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Example 3.4.2

Example 3.4.2

Example 3.4.2. Figure 3.17 below shows the graph of the velocity
v = f ′(t) of a particle moving along a horizontal line. Use this graph to
discuss the movement of the particle at various time.
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Example 3.4.2

Example 3.4.2 (continued 1)

Solution. When velocity v is positive, v > 0, then the particle is moving
forward and this happens for t ∈ (0, 3) ∪ (6, 7). When v < 0 the particle is
moving backward and this happens for t ∈ (3, 5). On an interval for which
v = 0, the particle is stationary and this happens for t ∈ [5, 6]. Notice that
the velocity is changing from v > 0 to v < 0 at t = 3, so the particle is
moving forward up to t = 3, then is stops at t = 3, and starts moving
backward for 3 < t < 5.
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Example 3.4.2

Example 3.4.2 (continued 2)

Solution. When velocity v is increasing and positive then the object is
speeding up and this happens for t ∈ (0, 1) ∪ (6, 7). When v is constant
then the object has constant speed and this happens for t ∈ (1, 2) ∪ (5, 6).
Notice for t ∈ (3, 4), velocity decreases but gets larger in magnitude (i.e.,
gets larger in absolute value); so the particle is moving faster backward
and so it is speeding up (even though v is decreasing).
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Example 3.4.2

Example 3.4.2 (continued 3)

Solution. When velocity v is decreasing and positive then the object is
slowing down and this happens for t ∈ (2, 3). Notice for t ∈ (4, 5),
velocity increases but gets smaller in magnitude (i.e., gets smaller in
absolute value); so the particle is moving slower backward and so it is
slowing down (even though v is increasing).
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Example 3.4.2

Example 3.4.2 (continued 4)

Solution. The rate of change of velocity v is called acceleration (as we
will define shortly). So the particle is accelerating when v is increasing and
this happens for t ∈ (0, 1) ∪ (4, 5) ∪ (6, 7). The particle is decelerating
when v is decreasing and this happens for t ∈ (2, 3) ∪ (3, 4). When v is
constant, then acceleration is 0 and this happens for t ∈ (1, 2) ∪ (5, 6)
(arguably, we could include the endpoints in all of these intervals). �
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Exercise 3.4.12. Speeding Bullet

Exercise 3.4.12

Exercise 3.4.12. Speeding Bullet.
A 45-caliber bullet shot straight up from the surface of the moon would
reach a height of 832t − 2.6t2 ft after t sec. On Earth, in the absence of
air, its height would be s = 832t − 16t2 ft after t sec. How long will the
bullet be aloft in each case? How high will the bullet go?

Solution. To find out how long the bullet is aloft, we set the height equal
to 0. This will give two times: The time when the gun was fired and the
time when the bullet has gone up and come back down to ground level
again.

On the surface of the moon we have 832t − 2.6t2 = 0 or
t(832− 2.6t) = 0 or t = 0 sec and t = 832/2.6 = 320 sec, so that the

bullet is aloft 320 sec on the moon . On the surface of the Earth we have
832t − 16t2 = 0 or t(832− 16t) = 0 or t = 0 sec and t = 832/16 = 52

sec, so that the bullet is aloft 52 sec on the Earth . (Notice that the ratio
of these times is roughly 6 to 1; this is because the “the moon has 1/6 the
gravity of the Earth.”)
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Exercise 3.4.12. Speeding Bullet

Exercise 3.4.12 (continued)

Solution. To find how high the bullet goes, we’ll think like this: The
bullet goes up (with positive velocity), stops (with 0 velocity), and falls
down (with negative velocity). So we can find the time when the bullet is
at its highest point by setting velocity equal to 0, and can then find the
height at this time. On the moon, the velocity function is

v =
d

dt
[832t − 2.6t2] = 832− 5.2t ft/sec, so that the velocity is 0 ft/sec

when 832− 5.2t = 0 or t = 832/5.2 = 160 sec; therefore the

maximum height on the moon is 832(160)− 2.6(160)2 = 66,560 ft

(about 12.61 miles). On the Earth, the velocity function is

v =
d

dt
[832t − 16t2] = 832− 32t ft/sec, so that the velocity is 0 ft/sec

when 832− 32t = 0 or t = 832/32 = 26 sec; therefore the

maximum height on the Earth is 832(26)− 16(26)2 = 10,816 ft (about

2.05 miles).

