Calculus 1

Chapter 3. Derivatives

3.5. Derivatives of Trigonometric Functions—Examples and Proofs

Table of contents

- 1 [Theorem 3.5.A. Derivative of the Sine Function](#page-2-0)
- 2 [Exercise 3.5.2](#page-6-0)
- 3 [Theorem 3.5.B. Derivative of the Cosine Function](#page-8-0)
- 4 [Example 3.5.3. Simple Harmonic Motion](#page-11-0)
- 5 [Exercise 3.5.28](#page-18-0)
- 6 [Example 3.5.5](#page-21-0)
- [Exercise 3.5.62](#page-23-0)
- [Exercise 3.5.40](#page-27-0)
- [Exercise 3.5.50](#page-30-0)

Theorem 3.5.A

Theorem 3.5.A. Derivative of the Sine Function

$$
\frac{d}{dx}[\sin x] = \cos x
$$

Proof. Let $y = \sin x$. By definition we have

$$
\frac{dy}{dx} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} \text{ by the summation formula}
$$
\n
$$
= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}
$$
\n
$$
= \lim_{h \to 0} \left(\sin x \frac{\cos h - 1}{h}\right) + \lim_{h \to 0} \left(\cos x \frac{\sin h}{h}\right)
$$
\n
$$
= \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}
$$

Theorem 3.5.A

Theorem 3.5.A. Derivative of the Sine Function

$$
\frac{d}{dx}[\sin x] = \cos x
$$

Proof. Let $y = \sin x$. By definition we have

$$
\frac{dy}{dx} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h} \text{ by the summation formula}
$$
\n
$$
= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}
$$
\n
$$
= \lim_{h \to 0} \left(\sin x \frac{\cos h - 1}{h}\right) + \lim_{h \to 0} \left(\cos x \frac{\sin h}{h}\right)
$$
\n
$$
= \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}
$$

Theorem 3.5.A (continued)

Theorem 3.5.A. Derivative of the Sine Function

$$
\frac{d}{dx}[\sin x] = \cos x
$$

Proof (continued). ...

$$
\frac{dy}{dx} = \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}
$$

= $(\sin x)(0) + (\cos x)(1)$
= $\cos x$.

We have $\lim_{h\to 0}$ $\cos h - 1$ $\frac{n}{h} = 0$ and $\lim_{h \to 0}$ sin h $\frac{m}{h} = 1$ by the results in Section 2.4.

Theorem 3.5.A (continued)

Theorem 3.5.A. Derivative of the Sine Function

$$
\frac{d}{dx}[\sin x] = \cos x
$$

Proof (continued). ...

$$
\frac{dy}{dx} = \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}
$$

= (\sin x)(0) + (\cos x)(1)
= \cos x.

We have $\lim_{h\to 0}$ $\cos h - 1$ $\frac{n}{h} = 0$ and $\lim_{h \to 0}$ sin h $\frac{n}{h}$ = 1 by the results in Section 2.4.

Exercise 3.5.2. Differentiate $y=\frac{3}{4}$ $\frac{5}{x} + 5 \sin x$.

Solution. First, let $y = \frac{3}{5}$ $\frac{3}{x} + 5\sin x = 3x^{-1} + 5\sin x$. Then we have $y' = 3[-x^{-2}] + 5[\cos x] = |-3x^{-2} + 5\cos x|$. □

Exercise 3.5.2. Differentiate
$$
y = \frac{3}{x} + 5 \sin x
$$
.

Solution. First, let
$$
y = \frac{3}{x} + 5\sin x = 3x^{-1} + 5\sin x
$$
. Then we have
\n
$$
y' = 3[-x^{-2}] + 5[\cos x] = \boxed{-3x^{-2} + 5\cos x}
$$
.

Theorem 3.5.B

Theorem 3.5.B. Derivative of the Cosine Function

$$
\frac{d}{dx}[\cos x] = -\sin x
$$

Proof. Let $y = \cos x$. By definition we have

$$
\frac{dy}{dx} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h} \text{ by the summation formula}
$$
\n
$$
= \lim_{h \to 0} \frac{\cos x(\cos h - 1) - \sin x \sin h}{h}
$$
\n
$$
= \lim_{h \to 0} \cos x \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \frac{\sin h}{h}
$$
\n
$$
= \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}
$$

Theorem 3.5.B

Theorem 3.5.B. Derivative of the Cosine Function

$$
\frac{d}{dx}[\cos x] = -\sin x
$$

Proof. Let $y = \cos x$. By definition we have

$$
\frac{dy}{dx} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h} \text{ by the summation formula}
$$
\n
$$
= \lim_{h \to 0} \frac{\cos x(\cos h - 1) - \sin x \sin h}{h}
$$
\n
$$
= \lim_{h \to 0} \cos x \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \frac{\sin h}{h}
$$
\n
$$
= \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}
$$

Theorem 3.5.B (continued)

Theorem 3.5.B. Derivative of the Cosine Function

$$
\frac{d}{dx}[\cos x] = -\sin x
$$

Proof (continued). ...

$$
\frac{dy}{dx} = \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}
$$

= $(\cos x)(0) - (\sin x)(1)$
= $-\sin x$.

