Calculus 1

Chapter 3. Derivatives

3.8. Derivatives of Inverse Functions and Logarithms—Examples and Proofs

Table of contents

1	Theorem 3.3. The Derivative Rule for Inverses
2	Exercise 3.8.8
3	Theorem 3.8.A
4	Exercise 3.8.16
5	Exercise 3.8.30
6	Exercise 3.8.38
7	Exercise 3.8.52
8	Theorem 3.8.B
9	Exercise 3.8.70
10	Theorem 3.8.C
11	Exercise 3.8.74
12	Exercise 3.8.80
13	Exercise 3.8.90
14	Theorem 3.3.C/3.8.D. General Power Rule for Derivatives
15	Exercise 3.8.72
16	Theorem 3.4. The Number <i>e</i> as a Limit
17	Exercise 3.8.102 Calculus 1 August 1

Theorem 3.3

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): $\frac{d}{dx} \left[f^{-1}(f(x)) \right] = \frac{d}{dx} [x] \text{ or } f^{-1'}(f(x)) [f'(x)] = 1 \text{ or } f^{-1'}(f(x)) = \frac{1}{f'(x)}.$

Theorem 3.3

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): $\frac{d}{dx} \left[f^{-1}(f(x)) \right] = \frac{d}{dx} [x] \text{ or } f^{-1'}(f(x)) [f'(x)] = 1 \text{ or } f^{-1'}(f(x)) = \frac{1}{f'(x)}.$ Plugging in $x = f^{-1}(b)$ we get $f^{-1'}(f(f^{-1}(b))) = \frac{1}{f'(f^{-1}(b))}$, as claimed.

Theorem 3.3

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$\left.\frac{df^{-1}}{dx}\right|_{x=b} = \frac{1}{\left.\frac{df}{dx}\right|_{x=f^{-1}(b)}}$$

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): $\frac{d}{dx} \left[f^{-1}(f(x)) \right] = \frac{d}{dx} [x] \text{ or } f^{-1'}(f(x)) [f'(x)] = 1 \text{ or } f^{-1'}(f(x)) = \frac{1}{f'(x)}.$ Plugging in $x = f^{-1}(b)$ we get $f^{-1'}(f(f^{-1}(b))) = \frac{1}{f'(f^{-1}(b))}$, as claimed.

Exercise 3.8.8. Let $f(x) = x^2 - 4x - 5$, x > 2. Find the value of df^{-1}/dx at the point x = 0 = f(5).

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

$$\left.\frac{df^{-1}}{dx}\right|_{x=b} = \frac{1}{\left.\frac{df}{dx}\right|_{x=f^{-1}(b)}}.$$

Here, b = 0, $f^{-1}(b) = f^{-1}(0) = 5$, and $\frac{df}{dx} = 2x - 4$. So we have

$$\frac{df^{-1}}{dx}\Big|_{x=b=0} = \frac{1}{2x-4}\Big|_{x=f^{-1}(b)=f^{-1}(0)=5} = \frac{1}{2(5)-4} = \boxed{\frac{1}{6}}.$$

Exercise 3.8.8. Let $f(x) = x^2 - 4x - 5$, x > 2. Find the value of df^{-1}/dx at the point x = 0 = f(5).

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

$$\left.\frac{df^{-1}}{dx}\right|_{x=b} = \frac{1}{\left.\frac{df}{dx}\right|_{x=f^{-1}(b)}}.$$

Here, b = 0, $f^{-1}(b) = f^{-1}(0) = 5$, and $\frac{df}{dx} = 2x - 4$. So we have

$$\left. \frac{df^{-1}}{dx} \right|_{x=b=0} = \frac{1}{2x-4|_{x=f^{-1}(b)=f^{-1}(0)=5}} = \frac{1}{2(5)-4} = \boxed{\frac{1}{6}}.$$