(Notice that the maximum height is reached half way through
the time that the bullet is aloft.) �
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Exercise 3.4.14. Galileo’s Free-Fall Formula

Exercise 3.4.14

Exercise 3.4.14. Galileo’s Free-Fall Formula.
Galileo developed a formula for a body’s velocity during free fall by rolling
balls from rest down increasingly steep inclined planks and looking for a
limiting formula that would predict a ball’s behavior when the plank was
vertical and the ball fell freely; see part (a) of the accompanying figure.
He found that, for any given angle of the plank, the ball’s velocity t sec
into motion was a constant multiple of t. That is, the velocity was given
by a formula of the form y = kt. The value of the constant k depended on
the inclination of the plank. In modern notation—part (b) of the
figure—with distance in meters and time in seconds, what Galileo
determined by experiment was that, for any given angle θ, the ball’s
velocity t sec into the roll was y = 9.8(sin θ)t m/sec.
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Exercise 3.4.14. Galileo’s Free-Fall Formula

Exercise 3.4.14 (continued 1)

(a) What is the equation for the ball’s velocity during free fall? (b)
Building on your work in part (a), what constant acceleration does a freely
falling body experience near the surface of Earth?

Solution. (a) Since the velocity is y = 9.8(sin θ)t m/sec, where θ is the
angle the ramp makes with the horizontal, then for free-fall the ramp
would be vertical and we would have θ = π/2 so that sin θ = sinπ/2 = 1.

So for free-fall, the velocity is y = 9.8t m/sec . �
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Exercise 3.4.14. Galileo’s Free-Fall Formula

Exercise 3.4.14 (continued 2)

Solution. (b) Acceleration is

a(t) =
dv

dt
=

d

dt
[v ] =

d

dt
[9.8t] = 9.8 m/sec2 .

Notice that the difference quotient associated with acceleration would be

of the form
v(t + h)− v(t)

h
where v is in units of m/sec and h is in units

of sec so that acceleration has units of m/sec2 (as expected). �

Note. So for an object in free-fall (at the surface of the Earth) we have
that the acceleration is 9.8 m/sec2. If we treat acceleration as a vector
quantity with “up” as positive and “down” as negative, then we would
have that the acceleration due to gravity at the surface of the Earth is
−9.8 m/sec2.

If we measured distance in feet instead of meters, then we
find that the acceleration due to gravity at the surface of the Earth is 32
ft/sec2 (down); also, we would have that velocity in free-fall is v = 32t
ft/sec and the distance that the object falls is 16t2 ft, as claimed in
Section 2.1.
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Example 3.3.4

Example 3.3.4

Example 3.3.4. A dynamite blast blows a heavy rock
straight up with a launch velocity of 160 ft/sec (about
109 mph) (Figure 3.19a). It reaches a height of
s = 160t − 16t2 ft after t sec.
(a) How high does the rock go?
(b) What are the velocity and speed of the rock
when it is 256 ft above the ground on the way up?
On the way down?
(c) What is the acceleration of the rock at
any time t during its flight (after the blast)?
(d) When does the rock hit the ground again?

Solution. As in the previous example, we know that the rock goes up with
positive velocity, reaches its maximum height when the velocity is 0, and
then falls with negative velocity.
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Example 3.3.4

Example 3.3.4 (continued 1)

Example 3.3.4.
(a) How high does the rock go?
(b) What are the velocity and speed of the rock when it is 256 ft above
the ground on the way up? On the way down?

Solution (continued). The velocity is v =
d

dt
[160t − 16t2] = 160− 32t

ft/sec, and 160− 32t = 0 ft/sec implies t = 5 sec. So the

maximum height is s(5) = 160(5)− 16(5)2 = 400 ft .

(b) The rock is at a height of 256 ft when 160t − 16t2 = 256 or
16t2 − 160t + 256 = 0 or (dividing by 16) t2 − 10t + 16 = 0 or
(t − 2)(t − 8) = 0 or when t = 2 sec (“on the way up”) and t = 8 sec
(“on the way down”). At these times, the velocity is

v(2) = 160− 32(2) = 96 ft/sec on the way up , and the velocity is

v(8) = 160− 32(8) = −96 ft/sec on the way down . In both cases the

speed is 96 ft/sec .
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Example 3.3.4

Example 3.3.4 (continued 2)

Example 3.3.4.
(c) What is the acceleration of the rock at any time t during its flight
(after the blast)?
(d) When does the rock hit the ground again?

Solution (continued). (c) The acceleration is
d2

dt2
[160t − 16t2] =

d

dt
[160− 32t] = −32 ft/sec2 .

(d) The rock hits the ground when the height is 0 ft, so we consider
160t − 16t2 = 0 or 16t(10− t) = 0, which implies that t = 0 sec and
t = 10 sec. At 0 sec the blast goes off and
at 10 sec the rock hits the ground . �

Note. Notice the symmetry in that the the speed is the same at height
256 ft whether going up or down, and that the maximum height occurs
half way through the flight of the rock.
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Exercise 3.4.22

Exercise 3.4.22

Exercise 3.4.22. The graphs in the
accompanying figure show the position s,
the velocity v = ds/dt, and the acceleration
a = d2s/dt2 of a body moving along a
coordinate line as functions of time t.
Which graph is which? Give reasons for your
answers.

