative Constant

Multiple Rule, Theorem 3.3.D

= 12
d

dθ

[
θ−1

]
− 4

d

dθ

[
θ−3

]
+

d

dθ

[
θ−4

]
= 12[−θ−1−1]− 4[−3θ−3−1] + [−4θ−4−1] = −12θ−2 + 12θ−4 − 4θ−5

by the Derivative Power Rule (General Version), Theorem 3.3.C

=
−12

θ2
+

12

θ4
− 4

θ5
. �
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Exercise 3.3.34

Exercise 3.3.34

Exercise 3.3.34. Find the derivative of y = x−3/5 + π3/2.

Solution. We have

dy

dx
=

d

dx
[x−3/5 + π3/2] =

d

dx
[x−3/5] +

d

dx
[π3/2]

by the Derivative Sum Rule, Theorem 3.3.E

= [(−3/5)x−3/5−1] + [0] by the Derivative Power Rule

(General Version), Theorem 3.3.C, and the Derivative of a

Constant Function, Theorem 3.3.A (since π3/2 is constant)

=
−3

5
x−8/5 . �
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Example 3.3.4

Example 3.3.4

Example 3.3.4. Does the curve y = x4 − 2x2 + 2 have any horizontal
tangent lines? If so, where?

Solution. First, we find the derivative:

y ′ =
d

dx
[x4 − 2x2 + 2] = 4x3 − 4x = 4x(x2 − 1) = 4x(x − 1)(x + 1). Now

a horizontal line has slope 0 and the slope of a line tangent to the graph of
a curve y = f (x) is y ′ = f ′(x), so we set y ′ equal to 0 and solve for x :
y ′ = 4x(x − 1)(x + 1) = 0 implies x = −1, x = 0, or x = 1. So the curve

has horizontal tangents at x = −1, x = 0, and x = 1 .

The corresponding
points on the curve of the form (x , y) are
(−1, (−1)4 − 2(−1)2 + 2) = (−1, 1), (0, (0)4 − 2(0)2 + 2) = (0, 2), and
(1, (1)4 − 2(1)2 + 2) = (1, 1). Notice that the domain of
f (x) = x4− 2x2 + 2 is R = (−∞,∞) and that y ′ exists for all such x ∈ R.
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Example 3.3.4

Example 3.3.4 (continued)

Solution (continued). Since y = f (x) is defined and differentiable on all
of R then the graph of y = f (x) is “smooth” (a term we will formalize in
“Section 6.3. Arc Length”; “smooth” will then take on a slightly more
involved meaning), the graph contains the points (−1, 1), (0, 2), and
(1, 1), and we can get a good idea of the graph of y = f (x). The graph
has horizontal tangents at the three mentioned points (and at no others),
so the graph must look something like:

Figure 3.12
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Example 3.3.A

Example 3.3.A

Example 3.3.A. Differentiate f (x) = x + 5ex .

Solution. We have

f ′(x) =
d

dx
[x + 5ex ] =

d

dx
[x ] +

d

dx
[5ex ] by the Derivative Sum Rule,

Theorem 3.3.E

=
d

dx
[x ] + 5

d

dx
[ex ] by the Derivative Constant

Multiple Rule, Theorem 3.3.D

= [1] + 5[ex ] by Theorem 3.3.B and Theorem 3.3.F

= 1 + 5ex . �
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Theorem 3.3.G. Derivative Product Rule

Theorem 3.3.G

Theorem 3.3.G. Derivative Product Rule
If u and v are differentiable at x , then so is their product uv , and

d

dx
[uv ] =

du

dx
v + u

dv

dx
= [u′](v) + (u)[v ′].

Proof. Let u(x) and v(x) be differentiable and define f (x) = u(x)v(x).
We want to show that f ′(x) = u(x)v ′(x) + u′(x)v(x).

By the definition of
derivative,
f ′(x)

= lim
h→0

f (x + h)− f (x)

h

= lim
h→0

(u(x + h)v(x + h))− (u(x)v(x))

h

= lim
h→0

u(x + h)v(x + h)− u(x + h)v(x) + u(x + h)v(x)− u(x)v(x)

h
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Theorem 3.3.G. Derivative Product Rule

Theorem 3.3.G (continued 1)

Proof (continued). . . .
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h

= lim
h→0

(
u(x + h)

v(x + h)− v(x)

h
+ v(x)

u(x + h)− u(x)

h

)
= lim

h→0

(
u(x + h)

v(x + h)− v(x)

h

)
+ lim

h→0

(
v(x)

u(x + h)− u(x)

h

)
by the Sum Rule for Limits, Theorem 2.1(1)