Theorem 3.8.A

Theorem 3.8.A. For x > 0 we have

$$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}.$$

If u = u(x) is a differentiable function of x, then for all x such that u(x) > 0 we have

$$\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].$$

Proof. We know that $f(x) = e^x$ is differentiable for all x, so we can apply Theorem 3.3 to find the derivative of $f^{-1}(x) = \ln x$:

$$\frac{d}{dx}[\ln x] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{f^{-1}(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x},$$

Theorem 3.8.A

Theorem 3.8.A. For x > 0 we have

$$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}.$$

If u = u(x) is a differentiable function of x, then for all x such that u(x) > 0 we have

$$\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].$$

Proof. We know that $f(x) = e^x$ is differentiable for all x, so we can apply Theorem 3.3 to find the derivative of $f^{-1}(x) = \ln x$:

$$\frac{d}{dx}[\ln x] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{f^{-1}(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x},$$

Theorem 3.8.A (continued)

Theorem 3.8.A. For x > 0 we have

$$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}.$$

If u = u(x) is a differentiable function of x, then for all x such that u(x) > 0 we have

$$\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].$$

Proof (continued). By the Chain Rule (Theorem 3.2),

$$\frac{d}{dx}\left[\ln u(x)\right] = \frac{d}{du}\left[\ln u\right] \left[\frac{du}{dx}\right] = \frac{1}{u} \left[\frac{du}{dx}\right],$$

Exercise 3.8.16. Find dy/dx when $y = \ln(\sin x)$.

Solution. By Theorem 3.8.A,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\ln(\sin x) \right] = \frac{1}{\sin x} \left[\cos x \right] = \frac{\cos x}{\sin x} = \boxed{\cot x}.$$

Exercise 3.8.16. Find dy/dx when $y = \ln(\sin x)$.

Solution. By Theorem 3.8.A,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\ln(\sin x) \right] = \frac{1}{\sin x} \left[\cos x \right] = \frac{\cos x}{\sin x} = \boxed{\cot x}.$$

Exercise 3.8.30. Find dy/dx when $y = \ln(\ln(\ln x))$.

Solution. We have three "levels" of functions, a natural logarithm inside a natural logarithm inside another natural logarithm. So we will have to use the Chain Rule (Theorem 3.2) twice. We have

$$\frac{dy}{dx} = \frac{d}{dx}[\ln(\ln(\ln x))] = \frac{1}{\ln(\ln x)} \left[\frac{1}{\ln x} \left[\frac{1}{x}\right]\right] = \boxed{\frac{1}{x \ln(x) \ln(\ln(x))}}$$

Exercise 3.8.30. Find dy/dx when $y = \ln(\ln(\ln x))$.

Solution. We have three "levels" of functions, a natural logarithm inside a natural logarithm inside another natural logarithm. So we will have to use the Chain Rule (Theorem 3.2) twice. We have

$$\frac{dy}{dx} = \frac{d}{dx} [\ln(\ln(\ln x))] = \frac{1}{\ln(\ln x)} \left[\frac{1}{\ln x} \left[\frac{1}{x} \right] \right] = \boxed{\frac{1}{x \ln(x) \ln(\ln(x))}}$$

Exercise 3.8.38. Find $dy/d\theta$ when $y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right)$.

Solution. First, we use properties of logarithms to modify the form of *y*:

$$y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right) = \ln\sqrt{\sin\theta\cos\theta} - \ln(1+2\ln\theta)$$
$$n(\sin\theta\cos\theta)^{1/2} - \ln(1+2\ln\theta) = \frac{1}{2}\ln(\sin\theta\cos\theta) - \ln(1+2\ln\theta)$$
$$= \frac{1}{2}\ln(\sin\theta) + \frac{1}{2}\ln(\cos\theta) - \ln(1+2\ln\theta)$$
$$\frac{dy}{d\theta} = \frac{1}{2}\frac{1}{\sin\theta}[\cos\theta] + \frac{1}{2}\frac{1}{\cos\theta}[-\sin\theta] - \frac{1}{1+2\ln\theta}\left[0+2\frac{1}{\theta}\right]$$
$$= \boxed{\frac{1}{2}\cot\theta - \frac{1}{2}\tan\theta - \frac{2}{\theta(1+2\ln\theta)}}.$$

=

Exercise 3.8.38. Find
$$dy/d\theta$$
 when $y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right)$.

