Calculus 1

Chapter 3. Derivatives
3.8. Derivatives of Inverse Functions and Logarithms—Examples and
Proofs
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L Eeciesss
Exercise 3.8.8

Exercise 3.8.8. Let f(x) = x2 — 4x — 5, x > 2. Find the value of
df~1/dx at the point x = 0 = f(5).

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

df1
dx

1

x=b dx X:f_l(b)

Here, b =0, f~(b) = f1(0) = 5, and Z—f = 2x — 4. So we have

x
df 1 _ 1 11
dx oo 2X—A_prp)—r10)=s  25)—4 [6]
O
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[ Theorm 33 The Dervative Rlefor Inverss
Theorem 3.3

Theorem 3.3. The Derivative Rule for Inverses
If f has an interval / as its domain and f’(x) exists and is never zero on /,
then 1 is differentiable at every point in its domain. The value of (1)
at a point b in the domain of f~1 is the reciprocal of the value of f’ at the
point a = f 1(b):

df 1 1

= dr :
X b Tl 1)

Proof. By definition of inverse function, f~1(f(x)) = x for all x € /.
Differentiating this equation, we have by the Chain Rule (Theorem 3.2):

d . d _1/ ' -1 1
ay%mmzammewmmm=wﬁlﬂm=mﬁ
Plugging in x = f~1(b) we get fﬁl/(f(fil(b))) = W’ as
claimed. -
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L TheoensoA
Theorem 3.8.A

Theorem 3.8.A. For x > 0 we have
d

1
— = .
dx [In] X

If u= u(x) is a differentiable function of x, then for all x such that

u(x) > 0 we have

%

d d 1 |du 1 m,
a [|n u] = & [In U(X)] = [a] = K [U (X)]

= )

Proof. We know that f(x) = e~ is differentiable for all x, so we can apply
Theorem 3.3 to find the derivative of f~1(x) = Inx:

d 1 1 1 1

&[Inx] =(F1)(x) = FI(F1(x)) T 0

eln x - ;’

as claimed.
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Theorem 3.8.A

Theorem 3.8.A (continued)

Theorem 3.8.A. For x > 0 we have
d 1
— I = -,
dx [In] X

If u= u(x) is a differentiable function of x, then for all x such that
u(x) > 0 we have

%

d d 1 [du 1
o [Inu] = - [Inu(x)] = " [a] = e [/ (x)].

Proof (continued). By the Chain Rule (Theorem 3.2),
d d du 1 [du
a[ln U(X)] = E[In U] [&] = E [a:|,
as claimed. O
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Exercise 3.8.30

Exercise 3.8.30

Exercise 3.8.30. Find dy/dx when y = In(In(In x)).

Solution. We have three “levels” of functions, a natural logarithm inside

a natural logarithm inside another natural logarithm. So we will have to
use the Chain Rule (Theorem 3.2) twice. We have

dy d 1 11 =
- = &[In(ln(lnx))] = In(inx) |Tnx [;] - xIn(x) In(In(x)) |
O
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Exercise 3.8.16

Exercise 3.8.16

Exercise 3.8.16. Find dy/dx when y = In(sin x).

Solution. By Theorem 3.8.A,

m
d d 1
2 = - [In(sinx)] = —[cosx] = = = [cotx].
O
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Exercise 3.8.38

Exercise 3.8.38

Exercise 3.8.38. Find dy/df when y = In (%)

Solution. First, we use properties of logarithms to modify the form of y:

V/sin 6 cos 0
y=1In (%) = InVsinfcosf —In(1+ 2Inh)

= In(sinfcos0)/2 —In(1+2In ) = % In(sin@cosf) — In(1 + 2In0)

= %In(sin ) + % In(cos @) — In(1+2In6)

dy 11 . 117, T
Y2 " qcosl]+ = —[—sinb] - — > |0+27
a9~ 250 5 aegl s 1+2|n9[+ e]
1 1 2
—|Zcoth— Ztanb— ——- | O
2 T R T A 2Ine)




Exercise 3.8.52
Exercise 3.8.52. Find y’ by first taking a natural logarithm and then

(x +1)10

differentiating implicitly: y = m
X

Solution. First, we have
R B (O ) A W A O VA S G Vi
Y= x+15 ) "\(@x+15) T2 \(2x+1)p

(In(x + 1) —In(2x + 1)°) = % (10In(x + 1) — 5In(2x + 1))

N

=5In(x+1)— g In(2x + 1).