= lim
h→0

u(x + h) lim
h→0

v(x + h)− v(x)

h
+ v(x) lim

h→0

u(x + h)− u(x)

h

= u(x)[v ′(x)] + [u′(x)]v(x),

where lim
h→0

u(x + h) = u(x) since u is continuous at x by Theorem 2.1.
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Theorem 3.3.G. Derivative Product Rule

Theorem 3.3.G (continued 2)

Theorem 3.3.G. Derivative Product Rule
If u and v are differentiable at x , then so is their product uv , and

d

dx
[uv ] =

du

dx
v + u

dv

dx
= [u′](v) + (u)[v ′].

Proof (continued). . . .

f ′(x) = u(x)[v ′(x)] + [u′(x)]v(x) = [u′(x)](v(x)) + (u(x))[v ′(x)].

That is,
d

dx
[f (x)] =

d

dx
[u(x)v(x)] =

d

dx
[u(x)](v(x)) + (u(x))

d

dx
[v(x)] =

[u′](v) + (u)[v ′], as claimed.
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Example 3.3.B

Example 3.3.B

Example 3.3.B. Differentiate f (x) = (4x3 − 5x2 + 4)(7x2 − x).

Solution. By the Derivative Product Rule, Theorem 3.3.G, we have

f ′(x) =
d

dx
[(4x3 − 5x2 + 4)(7x2 − x)]

=
d

dx
[4x3 − 5x2 + 4](7x2 − x) + (4x3 − 5x2 + 4)

d

dx
[7x2 − x ]

= [12x2 − 10x ](7x2 − x) + (4x3 − 5x2 + 4)[14x − 1] .

We can simplify this, but prefer to leave it in its current form. Notice that
in expressing our answer we have put the parts of f which are
differentiated (as required by the Derivative Product Rule) in square
brackets, and the parts which are not differentiated (as required by the
Derivative Product Rule) are in parentheses. �
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Theorem 3.3.H. Derivative Quotient Rule

Theorem 3.3.H

Theorem 3.3.H. Derivative Quotient Rule.
If u and v are differentiable at x , then the quotient u/v is differentiable at
x , and

d

dx

[u

v

]
=

du
dx v − u dv

dx

v2
=

[u′](v)− (u)[v ′]

(v)2
.

Proof. Let u(x) and v(x) be differentiable and define f (x) = u(x)/v(x).
We want to show that f ′(x) = (u′(x)v(x)− u(x)v ′(x))/(v(x))2.

By the
definition of derivative,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

u(x+h)
v(x+h) −

u(x)
v(x)

h

= lim
h→0

1

h

(
u(x + h)

v(x + h)
− u(x)

v(x)

)
= lim

h→0

1

h

(
v(x)u(x + h)− u(x)v(x + h)

v(x + h)v(x)

)
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Theorem 3.3.H. Derivative Quotient Rule

Theorem 3.3.H (continued 1)

Proof (continued).

f ′(x) = lim
h→0

1

h

(
v(x)u(x + h)− u(x)v(x + h)

v(x + h)v(x)

)
= lim

h→0

1

h

(
v(x)u(x + h)− v(x)u(x) + v(x)u(x)− u(x)v(x + h)

v(x + h)v(x)

)
= lim

h→0

1

h

(
v(x)(u(x + h)− u(x))− u(x)(v(x + h)− v(x))

v(x + h)v(x)

)
= lim

x→0

v(x)u(x+h)−u(x)
h − u(x) v(x+h)−v(x)

h

v(x + h)v(x)

=
limh→0 v(x)u(x+h)−u(x)

h − limh→0 u(x) v(x+h)−v(x)
h

limh→0 v(x + h)v(x)

by the Quotient Rule for Limits, Theorem 2.1(5),

assuming the denominator is not 0
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Theorem 3.3.H. Derivative Quotient Rule

Theorem 3.3.H (continued 2)

Proof (continued).

f ′(x) =
limh→0 v(x)u(x+h)−u(x)

h − limh→0 u(x) v(x+h)−v(x)
h

limh→0 v(x + h)v(x)

=
v(x) limh→0

u(x+h)−u(x)
h − u(x) limh→0

v(x+h)−v(x)
h

v(x) limh→0 v(x + h)

by the Constant Multiple Rule for Limits, Theorem 2.1(3)

=
v(x)u′(x)− u(x)v ′(x)

v2(x)
,

where lim
h→0

v(x + h) = v(x) since v is continuous at x by Theorem 2.1.