Solution. First, we use properties of logarithms to modify the form of *y*:

$$y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right) = \ln\sqrt{\sin\theta\cos\theta} - \ln(1+2\ln\theta)$$
$$\ln(\sin\theta\cos\theta)^{1/2} - \ln(1+2\ln\theta) = \frac{1}{2}\ln(\sin\theta\cos\theta) - \ln(1+2\ln\theta)$$
$$= \frac{1}{2}\ln(\sin\theta) + \frac{1}{2}\ln(\cos\theta) - \ln(1+2\ln\theta)$$
$$\frac{dy}{d\theta} = \frac{1}{2}\frac{1}{\sin\theta}\left[\cos\theta\right] + \frac{1}{2}\frac{1}{\cos\theta}\left[-\sin\theta\right] - \frac{1}{1+2\ln\theta}\left[0+2\frac{1}{\theta}\right]$$
$$= \frac{1}{2}\cot\theta - \frac{1}{2}\tan\theta - \frac{2}{\theta(1+2\ln\theta)}. \quad \Box$$

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$.

Solution. First, we have

$$\ln y = \ln\left(\sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}\right) = \ln\left(\frac{(x+1)^{10}}{(2x+1)^5}\right)^{1/2} = \frac{1}{2}\ln\left(\frac{(x+1)^{10}}{(2x+1)^5}\right)$$
$$= \frac{1}{2}\left(\ln(x+1)^{10} - \ln(2x+1)^5\right) = \frac{1}{2}\left(10\ln(x+1) - 5\ln(2x+1)\right)$$
$$= 5\ln(x+1) - \frac{5}{2}\ln(2x+1).$$

Now we differentiate implicitly:

$$\frac{d}{dx}[\ln y] = \frac{d}{dx}\left[5\ln(x+1) - \frac{5}{2}\ln(2x+1)\right]$$

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$.

Solution. First, we have

$$\ln y = \ln \left(\sqrt{\frac{(x+1)^{10}}{(2x+1)^5}} \right) = \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)^{1/2} = \frac{1}{2} \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)$$
$$= \frac{1}{2} \left(\ln(x+1)^{10} - \ln(2x+1)^5 \right) = \frac{1}{2} \left(10 \ln(x+1) - 5 \ln(2x+1) \right)$$
$$= 5 \ln(x+1) - \frac{5}{2} \ln(2x+1).$$

Now we differentiate implicitly:

$$\frac{d}{dx}[\ln y] = \frac{d}{dx}\left[5\ln(x+1) - \frac{5}{2}\ln(2x+1)\right]$$

Exercise 3.8.52 (continued 1)

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$.

Solution. Now we differentiate implicitly:

$$\frac{d}{dx}[\ln y] = \frac{d}{dx} \left[5\ln(x+1) - \frac{5}{2}\ln(2x+1) \right]$$
$$= 5\frac{d}{dx}[\ln(x+1)] - \frac{5}{2}\frac{d}{dx}[\ln(2x+1)] = 5\frac{1}{x+1}[1] - \frac{5}{2}\frac{1}{2x+1}[2]$$
$$= \frac{5}{x+1} - \frac{5}{2x+1}.$$
$$\frac{d}{dx}[\ln y] = \frac{1}{y}\left[\frac{dy}{dx}\right] = \frac{5}{x+1} - \frac{5}{2x+1},$$

Calculus 1

So

Exercise 3.8.52 (continued 2)

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$.

