Calculus 1

Chapter 3. Derivatives

3.8. Derivatives of Inverse Functions and Logarithms—Examples and Proofs

Table of contents

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and $f'(x)$ exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})^{\prime}$ at a point b in the domain of f^{-1} is the reciprocal of the value of f^\prime at the point $a=f^{-1}(b)$:

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\frac{df}{dx}|_{x=f^{-1}(b)}}.
$$

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): d dx $\left[f^{-1}(f(x))\right] = \frac{d}{dx}[x]$ or \sim $f^{-1'}(f(x))[f'(x)] = 1$ or $f^{-1'}(f(x)) = \frac{1}{f'(x)}$.

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and $f'(x)$ exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})^{\prime}$ at a point b in the domain of f^{-1} is the reciprocal of the value of f^\prime at the point $a=f^{-1}(b)$:

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\frac{df}{dx}|_{x=f^{-1}(b)}}
$$

.

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): d dx $\left[f^{-1}(f(x))\right] = \frac{d}{dx}[x]$ or \sim $f^{-1'}(f(x)) [f'(x)] = 1$ or $f^{-1'}(f(x)) = \frac{1}{f'(x)}$. Plugging in $x = f^{-1}(b)$ we get $f^{-1'}(f(f^{-1}(b))) = \frac{1}{f'(f^{-1}(b))},$ as claimed.

Theorem 3.3. The Derivative Rule for Inverses

If f has an interval I as its domain and $f'(x)$ exists and is never zero on I, then f^{-1} is differentiable at every point in its domain. The value of $(f^{-1})^{\prime}$ at a point b in the domain of f^{-1} is the reciprocal of the value of f^\prime at the point $a=f^{-1}(b)$:

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\frac{df}{dx}|_{x=f^{-1}(b)}}.
$$

Proof. By definition of inverse function, $f^{-1}(f(x)) = x$ for all $x \in I$. Differentiating this equation, we have by the Chain Rule (Theorem 3.2): d dx $\left[f^{-1}(f(x))\right] = \frac{d}{dx}[x]$ or \sim $f^{-1'}(f(x)) [f'(x)] = 1$ or $f^{-1'}(f(x)) = \frac{1}{f'(x)}$. Plugging in $x = f^{-1}(b)$ we get $f^{-1'}(f(f^{-1}(b))) = \frac{1}{f'(f^{-1}(b))},$ as claimed.

Exercise 3.8.8

Exercise 3.8.8. Let $f(x) = x^2 - 4x - 5$, $x > 2$. Find the value of df^{-1}/dx at the point $x = 0 = f(5)$.

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}.
$$

Here, $b = 0$, $f^{-1}(b) = f^{-1}(0) = 5$, and $\frac{df}{dx} = 2x - 4$. So we have

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b=0} = \frac{1}{2x - 4|_{x=f^{-1}(b)=f^{-1}(0)=5}} = \frac{1}{2(5) - 4} = \left| \frac{1}{6} \right|.
$$

Exercise 3.8.8. Let $f(x) = x^2 - 4x - 5$, $x > 2$. Find the value of df^{-1}/dx at the point $x = 0 = f(5)$.

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}.
$$

Here, $b = 0$, $f^{-1}(b) = f^{-1}(0) = 5$, and $\frac{df}{dx} = 2x - 4$. So we have

$$
\left. \frac{df^{-1}}{dx} \right|_{x=b=0} = \frac{1}{2x-4|_{x=f^{-1}(b)=f^{-1}(0)=5}} = \frac{1}{2(5)-4} = \boxed{\frac{1}{6}}.
$$

Theorem 3.8.A

Theorem 3.8.A. For $x > 0$ we have

$$
\frac{d}{dx}[\ln x] = \frac{1}{x}.
$$

If $u = u(x)$ is a differentiable function of x, then for all x such that $u(x) > 0$ we have

$$
\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].
$$

Proof. We know that $f(x) = e^x$ is differentiable for all x, so we can apply Theorem 3.3 to find the derivative of $f^{-1}(x) = \ln x$:

$$
\frac{d}{dx}[\ln x] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{f^{-1}(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x},
$$