That is,
d

dx
[f (x)] =

d

dx

[
u(x)

v(x)

]
=[

d
dx [u(x)]

]
(v(x))− (u(x))

[
d
dx [v(x)]

]
v(x)2

=
[u′](v)− (u)[v ′]

(v)2
, as claimed.
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Exercise 3.3.20

Exercise 3.3.20

Exercise 3.3.20. Differentiate f (t) =
t2 − 1

t2 + t − 2
.

Solution. By the Derivative Quotient Rule, Theorem 3.3.H, we have

f ′(x) =
d

dt

[
t2 − 1

t2 + t − 2

]
=

d
dt [t

2 − 1](t2 + t + 2)− (t2 − 1) d
dt [t

2 + t − 2]

(t2 + t − 2)2

=
[2t](t2 + t + 2)− (t2 − 1)[2t + 1]

(t2 + t − 2)2
.

We can simplify this, but prefer to leave it in its current form. Notice that
in expressing our answer we have put the parts of f which are
differentiated (as required by the Derivative Quotient Rule) in square
brackets, and the parts which are not differentiated (as required by the
Derivative Quotient Rule) are in parentheses. �
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Exercise 3.3.48

Exercise 3.3.48

Example 3.3.48. Differentiate u(x) =
(x2 + x)(x2 − x + 1)

x4
.

Solution. We treat this as a quotient with a product in the numerator.

We have

u′(x) =
d

dx

»
(x2 + x)(x2 − x + 1)

x4

–
=

d
dx

[(x2 + x)(x2 − x + 1)]
`
x4

´
−

`
(x2 + x)(x2 − x + 1)

´
d
dx

ˆ
x4

˜
(x2)2

=
[[2x + 1](x2 − x + 1) + (x2 + x)[2x − 1]](x4)− ((x2 + x)(x2 − x + 1))[4x3]

(x2)2.

We can simplify the result from here, but that will disguise the fact that
we have used the Derivative Product Rule within the Derivative Quotient
Rule. When we do applications later we will need to simplify derivatives,
so for now we leave the answer as given. �
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Exercise 3.3.78. Power Rule for Negative Integers

Exercise 3.3.78

Exercise 3.2.78. Power Rule for Negative Integers.

Prove that if m is a positive integer then
d

dx
[x−m] = −mx−m−1. HINT:

Use the Derivative Quotient Rule (Theorem 3.3.H) and the Derivative
Power Rule for Positive Integers (Theorem 3.3.B); notice that we have
proved both of these already.

Proof. We can write x−m as a quotient: x−m =
1

xm
.

We then have:

d

dx
[x−m] =

d

dx

[
1

xm

]
=

d
dx [1] (xm)− (1) d

dx [xm]

(xm)2
by the Derivative Quotient Rule,

Theorem 3.3.H
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Exercise 3.3.78. Power Rule for Negative Integers

Exercise 3.3.78 (continued)

Exercise 3.2.78. Power Rule for Negative Integers.

Prove that if m is a positive integer then
d

dx
[x−m] = −mx−m−1. HINT:

Use the Derivative Quotient Rule (Theorem 3.3.H) and the Derivative
Power Rule for Positive Integers (Theorem 3.3.B); notice that have proved
both of these already.

Proof (continued). . . .

d

dx
[x−m] =

d
dx [1] (xm)− (1) d

dx [xm]

(xm)2

=
[0](xm)− (1)[(m)xm−1]

x2m
by the Derivative Power Rule

for Positive Integers, Theorem 3.3.B

=
−mxm−1

x2m
= −mx (m−1)−2m = −mx−m−1,

as claimed.
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Exercise 3.3.77(a,b). Generalizing the Product Rule

Exercise 3.2.77(a,b)

Exercise 3.2.77(a,b). Generalizing the Product Rule.
The Derivative Product Rule tells us how to find the derivative of a
product of two differentiable functions.
(a) Suppose functions u1(x), u2(x), and u3(x) are differentiable. Find the
derivative of the product u1(x)u2(x)u3(x).
(b) Suppose functions u1(x), u2(x), u3(x), and u4(x) are differentiable.
Find the derivative of the product u1(x)u2(x)u3(x)u4(x).