Now we differentiate implicitly:
%[Iny] = % 5In(x+1) — g In(2x + 1)
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Exercise 3.8.52 (continued 2)

Exercise 3.8.52. Find y’ by first taking a natural logarithm and then

1)10
differentiating implicitly: y = g;_Ti)l)E’
Solution. ...
m
d 1 (dy 5 5
Snyl= | D =
dx y | dx x+1 2x+1
and hence
dy 5 5 | [ (x+1)10 5 5
dx  P\x+1 2x+1) |V@ex+r1p \x+1 2x+1) ]
O
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Exercise 3.8.52 (continued 1)
Exercise 3.8.52. Find y’ by first taking a natural logarithm and then

(x +1)10
(2x +1)°>

Solution. Now we differentiate implicitly:

differentiating implicitly: y =

iny = & [5 In(x + 1) = > In(2x + 1)}

m m
d 5d 1 5 1
=5—II 1)] — =—[In(2 1)]=6——[1] —==——]2
Sttt V=3 lin@x 4+ Dl =5 == 1 - 577
_ 5 5
T ox+1 2x+1
So
m
d 1 (dy 5 5
= | P =2 2
dx y | dx x+1 2x+1
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Theorem 3.8.B

Theorem 3.8.B

Theorem 3.8.B. If a > 0 and v is a differentiable function of x, then a is
a differentiable function of x and

Proof. First

d X_d xlna_xlnai X _ X
a[a]—dx [e ]—e [dx[xlna]] =a“Ina=(Ina)a*.

Then be the Chain Rule (Theorem 3.2),
da” | duj _ (Ina)a" du
du |dx| dx |’

as claimed. O

4y
an -

Calculus 1 August 13, 2020 13 / 26



Exercise 3.8.70

Exercise 3.8.70. Find dy/dx when y = 20<*).

Solution. By Theorem 3.8.B (with a =2 and u(x = x2), we have:

d _ d_y - d (X2)

oy = (In2)20)[2x] = (21n 2)x26) |,
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Exercise 3.8.74

Exercise 3.8.74. Find dy/d6f when y = logz(1 + 61In3).

Solution. By Theorem 3.3.C (with a =3 and u() =1+ 6In3) we have:

%

dy 1 1 1
— I 1461 —_— I =|—7|
7 = aplomsl -3 = g 31 om3 0 M= T
([
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Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

—[Ioga =L 11 [du]

Inau |dx

Proof. This follows easily:

9 fog, = o [0 = LG )=
8aX Ina In a dx Inax’

Then be the Chain Rule (Theorem 3.2),

d dl d 1 1|d
9 flog, u] = 21%= H— H

du dx Inau | dx

as claimed. O
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Exercise 3.8.80

In5
Exercise 3.8.80. Find dy/dx when y = log; ( 3:1 2) .

Solution. We first apply some properties of logarithms:

e x \"_ x \"2 s, 7x
y=1%s\[\35x52) T8 \3x12 ~ 3 8531

In

— (logs(7x) —

So by Theorem 3.8.C (W|th a=>5, ui(x) =T7x, and wp(x) = 3x +2) we
have

logs (3x +2)).

d d [In5
¥ — o |55 toms(rx) — togs(3x + 2)|
In5 [/ d d
=2 (£ logs(vx)] - 4 ogs(3x + 2]
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Exercise 3.8.80 (continued)

In5
7
Exercise 3.8.80. Find dy/dx when y = logs <3—X> .

X+ 2
Solution. ...
dy Inb/d d
¥ =2 (5 ows(v)] - 4 os(3x+ 2]
ms (1 1. 1 1
R I 4
2 In57x[] In53x+2[3]
_|L(r__3
C2\x 3x+2)]
(]
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Theorem 3.3.C/3.8.D. General Power Rule for Derivatives

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives.