Theorem 3.8.A

Theorem 3.8.A. For $x > 0$ we have

$$
\frac{d}{dx}[\ln x] = \frac{1}{x}.
$$

If $u = u(x)$ is a differentiable function of x, then for all x such that $u(x) > 0$ we have

$$
\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].
$$

Proof. We know that $f(x) = e^x$ is differentiable for all x, so we can apply Theorem 3.3 to find the derivative of $f^{-1}(x) = \ln x$:

$$
\frac{d}{dx}[\ln x] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{f^{-1}(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x},
$$

Theorem 3.8.A (continued)

Theorem 3.8.A. For $x > 0$ we have

$$
\frac{d}{dx}[\ln x] = \frac{1}{x}.
$$

If $u = u(x)$ is a differentiable function of x, then for all x such that $u(x) > 0$ we have

$$
\frac{d}{dx}\left[\ln u\right] = \frac{d}{dx}\left[\ln u(x)\right] = \frac{1}{u}\left[\frac{du}{dx}\right] = \frac{1}{u(x)}\left[u'(x)\right].
$$

Proof (continued). By the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx}\left[\ln u(x)\right] = \frac{d}{du}\left[\ln u\right]\left[\frac{du}{dx}\right] = \frac{1}{u}\left[\frac{du}{dx}\right],
$$

Exercise 3.8.16. Find dy/dx when $y = \ln(\sin x)$.

Solution. By Theorem 3.8.A,

$$
\frac{dy}{dx} = \frac{d}{dx} [\ln(\sin x)] = \frac{1}{\sin x} [\cos x] = \frac{\cos x}{\sin x} = \boxed{\cot x}.
$$

 \Box

Exercise 3.8.16. Find dy/dx when $y = \ln(\sin x)$.

Solution. By Theorem 3.8.A,

$$
\frac{dy}{dx} = \frac{d}{dx} [\ln(\sin x)] = \frac{1}{\sin x} [\cos x] = \frac{\cos x}{\sin x} = \boxed{\cot x}.
$$

Exercise 3.8.30. Find dy/dx when $y = ln(ln(ln x))$.

Solution. We have three "levels" of functions, a natural logarithm inside a natural logarithm inside another natural logarithm. So we will have to use the Chain Rule (Theorem 3.2) twice. We have

$$
\frac{dy}{dx} = \frac{d}{dx}[\ln(\ln(\ln x))] = \frac{1}{\ln(\ln x)} \left[\frac{1}{\ln x} \left[\frac{1}{x} \right] \right] = \boxed{\frac{1}{x \ln(x) \ln(\ln(x))}}.
$$

Exercise 3.8.30. Find dy/dx when $y = ln(ln(ln x))$.

Solution. We have three "levels" of functions, a natural logarithm inside a natural logarithm inside another natural logarithm. So we will have to use the Chain Rule (Theorem 3.2) twice. We have

$$
\frac{dy}{dx} = \frac{d}{dx}[\ln(\ln(\ln x))] = \frac{1}{\ln(\ln x)} \left[\frac{1}{\ln x} \left[\frac{1}{x} \right] \right] = \boxed{\frac{1}{x \ln(x) \ln(\ln(x))}}.
$$

Exercise 3.8.38. Find $dy/d\theta$ when $y = \ln \left(\frac{\sqrt{\sin \theta \cos \theta}}{1 + \theta \cos \theta} \right)$ $1 + 2 \ln \theta$ \setminus .

Solution. First, we use properties of logarithms to modify the form of y :

$$
y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right) = \ln\sqrt{\sin\theta\cos\theta} - \ln(1+2\ln\theta)
$$

= $\ln(\sin\theta\cos\theta)^{1/2} - \ln(1+2\ln\theta) = \frac{1}{2}\ln(\sin\theta\cos\theta) - \ln(1+2\ln\theta)$
= $\frac{1}{2}\ln(\sin\theta) + \frac{1}{2}\ln(\cos\theta) - \ln(1+2\ln\theta)$

$$
\frac{dy}{d\theta} = \frac{1}{2}\frac{1}{\sin\theta}[\cos\theta] + \frac{1}{2}\frac{1}{\cos\theta}[-\sin\theta] - \frac{1}{1+2\ln\theta}[\theta + 2\frac{1}{\theta}]
$$

= $\frac{1}{2}\cot\theta - \frac{1}{2}\tan\theta - \frac{2}{\theta(1+2\ln\theta)}$.