Solution. (a) We associate a pair of the functions and apply the
Derivative Product Rule:

d

dx
[u1(x)u2(x)u3(x)] =

d

dx
[(u1(x)u2(x))u3(x)]

=
d

dx
[u1(x)u2(x)](u3(x)) + (u1(x)u2(x))

d

dx
[u3(x)]

by the Derivative Product Rule, Theorem 3.3.G
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Exercise 3.3.77(a,b). Generalizing the Product Rule

Exercise 3.3.77(a,b) (continued 1)

Solution (continued).

=
d

dx
[u1(x)u2(x)](u3(x)) + (u1(x)u2(x))

d

dx
[u3(x)]

=

(
d

dx
[u1(x)](u2(x)) + (u1(x))

d

dx
[u2(x)]

)
(u3(x))

+(u1(x)u2(x))
d

dx
[u3(x)]

=
(
[u′1(x)](u2(x)) + (u1(x))[u′2(x)]

)
(u3(x)) + (u1(x))(u2(x))[u′3(x)]

= [u′1(x)](u2(x))(u3(x)) + (u1(x))[u′2(x)](u3(x)) + (u1(x))(u2(x))[u′3(x)].
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Exercise 3.3.77(a,b). Generalizing the Product Rule

Exercise 3.3.77(a,b) (continued 2)

Solution (continued). So, in a simplified notation that suppresses the
variable x and uses the square brackets,

d

dx
[u1u2u3] = [u′1](u2)(u3) + (u1)[u

′
2](u3) + (u1)(u2)[u

′
3]. �

(b) We associate the first three functions, and apply the Derivative
Product Rule, Theorem 3.3.G, and part (a):

d

dx
[u1(x)u2(x)u3(x)u4(x)] =

d

dx
[(u1(x)u2(x)u3(x))u4(x)]

=
d

dx
[u1(x)u2(x)u3(x)](u4(x)) + (u1(x)u2(x)u3(x))

d

dx
[u4(x)]

by the Derivative Product Rule, Theorem 3.3.G

=
[
[u′1(x)](u2(x))(u3(x)) + (u1(x))[u′2(x)](u3(x))

+(u1(x))(u2(x))[u′3(x)]
]
(u4(x)) + (u1(x)u2(x)u3(x))[u′4(x)]

by part (a)
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Exercise 3.3.77(a,b). Generalizing the Product Rule

Exercise 3.3.77(a,b) (continued 3)

Solution (continued). . . .

= [u′1(x)](u2(x))(u3(x))(u4(x)) + (u1(x))[u′2(x)](u3(x))(u4(x))

+(u1(x))(u2(x))[u′3(x)](u4(x)) + (u1(x))(u2(x))(u3(x))[u′4(x)].

So, in a simplified notation that suppresses the variable x and uses the
square brackets, d

dx [u1u2u3u4] =

[u′1](u2)(u3)(u4) + (u1)[u
′
2](u3)(u4) + (u1)(u2)[u

′
3](u4) + (u1)(u2)(u3)[u

′
4].

�
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Exercise 3.3.42

Exercise 3.3.42

Exercise 3.3.42. Find the derivatives of all orders of y =
x5

120
.

Solution. We have
d

dx

[
x5

120

]
=

1

120
[5x4] =

x4

24
= y ′ .

Next,
d

dx

[
x4

24

]
=

1

24
[4x3] =

x3

6
= y ′′ .

Then,
d

dx

[
x3

6

]
=

1

6
[3x2] =

x2

2
= y (3) .

So,
d

dx

[
x2

2

]
=

1

2
[2x ] = x = y (4) .

Therefore,
d

dx
[x ] = 1 = y (5) .

Hence, y (6) =
d

dx
[1] = 0 and so y (n) = 0 for all n ≥ 6 . �
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Exercise 3.3.66

Exercise 3.3.66

Exercise 3.3.66. Assume that functions f and g are differentiable with
f (2) = 3, f ′(2) = −1, g(2) = −4, and g ′(2) = 1. Find an equation of the

line perpendicular to the graph of F (x) =
f (x) + 3

x − g(x)
at x = 2.

Solution. First, we find F ′(x) using the Derivative Quotient Rule,
Theorem 3.3.H:

F ′(x) =
d

dx

[
f (x) + 3

x − g(x)

]
=

[f ′(x) + 0](x − g(x))− (f (x) + 3)[1− g ′(x)]

(x − g(x))2

=
f ′(x)(x − g(x))− (f (x) + 3)(1− g ′(x))

(x − g(x))2
.