We have $\displaystyle\lim_{h\to 0}$ $\cos h - 1$ $\frac{n}{h} = 0$ and $\lim_{h \to 0}$ sin h $\frac{n}{h}$ = 1 by the results in Section 2.4.

Example 3.5.3

Example 3.5.3. Simple Harmonic Motion.

A weight hanging from a spring is stretched down 5 units beyond its rest position and released at time $t = 0$ to bob up and down. Its position at any later time t is $s = 5 \cos t$. What are its velocity and acceleration at time t.

Solution. Since the position $s = 5 \cos t$, then the velocity is $v = ds/dt = -5 \sin t$ and the acceleration is $a = dv/dt = -5 \cos t$.

Example 3.5.3

Example 3.5.3. Simple Harmonic Motion.

A weight hanging from a spring is stretched down 5 units beyond its rest position and released at time $t = 0$ to bob up and down. Its position at any later time t is $s = 5 \cos t$. What are its velocity and acceleration at time t.

Solution. Since the position $s = 5 \cos t$, then the velocity is $v = ds/dt = -5 \sin t$ and the acceleration is $a = dv/dt = -5 \cos t$.

Example 3.5.3 (continued 1)

Solution (continued). Here, position is graphed in blue and velocity is graphed in red. Notice that weight oscillates up and down with a period of **2π.** Initially, the weight has decreasing s value for $t \in (0, \pi)$ and the velocity is negative for these t values; the velocity is a minimum at $t = \pi/2$ and the speed is a maximum then (when the weight is at the center position about which it oscillates).

Example 3.5.3 (continued 1)

Solution (continued). Here, position is graphed in blue and velocity is graphed in red. Notice that weight oscillates up and down with a period of 2π . Initially, the weight has decreasing s value for $t \in (0, \pi)$ and the velocity is negative for these t values; the velocity is a minimum at $t = \pi/2$ and the speed is a maximum then (when the weight is at the center position about which it oscillates). The weight has increasing s value for $t \in (\pi, 2\pi)$ and the velocity is positive for these t values; the velocity is a maximum at $t = 3\pi/2$ and the speed is a maximum then also (again when the weight is at the center position about which it oscillates).

Example 3.5.3 (continued 1)

Solution (continued). Here, position is graphed in blue and velocity is graphed in red. Notice that weight oscillates up and down with a period of 2π. Initially, the weight has decreasing s value for $t \in (0, \pi)$ and the velocity is negative for these t values; the velocity is a minimum at $t = \pi/2$ and the speed is a maximum then (when the weight is at the center position about which it oscillates). The weight has increasing s value for $t \in (\pi, 2\pi)$ and the velocity is positive for these t values; the velocity is a maximum at $t = 3\pi/2$ and the speed is a maximum then also (again when the weight is at the center position about which it oscillates).

Example 3.5.3 (continued 2)

Solution (continued). At the t values $0, \pi, 2\pi$ the velocity is 0; at these points the weight has reached its maximum displacement from equilibrium, it has stopped, and is about to reverse direction. The acceleration $a = -5 \cos t$ of the weight is always proportional to the negative of its displacement $-s = -5 \cos t$. This is called *Hooke's Law* and the motion is called simple harmonic motion. \square

Example 3.5.3 (continued 2)

Solution (continued). At the t values $0, \pi, 2\pi$ the velocity is 0; at these points the weight has reached its maximum displacement from equilibrium, it has stopped, and is about to reverse direction. The acceleration $a = -5 \cos t$ of the weight is always proportional to the negative of its displacement $-s = -5 \cos t$. This is called Hooke's Law and the motion is called simple harmonic motion. \square

Exercise 3.5.28. Find dp/dq when $p = (1 + \csc q) \cos q$. Use the square bracket notation.

Solution. By the Derivative Product Rule (Theorem 3.3.G) and the fact that $\csc q = \frac{1}{\sin q}$ $\frac{1}{\sin q}$ we have:

$$
\frac{dp}{dq} = \frac{d}{dq} [(1 + \csc q) \cos q] = \frac{d}{dq} \left[\left(1 + \frac{1}{\sin q} \right) \cos q \right]
$$

\n
$$
= \left[0 + \frac{[0](\sin q) - (1)[\cos q]}{(\sin q)^2} \right] (\cos q) + \left(1 + \frac{1}{\sin q} \right) [-\sin q]
$$

\nby the Derivative Product Rule (Theorem 3.3.G)
\nand the Derivative Quotient Rule (Theorem 3.3.H)
\n
$$
= \left[0 - \frac{\cos q}{(\sin q)^2} \right] (\cos q) + \left(-\sin q - \frac{\sin q}{\sin q} \right)
$$

Exercise 3.5.28. Find dp/dq when $p = (1 + \csc q) \cos q$. Use the square bracket notation.