Solution. We have that the rate of change of position s is velocity v , and
the rate of change of velocity v is acceleration a. Notice that when A is
negative then B is decreasing, and when A is positive then B is increasing.
In addition, when A is 0 then B has a horizontal tangent line. Hence the
rate of change of curve B is curve A.
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Exercise 3.4.22

Exercise 3.4.22 (continued)

Solution. Next, C is always decreasing and B is always negative. In
addition, when B is 0 then C has a horizontal tangent. Hence, the rate of
change of curve C is curve B. That is, the derivative of curve C is curve B,
and the derivative of curve B is curve A. So we must have that
C is the graph of position s , B is the graph of velocity v , and

A is the graph of acceleration a . �
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Exercise 3.4.24. Marginal Revenue

Exercise 3.4.24

Exercise 3.4.24. Marginal Revenue.
Suppose that the revenue from selling x washing machines is

r(x) = 20,000

(
1− 1

x

)
dollars. (a) Find the marginal revenue when 100

machines are produced. (b) Use the function r ′(x) to estimate the
increase in revenue that will result from increasing production from 100
machines per week to 101 machines per week. (c) Find the limit of r ′(x)
as x →∞. How would you interpret this number?

Solution. (a) The marginal revenue is

r ′(x) =
d

dx

[
20,000

(
1− 1

x

)]
= 20,000

d

dx

[
1− 1

x

]
= 20,000

d

dx

[
1− x−1

]
= 20,000[−(−1)x−2] =

20,000

x2
.

Since x is revenue (measured in dollars) and x is the number of washing
machines, then the units of r ′ is dollars/machine.
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Exercise 3.4.24. Marginal Revenue

Exercise 3.4.24 (continued 1)

Exercise 3.4.24. Marginal Revenue.
(a) Find the marginal revenue when 100 machines are produced. (b) Use
the function r ′(x) to estimate the increase in revenue that will result from
increasing production from 100 machines per week to 101 machines per
week.

Solution (continued). The marginal revenue at x = 100 machines is

r ′(100) =
20,000

(100)2
=

20,000

10,000
= 2 dollars/machine .

(b) So if x increases from 100 machines per week to 101 machines per
week (a change of ∆x = 1 machine per week) then the change in revenue
is approximately

r ′(100)∆x = (2 dollars/machine)(1 machine/week) = 2 dollars/week .
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Exercise 3.4.24. Marginal Revenue
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Exercise 3.4.24. Marginal Revenue

Exercise 3.4.24 (continued 2)

Exercise 3.4.24. Marginal Revenue.
(c) Find the limit of r ′(x) as x →∞. How would you interpret this
number?

Solution (continued). (c) We have

lim
x→∞

r ′(x) = lim
x→∞

20,000

x2
= 20,000

(
lim

x→∞
1/x

)2

by the Constant Multiple Rule and Power Rule,

Theorem 2.12(4,6)

= 20,000(0)2 = 0 .

So as the number of washing machines x gets larger and larger, the
revenue increases (since r ′(x) = 20,000/x2 > 0 for all x > 0) but the

change in revenue becomes less and less as x gets larger . In fact, we can

verify that r(x) = 20,000

(
1− 1

x

)
has a horizontal asymptote of

y = $20, 000.
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Exercise 3.4.30. Inflating a Balloon

Exercise 3.4.30

Exercise 3.4.30. Inflating a Balloon.
The volume V = (4/3)πr3 of a spherical balloon changes with the radius.
(a) At what rate (ft3/ft) does the volume change with respect to the
radius when r = 2 ft? (b) By approximately how much does the volume
increase when the radius changes from 2 to 2.2 ft?

Solution. (a) The rate of change of V with respect to r is
d

dr
[V ] =

d

dr
[(4/3)πr3] = (4/3)π[3r2] = 4πr2. Since V is measured in ft3

and r is measured in ft, then
dV

dr
is measured in ft3/ft. When r = 2 ft,

then
dV

dr

∣∣∣∣
r=2

= 4π(2)2 = 16π ft3/ft .
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Exercise 3.4.30. Inflating a Balloon

Exercise 3.4.30 (continued)

Exercise 3.4.30. Inflating a Balloon.
The volume V = (4/3)πr3 of a spherical balloon changes with the radius.
(a) At what rate (ft3/ft) does the volume change with respect to the
radius when r = 2 ft? (b) By approximately how much does the volume
increase when the radius changes from 2 to 2.2 ft?

Solution. (b) For r changing from r = 2 ft to r = 2.2 ft, we have the
change in r of ∆r = 2.2− 2 = 0.2 ft. So the change in V corresponding
to this change in r is approximately the instantaneous change in V at
r = 2 times the change ∆r of r :(

dV

dr

∣∣∣∣
r=2

)
∆r = (16π ft3/ft)(0.2 ft) = 3.2π ft3 .

�
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