Solution. ...

$$\frac{d}{dx}[\ln y] = \frac{1}{y} \left[\frac{dy}{dx} \right] = \frac{5}{x+1} - \frac{5}{2x+1},$$

and hence

$$\frac{dy}{dx} = y\left(\frac{5}{x+1} - \frac{5}{2x+1}\right) = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}} \left(\frac{5}{x+1} - \frac{5}{2x+1}\right).$$

Theorem 3.8.B

Theorem 3.8.B. If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}\left[a^{u}\right] = (\ln a)a^{u}\left[\frac{du}{dx}\right].$$

Proof. First

$$\frac{d}{dx}\left[a^{x}\right] = \frac{d}{dx}\left[e^{x\ln a}\right] = e^{x\ln a}\left[\frac{d}{dx}\left[x\ln a\right]\right] = a^{x}\ln a = (\ln a)a^{x}.$$

Theorem 3.8.B

Theorem 3.8.B. If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}\left[a^{u}\right] = (\ln a)a^{u}\left[\frac{du}{dx}\right].$$

Proof. First

$$\frac{d}{dx}\left[a^{x}\right] = \frac{d}{dx}\left[e^{x\ln a}\right] = e^{x\ln a}\left[\frac{d}{dx}\left[x\ln a\right]\right] = a^{x}\ln a = (\ln a)a^{x}.$$

Then be the Chain Rule (Theorem 3.2),

$$\frac{d}{dx}\left[a^{u}\right] = \frac{da^{u}}{du} \left[\frac{du}{dx}\right] = (\ln a)a^{u} \left[\frac{du}{dx}\right]$$

Theorem 3.8.B

Theorem 3.8.B. If a > 0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}\left[a^{u}\right] = (\ln a)a^{u}\left[\frac{du}{dx}\right].$$

Proof. First

$$\frac{d}{dx}\left[a^{\times}\right] = \frac{d}{dx}\left[e^{x\ln a}\right] = e^{x\ln a}\left[\frac{d}{dx}\left[x\ln a\right]\right] = a^{x}\ln a = (\ln a)a^{x}.$$

Then be the Chain Rule (Theorem 3.2),

$$\frac{d}{dx}\left[a^{u}\right] = \frac{da^{u}}{du} \left[\frac{du}{dx}\right] = (\ln a)a^{u} \left[\frac{du}{dx}\right],$$

Exercise 3.8.70. Find dy/dx when $y = 2^{(x^2)}$.

Solution. By Theorem 3.8.B (with a = 2 and $u(x = x^2)$, we have:

$$\frac{d}{dx}[y] = \frac{dy}{dx} = \frac{d}{dx}[2^{(x^2)}] = (\ln 2)2^{(x^2)}[2x] = \boxed{(2\ln 2)x2^{(x^2)}}.$$

Exercise 3.8.70. Find dy/dx when $y = 2^{(x^2)}$.

Solution. By Theorem 3.8.B (with a = 2 and $u(x = x^2)$, we have:

$$\frac{d}{dx}[y] = \frac{dy}{dx} = \frac{d}{dx}[2^{(x^2)}] = (\ln 2)2^{(x^2)}[2x] = \boxed{(2\ln 2)x2^{(x^2)}}.$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base *a* gives:

$$\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].$$

Proof. This follows easily:

$$\frac{d}{dx}\left[\log_a x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}.$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

$$\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].$$

Proof. This follows easily:

$$\frac{d}{dx}\left[\log_a x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}.$$

Then be the Chain Rule (Theorem 3.2),

$$\frac{d}{dx}\left[\log_a u\right] = \frac{d\log_a u}{du} \left[\frac{du}{dx}\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right],$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

$$\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].$$

Proof. This follows easily:

$$\frac{d}{dx}\left[\log_{a} x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}$$

Then be the Chain Rule (Theorem 3.2),

$$\frac{d}{dx}\left[\log_a u\right] = \frac{d\log_a u}{du} \left[\frac{du}{dx}\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right],$$

Exercise 3.8.74. Find $dy/d\theta$ when $y = \log_3(1 + \theta \ln 3)$.