Solution. By the Derivative Product Rule (Theorem 3.3.G) and the fact that $\csc q = \frac{1}{\sin q}$ $\frac{1}{\sin q}$ we have:

$$
\frac{dp}{dq} = \frac{d}{dq} [(1 + \csc q) \cos q] = \frac{d}{dq} \left[\left(1 + \frac{1}{\sin q} \right) \cos q \right]
$$

\n
$$
= \left[0 + \frac{[0](\sin q) - (1)[\cos q]}{(\sin q)^2} \right] (\cos q) + \left(1 + \frac{1}{\sin q} \right) [-\sin q]
$$

\nby the Derivative Product Rule (Theorem 3.3.G)
\nand the Derivative Quotient Rule (Theorem 3.3.H)
\n
$$
= \left[0 - \frac{\cos q}{(\sin q)^2} \right] (\cos q) + \left(-\sin q - \frac{\sin q}{\sin q} \right)
$$

Exercise 3.5.28 (continued)

Exercise 3.5.28. Find dp/dq when $p = (1 + \csc q) \cos q$. Use the square bracket notation.

Solution (continued).

$$
\frac{dp}{dq} = \left[0 - \frac{\cos q}{(\sin q)^2}\right](\cos q) + \left(-\sin q - \frac{\sin q}{\sin q}\right)
$$

$$
= \left[0 - \frac{1}{\sin q} \frac{\cos q}{\sin q}\right](\cos q) + (-\sin q - 1)
$$

$$
= \left[-\csc q \cot q\right](\cos q) + (-\sin q - 1) \qquad (*)
$$

$$
= \left[-\csc q \cot q \cos q - \sin q - 1\right].
$$

Notice from (∗) that the quantity in square brackets corresponds to the derivative of csc q, so that we have shown $\frac{d}{dx}[\csc x] = -\csc x \cot x$. \Box

Example 3.5.5

Example 3.5.5. Find $\frac{d}{dx}$ [tan x].

Solution. We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\tan x] = \frac{d}{dx} \left[\frac{\sin x}{\cos x} \right] = \frac{\cos x - (\sin x)[-\sin x]}{(\cos x)^2}
$$

$$
= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \frac{\sec^2 x}{\sec^2 x},
$$

since sec $x = 1/\cos x$. \Box

Example 3.5.5

Example 3.5.5. Find
$$
\frac{d}{dx}
$$
[tan x].

Solution. We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\tan x] = \frac{d}{dx} \left[\frac{\sin x}{\cos x} \right] = \frac{\cos x - (\sin x)[-\sin x]}{(\cos x)^2}
$$

$$
= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \frac{\sec^2 x}{\sec^2 x},
$$

since sec $x = 1/\cos x$. \Box

Exercise 3.5.62. Derive the formula for the derivative with respect to x of (a) sec x and (c) cot x.

Solution. (a) We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\sec x] = \frac{d}{dx} \left[\frac{1}{\cos x} \right] = \frac{[0](\cos x) - (1)[- \sin x]}{(\cos x)^2}
$$

$$
= \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \frac{\sin x}{\cos x} = \boxed{\sec x \tan x},
$$

since sec $x = 1/\cos x$ and $\tan x = \sin x/\cos x$. \Box

Exercise 3.5.62. Derive the formula for the derivative with respect to x of (a) sec x and (c) cot x.

Solution. (a) We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\sec x] = \frac{d}{dx} \left[\frac{1}{\cos x} \right] = \frac{[0](\cos x) - (1)[-\sin x]}{(\cos x)^2}
$$

$$
= \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \frac{\sin x}{\cos x} = \boxed{\sec x \tan x},
$$

since sec $x = 1/\cos x$ and $\tan x = \sin x/\cos x$. \Box

Exercise 3.5.62 (continued)

Exercise 3.5.62. Derive the formula for the derivative with respect to x of (a) sec x and (c) cot x.

Solution (continued). (a) We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\cot x] = \frac{d}{dx} \left[\frac{\cos x}{\sin x} \right] = \frac{[-\sin x](\sin x) - (\cos x)[\cos x]}{(\sin x)^2}
$$

$$
= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x,
$$

since $\csc x = 1/\sin x$. \Box

Exercise 3.5.62 (continued)

Exercise 3.5.62. Derive the formula for the derivative with respect to x of (a) sec x and (c) cot x.