For x > 0 and any real number n,
d
— [x"] = nx""L.

dx

If x < 0, then the formula holds whenever the derivative, x", and x"~1 all
exist.

Proof. We have for x > 0 that

i [Xn] — i [enlnx]
dx dx
N
d .
= e"™X—[nlInx] by the Chain Rule
dx
n
= x"— =nx""1,
X
as claimed.
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Exercise 3.8.90

Exercise 3.8.90

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx: y = x**1.

Solution. Notice that y has x in both the base and the exponent, so that
it is neither an exponential function nor a power of x. We must take a
logarithm and use logarithmic differentiation. First, we have

d d
Iny =Inx**! = (x + 1) Inx. Then a[ln y] = &[(X +1)Inx] or

m

1(d 1 d 1
}—/[d—i]:[l](lnx)—k(x—l—l) [;} ord—i:y<lnx+xi— >,so
Q:xx+1<lnx+x+l>. O
dx X
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Theorem 3.3.C/3.8.D. General Power Rule for Derivatives

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When x < 0, if y = x”, y/, and x"~1 all exist, then
we have In|y| = In|x"| = In|x|” = nln|x|. Differentiating implicitly (this
is where we must assume that y’ exists) we have that

d d
a[ln lyl]] = a[nln Ix]], which implies (by Example 3.8.3(c))
1 [Q] 1 dy 1 o

1 .
sl = or — = ny— = nx"= = nx""", as claimed.
y | dx X

X dx

This still leaves the case that for x = 0 and n > 1, the derivative is O; this
is to be shown in Exercise 3.8.103. O



Exercise 3.8.72 Theorem 3.4

Theorem 3.4. The Number e as a Limit
We can find e as a limit:

— i 1/x
Example 3.8.72. Differentiate y = t1—¢. e = lim(1+x)¥~.

X—

Solution. This is an easy problem computationally, but we do it at this

time because the exponent 1 — e is irrational. By Theorem 3.3.C/3.8.D, Pr(‘)o.f.. Let f(X)_ = !n x. Then f'(x) =1/x and f'(1) = 1. Now by the
“General Power Rule for Derivatives,” we have definition of derivative:
_ f(A+h)—f(1) . f(1+x)—f(1)
dy d —e)— > ! — —
& = alt T=0-9 =0 - gy ) = m = fmy =
. In(l+x)—In1 1
: = g P i a2
= Iimoln(l + x)1/x
= In (Iimo(l +x)1/X> since In x is continuous.
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Theorem 3.4. The Number e as a Limit Exercise 3.8.102

Theorem 3.4 (continued) Exercise 3.8.102
. X\ "
Theorem 3.4. The Number e as a Limit Exercise 3.8.102. Show that lim (1 + ;) = e~ for any x > 0.
We can find e as a limit: Solution. As in the proof of Theorem 3.4, “The Number e as a Limit,”
e = lim (1 + x)V/~. we let f(x) = Inx (this is where we need x > 0) so that f'(x) = 1/x and
x—0 by the definition of derivative,
Proof (continued). Therefore, since /(1) =1, we have 1_ F(x) = /I,imo fx+ h/)7 —f(x) _ ;l,imo In(x + //77) — Inx.
X ~ .

' /x) — : L :
In ()l(lno(l +x) ) =1 Now the exponential function is continuous at all real numbers, so

Since Ine =1 and In x is one-to-one, e1/x — eIithO(In(x-i-h)—lnx)/h = lim e(In(x+h)—Inx)/h = lim e(l/h)In((x—Q—h)/x)

h—0 h—0

1/h 1/h
— lim (GRS _ iy (X . h) = lim (1 + ﬁ) )
. h—0 h—0 X h—0 X

lim (1 + x)Y/* = e.
x—0




Exercise 3.8.102

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that lim (1 n %) — ¢ for any x > 0.

n—oo

Solution (continued). ... eY/* = lim

n—oo

1 n
if and only if n — oo, we then have e/* = lim <1 + —) . Now
nx

X\ N
replacing x with 1/x we get e = nll—>no]o (1 + ;) , as claimed.

1/h
m <1 + —) . In particular, we have
X

1/h
= lim (1 + —) . Replacing h with 1/n and noting that h — 0"
X
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