Solution. By Theorem 3.3.C (with a = 3 and $u(\theta) = 1 + \theta \ln 3$) we have:

$$\frac{dy}{d\theta} = \frac{d}{d\theta} [\log_3(1+\theta\ln 3)] = \frac{1}{\ln 3} \frac{1}{1+\theta\ln 3} [0+\ln 3] = \boxed{\frac{1}{1+\theta\ln 3}}$$

Exercise 3.8.74. Find $dy/d\theta$ when $y = \log_3(1 + \theta \ln 3)$.

Solution. By Theorem 3.3.C (with a = 3 and $u(\theta) = 1 + \theta \ln 3$) we have:

$$\frac{dy}{d\theta} = \frac{d}{d\theta} [\log_3(1+\theta \ln 3)] = \frac{1}{\ln 3} \frac{1}{1+\theta \ln 3} [0+\ln 3] = \boxed{\frac{1}{1+\theta \ln 3}}$$

Exercise 3.8.80. Find dy/dx when $y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}$$
$$= \frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2)\right).$$

Exercise 3.8.80. Find dy/dx when $y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}$$
$$= \frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2)\right).$$

So by Theorem 3.8.C (with a = 5, $u_1(x) = 7x$, and $u_2(x) = 3x + 2$) we have

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2) \right) \right]$$
$$= \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x+2)] \right)$$

Exercise 3.8.80. Find dy/dx when $y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}$$
$$= \frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2)\right).$$

So by Theorem 3.8.C (with a = 5, $u_1(x) = 7x$, and $u_2(x) = 3x + 2$) we have

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2) \right) \right]$$
$$= \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x+2)] \right)$$

Exercise 3.8.80 (continued)

Exercise 3.8.80. Find dy/dx when $y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution.

$$\frac{dy}{dx} = \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x+2)] \right)$$
$$= \frac{\ln 5}{2} \left(\frac{1}{\ln 5} \frac{1}{7x} [7] - \frac{1}{\ln 5} \frac{1}{3x+2} [3] \right)$$
$$= \boxed{\frac{1}{2} \left(\frac{1}{x} - \frac{3}{3x+2} \right)}.$$

Exercise 3.8.80 (continued)

Exercise 3.8.80. Find
$$dy/dx$$
 when $y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. ...

$$\frac{dy}{dx} = \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x+2)] \right)$$
$$= \frac{\ln 5}{2} \left(\frac{1}{\ln 5} \frac{1}{7x} [7] - \frac{1}{\ln 5} \frac{1}{3x+2} [3] \right)$$
$$= \boxed{\frac{1}{2} \left(\frac{1}{x} - \frac{3}{3x+2} \right)}.$$

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx: $y = x^{x+1}$.

Solution. Notice that y has x in both the base *and* the exponent, so that it is neither an exponential function nor a power of x. We must take a logarithm and use logarithmic differentiation. First, we have

Calculus 1

 $\ln y = \ln x^{x+1} = (x+1)\ln x.$

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx: $y = x^{x+1}$.

Solution. Notice that y has x in both the base *and* the exponent, so that it is neither an exponential function nor a power of x. We must take a logarithm and use logarithmic differentiation. First, we have

$$\ln y = \ln x^{x+1} = (x+1) \ln x. \text{ Then } \frac{d}{dx} [\ln y] = \frac{d}{dx} [(x+1) \ln x] \text{ or}$$

$$\frac{1}{y} \left[\frac{dy}{dx}\right] = [1](\ln x) + (x+1) \left[\frac{1}{x}\right] \text{ or } \frac{dy}{dx} = y \left(\ln x + \frac{x+1}{x}\right), \text{ so}$$

$$\frac{dy}{dx} = x^{x+1} \left(\ln x + \frac{x+1}{x} \right).$$

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx: $y = x^{x+1}$.