So when x = 2, F ′(2) =
f ′(2)((2)− g(2))− (f (2) + 3)(1− g ′(2))

((2)− g(2))2
=

(−1)((2)− (−4))− ((3) + 3)(1− (1))

((2)− (−4))2
=
−6

36
=
−1

6
.
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Exercise 3.3.66

Exercise 3.3.66 (continued)

Exercise 3.3.66. Assume that functions f and g are differentiable with
f (2) = 3, f ′(2) = −1, g(2) = −4, and g ′(2) = 1. Find an equation of the

line perpendicular to the graph of F (x) =
f (x) + 3

x − g(x)
at x = 2.

Solution (continued). Now F ′(2) = −1/6 is the slope of a line tangent
to the graph y = F (x) at x = 2, so the slope of a line perpendicular to
y = F (x) is the negative reciprocal of F ′(2) = −1/6 and so the slope of

the desired line is m = 6. Also, F (2) =
f (2) + 3

(2)− g(2)
=

(3) + 3

(2)− (−4)
=

6

6
= 1

so that a point on the desired line is (x1, y1) = (2,F (2)) = (2, 1). From
the point-slope equation of a line, the desired line is y − y1 = m(x − x1) or
y − (1) = (6)(x − (2)) or y = 6x − 11 . �
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Exercise 3.3.66

Exercise 3.3.66 (continued)
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Exercise 3.3.80. The Best Quantity to Order

Exercise 3.3.80

Exercise 3.3.80. The Best Quantity to Order.
One of the formulas for inventory management says that the average
weekly cost of ordering, paying for, and holding merchandise is

A(q) =
km

q
+ cm +

hq

2
,

where q is the quantity you order when things run low (shoes, TVs,
brooms, or whatever the item might be); k is the cost of placing an order
(the same, no matter how often you order); c is the cost of one item (a
constant); m is the number of items sold each week (a constant); and h is
the weekly holding cost per item (a constant that takes into account
things such as space, utilities, insurance, and security). Find dA/dq and
d2A/dq2.
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Exercise 3.3.80. The Best Quantity to Order

Exercise 3.3.80 (continued)

Solution. We have A(q) =
km

q
+ cm +

hq

2
, where q is the variable, and k,

c , m, and h are constants. So, by the Derivative Quotient Rule, Theorem

3.3.H,
dA

dq
=

d

dq

[
km

q
+ cm +

hq

2

]
=

d

dq

[
km

q

]
+

d

dq
[cm] +

d

dq

[
hq

2

]
=

[0](q)− (km)[1]

(q)2
+ [0] +

[
h

2

]
=
−km

q2
+

h

2
= −kmq−2 +

h

2
. Then by the

Derivative Power Rule (General Version), Theorem 3.3.C,
d2A

dq2
=

d

dq

[
−kmq−2 +

h

2

]
= −km[−2q−3] + 0 = 2kmq−3 . �
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Exercise 3.3.80. The Best Quantity to Order

Exercise 3.3.80 (continued)

Solution. We have A(q) =
km

q
+ cm +

hq

2
, where q is the variable, and k,

c , m, and h are constants. So, by the Derivative Quotient Rule, Theorem

3.3.H,
dA

dq
=

d

dq

[
km

q
+ cm +

hq

2

]
=

d

dq

[
km

q

]
+

d

dq
[cm] +

d

dq

[
hq

2

]
=

[0](q)− (km)[1]

(q)2
+ [0] +

[
h

2

]
=
−km

q2
+

h

2
= −kmq−2 +

h

2
. Then by the

Derivative Power Rule (General Version), Theorem 3.3.C,
d2A

dq2
=

d

dq

[
−kmq−2 +

h

2

]
= −km[−2q−3] + 0 = 2kmq−3 . �

() Calculus 1 August 2, 2020 34 / 34


	Theorem 3.3.A. Derivative of a Constant Function
	Theorem 3.3.B. Power Rule for Positive Integers
	Theorem 3.3.D. Derivative Constant Multiple Rule
	Theorem 3.3.E. Derivative Sum Rule
	Exercise 3.3.4(a)
	Exercise 3.3.12(a)
	Exercise 3.3.34
	Example 3.3.4
	Example 3.3.A
	Theorem 3.3.G. Derivative Product Rule
	Example 3.3.B
	Theorem 3.3.H. Derivative Quotient Rule
	Exercise 3.3.20
	Exercise 3.3.48
	Exercise 3.3.78. Power Rule for Negative Integers
	Exercise 3.3.77(a,b). Generalizing the Product Rule
	Exercise 3.3.42
	Exercise 3.3.66
	Exercise 3.3.80. The Best Quantity to Order