Solution (continued). (a) We use the Derivative Quotient Rule (Theorem 3.3.H):

$$
\frac{d}{dx}[\cot x] = \frac{d}{dx} \left[\frac{\cos x}{\sin x} \right] = \frac{[-\sin x](\sin x) - (\cos x)[\cos x]}{(\sin x)^2}
$$

$$
= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x} = \frac{-1}{\sin^2 x} = \frac{-\csc^2 x}{x},
$$

since $\csc x = 1/\sin x$. \Box

Exercise 3.5.40. Does the graph of $y = 2x + \sin x$ have any horizontal tangent lines in the interval $0 \leq x \leq 2\pi$.

Solution. First, $y' = 2 + \cos x$. A tangent line to the graph of $y = f(x)$ has slope $y'=2+\cos x$ as a function of x and a horizontal line has slope has slope 0, so we look for x values where $y' = 2 + \cos x = 0$.

Exercise 3.5.40. Does the graph of $y = 2x + \sin x$ have any horizontal tangent lines in the interval $0 \leq x \leq 2\pi$.

Solution. First, $y' = 2 + \cos x$. A tangent line to the graph of $y = f(x)$ has slope $y'=2+\cos x$ as a function of x and a horizontal line has slope has slope 0, so we look for x values where $y' = 2 + \cos x = 0$. This occurs when $\cos x = -2$, but there are no such real x values since $-1 < \cos x < 1$ for all $x \in \mathbb{R}$. Therefore $y = 2x + \sin x$ does not have a horizontal tangent line in the interval $0 < x < 2\pi$.

Exercise 3.5.40. Does the graph of $y = 2x + \sin x$ have any horizontal tangent lines in the interval $0 \leq x \leq 2\pi$.

Solution. First, $y' = 2 + \cos x$. A tangent line to the graph of $y = f(x)$ has slope $y'=2+\cos x$ as a function of x and a horizontal line has slope has slope 0, so we look for x values where $y'=2+\cos x=0$. This occurs when $\cos x = -2$, but there are no such real x values since $-1 \leq \cos x \leq 1$ for all $x \in \mathbb{R}$. Therefore $y = 2x + \sin x$ does not have a horizontal tangent line in the interval $\leq x \leq 2\pi$. \Box

Exercise 3.5.50. Evaluate
$$
\lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4}
$$
.

Solution. This one requires a trick. Recall the Alternative Formula for the Derivative: $f'(x) = \lim_{z \to x}$ $f(z) - f(x)$ $\frac{y}{z-x}$ (see Exercise 3.2.24). With $z = \theta$, $x = \pi/4$ and $f(x) = \tan x$ (so that $\tan \pi/4 = 1$), we have

$$
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4}.
$$

Exercise 3.5.50. Evaluate $\lim_{\theta \to \pi/4}$ tan $\theta-1$ $\frac{\pi}{\theta - \pi/4}.$

Solution. This one requires a trick. Recall the Alternative Formula for the Derivative: $f'(x) = \lim_{z \to x}$ $f(z) - f(x)$ $\frac{y}{z-x}$ (see Exercise 3.2.24). With $z = \theta$, $x = \pi/4$ and $f(x) = \tan x$ (so that $\tan \pi/4 = 1$), we have

$$
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4}.
$$

Since $f(x) = \tan x$ then $f'(x) = \sec^2 x$. Hence

$$
\lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4} = \sec^2 \pi/4 = \frac{1}{\cos^2 \pi/4} = \frac{1}{(\sqrt{2}/2)^2} = \left(\frac{2}{\sqrt{2}}\right)^2 = \boxed{2}.
$$

 \Box

Exercise 3.5.50. Evaluate $\lim_{\theta \to \pi/4}$ tan $\theta-1$ $\frac{\pi}{\theta - \pi/4}.$

Solution. This one requires a trick. Recall the Alternative Formula for the Derivative: $f'(x) = \lim_{z \to x}$ $f(z) - f(x)$ $\frac{y}{z-x}$ (see Exercise 3.2.24). With $z = \theta$, $x = \pi/4$ and $f(x) = \tan x$ (so that $\tan \pi/4 = 1$), we have

$$
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4}.
$$

Since $f(x) = \tan x$ then $f'(x) = \sec^2 x$. Hence

$$
\lim_{\theta \to \pi/4} \frac{\tan \theta - 1}{\theta - \pi/4} = \sec^2 \pi/4 = \frac{1}{\cos^2 \pi/4} = \frac{1}{(\sqrt{2}/2)^2} = \left(\frac{2}{\sqrt{2}}\right)^2 = \boxed{2}.
$$

 \Box