Solution. Notice that y has x in both the base *and* the exponent, so that it is neither an exponential function nor a power of x. We must take a logarithm and use logarithmic differentiation. First, we have

$$\ln y = \ln x^{x+1} = (x+1) \ln x. \text{ Then } \frac{d}{dx} [\ln y] = \frac{d}{dx} [(x+1) \ln x] \text{ or}$$

$$\frac{1}{y} \left[\frac{dy}{dx}\right] = [1](\ln x) + (x+1) \left[\frac{1}{x}\right] \text{ or } \frac{dy}{dx} = y \left(\ln x + \frac{x+1}{x}\right), \text{ so}$$

$$\frac{dy}{dx} = x^{x+1} \left(\ln x + \frac{x+1}{x} \right). \quad \Box$$

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives. For x > 0 and any real number n,

$$\frac{d}{dx}\left[x^{n}\right]=nx^{n-1}.$$

If x < 0, then the formula holds whenever the derivative, x^n , and x^{n-1} all exist.

Proof. We have for x > 0 that

$$\frac{d}{dx} [x^n] = \frac{d}{dx} \left[e^{n \ln x} \right]$$

$$= e^{n \ln x} \frac{d}{dx} [n \ln x] \text{ by the Chain Rule}$$

$$= x^n \frac{n}{x} = nx^{n-1},$$

as claimed.

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives. For x > 0 and any real number n,

$$\frac{d}{dx}\left[x^{n}\right]=nx^{n-1}.$$

If x < 0, then the formula holds whenever the derivative, x^n , and x^{n-1} all exist.

Proof. We have for x > 0 that

$$\frac{d}{dx} [x^n] = \frac{d}{dx} \left[e^{n \ln x} \right]$$

$$= e^{n \ln x} \frac{d}{dx} [n \ln x] \text{ by the Chain Rule}$$

$$= x^n \frac{n}{x} = nx^{n-1},$$

as claimed.

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When x < 0, if $y = x^n$, y', and x^{n-1} all exist, then we have $\ln |y| = \ln |x^n| = \ln |x|^n = n \ln |x|$. Differentiating implicitly (this is where we must assume that y' exists) we have that

$$\frac{d}{dx}\left[\ln|y|\right] = \frac{d}{dx}\left[n\ln|x|\right], \text{ which implies (by Example 3.8.3(c))}$$
$$\frac{1}{y}\left[\frac{dy}{dx}\right] = n\frac{1}{x}, \text{ or } \frac{dy}{dx} = ny\frac{1}{x} = nx^{n}\frac{1}{x} = nx^{n-1}, \text{ as claimed.}$$

This still leaves the case that for x = 0 and $n \ge 1$, the derivative is 0; this is to be shown in Exercise 3.8.103. \Box

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When x < 0, if $y = x^n$, y', and x^{n-1} all exist, then we have $\ln |y| = \ln |x^n| = \ln |x|^n = n \ln |x|$. Differentiating implicitly (this is where we must assume that y' exists) we have that

$$\frac{d}{dx}[\ln|y|] = \frac{d}{dx}[n\ln|x|], \text{ which implies (by Example 3.8.3(c))}$$
$$\frac{1}{y}\left[\frac{dy}{dx}\right] = n\frac{1}{x}, \text{ or } \frac{dy}{dx} = ny\frac{1}{x} = nx^{n}\frac{1}{x} = nx^{n-1}, \text{ as claimed.}$$

This still leaves the case that for x = 0 and $n \ge 1$, the derivative is 0; this is to be shown in Exercise 3.8.103. \Box

Example 3.8.72. Differentiate $y = t^{1-e}$.

Solution. This is an easy problem computationally, but we do it at this time because the exponent 1 - e is irrational. By Theorem 3.3.C/3.8.D, "General Power Rule for Derivatives," we have

$$\frac{dy}{dt} = \frac{d}{dt}[t^{1-e}] = (1-e)t^{(1-e)-1} = \boxed{(1-e)t^{-e}}.$$

Example 3.8.72. Differentiate $y = t^{1-e}$.

Solution. This is an easy problem computationally, but we do it at this time because the exponent 1 - e is irrational. By Theorem 3.3.C/3.8.D, "General Power Rule for Derivatives," we have

$$rac{dy}{dt} = rac{d}{dt}[t^{1-e}] = (1-e)t^{(1-e)-1} = \boxed{(1-e)t^{-e}}.$$

Theorem 3.4

Theorem 3.4. The Number *e* as a Limit

We can find *e* as a limit:

 $e=\lim_{x\to 0}(1+x)^{1/x}.$

Proof. Let $f(x) = \ln x$. Then f'(x) = 1/x and f'(1) = 1. Now by the definition of derivative:

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$
$$= \ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) \text{ since } \ln x \text{ is continuous.}$$

Theorem 3.4

Theorem 3.4. The Number *e* as a Limit

We can find *e* as a limit:

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Proof. Let $f(x) = \ln x$. Then f'(x) = 1/x and f'(1) = 1. Now by the definition of derivative:

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$
$$= \ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) \text{ since } \ln x \text{ is continuous.}$$

Theorem 3.4 (continued)

Theorem 3.4. The Number *e* **as a Limit** We can find *e* as a limit:

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Proof (continued). Therefore, since f'(1) = 1, we have

$$\ln\left(\lim_{x\to 0}(1+x)^{1/x}\right)=1.$$

Since $\ln e = 1$ and $\ln x$ is one-to-one,

$$\lim_{x\to 0}(1+x)^{1/x}=e.$$

()

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ for any x > 0.

Solution. As in the proof of Theorem 3.4, "The Number *e* as a Limit," we let $f(x) = \ln x$ (this is where we need x > 0) so that f'(x) = 1/x and by the definition of derivative,

$$\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}$$

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ for any x > 0.

Solution. As in the proof of Theorem 3.4, "The Number *e* as a Limit," we let $f(x) = \ln x$ (this is where we need x > 0) so that f'(x) = 1/x and by the definition of derivative,

$$\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}.$$

Now the exponential function is continuous at all real numbers, so

$$e^{1/x} = e^{\lim_{h \to 0} (\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(1/h) \ln((x+h)/x)}$$

$$= \lim_{h \to 0} e^{\ln((x+h)/x)^{1/h}} = \lim_{h \to 0} \left(\frac{x+h}{x}\right)^{1/h} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}$$

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ for any x > 0.

Solution. As in the proof of Theorem 3.4, "The Number *e* as a Limit," we let $f(x) = \ln x$ (this is where we need x > 0) so that f'(x) = 1/x and by the definition of derivative,

$$\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}.$$

Now the exponential function is continuous at all real numbers, so

$$e^{1/x} = e^{\lim_{h \to 0} (\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(1/h) \ln((x+h)/x)}$$

$$= \lim_{h \to 0} e^{\ln((x+h)/x)^{1/h}} = \lim_{h \to 0} \left(\frac{x+h}{x}\right)^{1/h} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}$$

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$
 for any $x > 0$.
Solution (continued). $\dots e^{1/x} = \lim_{h\to 0} \left(1+\frac{h}{x}\right)^{1/h}$. In particular, we have $e^{1/x} = \lim_{h\to 0^+} \left(1+\frac{h}{x}\right)^{1/h}$. Replacing h with $1/n$ and noting that $h \to 0^+$ if and only if $n \to \infty$, we then have $e^{1/x} = \lim_{n\to\infty} \left(1+\frac{1}{nx}\right)^n$. Now replacing x with $1/x$ we get $e^x = \lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$, as claimed.

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$
 for any $x > 0$.
Solution (continued). $\dots e^{1/x} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}$. In particular, we have $e^{1/x} = \lim_{h \to 0^+} \left(1 + \frac{h}{x}\right)^{1/h}$. Replacing h with $1/n$ and noting that $h \to 0^+$ if and only if $n \to \infty$, we then have $e^{1/x} = \lim_{n \to \infty} \left(1 + \frac{1}{nx}\right)^n$. Now replacing x with $1/x$ we get $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$, as claimed.