Exercise 3.8.38. Find
$$
dy/d\theta
$$
 when $y = \ln\left(\frac{\sqrt{\sin \theta \cos \theta}}{1 + 2\ln \theta}\right)$.

Solution. First, we use properties of logarithms to modify the form of y :

$$
y = \ln\left(\frac{\sqrt{\sin\theta\cos\theta}}{1+2\ln\theta}\right) = \ln\sqrt{\sin\theta\cos\theta} - \ln(1+2\ln\theta)
$$

= $\ln(\sin\theta\cos\theta)^{1/2} - \ln(1+2\ln\theta) = \frac{1}{2}\ln(\sin\theta\cos\theta) - \ln(1+2\ln\theta)$
= $\frac{1}{2}\ln(\sin\theta) + \frac{1}{2}\ln(\cos\theta) - \ln(1+2\ln\theta)$

$$
\frac{dy}{d\theta} = \frac{1}{2}\frac{1}{\sin\theta}[\cos\theta] + \frac{1}{2}\frac{1}{\cos\theta}[\cos\theta] - \frac{1}{1+2\ln\theta}[\theta] + 2\frac{1}{\theta}]
$$

= $\left[\frac{1}{2}\cot\theta - \frac{1}{2}\tan\theta - \frac{2}{\theta(1+2\ln\theta)}\right]$

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $(x+1)^{10}$ $\frac{(x+2)}{(2x+1)^5}$.

Solution. First, we have

$$
\ln y = \ln \left(\sqrt{\frac{(x+1)^{10}}{(2x+1)^5}} \right) = \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)^{1/2} = \frac{1}{2} \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)
$$

$$
= \frac{1}{2} \left(\ln(x+1)^{10} - \ln(2x+1)^5 \right) = \frac{1}{2} \left(10 \ln(x+1) - 5 \ln(2x+1) \right)
$$

$$
= 5 \ln(x+1) - \frac{5}{2} \ln(2x+1).
$$

Now we differentiate implicitly:

$$
\frac{d}{dx}[\ln y] = \frac{d}{dx}\left[5\ln(x+1) - \frac{5}{2}\ln(2x+1)\right]
$$

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $(x+1)^{10}$ $\frac{(x+2)}{(2x+1)^5}$.

Solution. First, we have

$$
\ln y = \ln \left(\sqrt{\frac{(x+1)^{10}}{(2x+1)^5}} \right) = \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)^{1/2} = \frac{1}{2} \ln \left(\frac{(x+1)^{10}}{(2x+1)^5} \right)
$$

$$
= \frac{1}{2} \left(\ln(x+1)^{10} - \ln(2x+1)^5 \right) = \frac{1}{2} \left(10 \ln(x+1) - 5 \ln(2x+1) \right)
$$

$$
= 5 \ln(x+1) - \frac{5}{2} \ln(2x+1).
$$

Now we differentiate implicitly:

$$
\frac{d}{dx}[\ln y] = \frac{d}{dx}\left[5\ln(x+1) - \frac{5}{2}\ln(2x+1)\right]
$$

Exercise 3.8.52 (continued 1)

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $(x+1)^{10}$ $\frac{(x+2)}{(2x+1)^5}$.

Solution. Now we differentiate implicitly:

$$
\frac{d}{dx}[\ln y] = \frac{d}{dx} \left[5 \ln(x+1) - \frac{5}{2} \ln(2x+1) \right]
$$

$$
= 5 \frac{d}{dx}[\ln(x+1)] - \frac{5}{2} \frac{d}{dx}[\ln(2x+1)] = 5 \frac{1}{x+1} [1] - \frac{5}{2} \frac{1}{2x+1} [2]
$$

$$
= \frac{5}{x+1} - \frac{5}{2x+1}.
$$

$$
\frac{d}{dx}[\ln y] = \frac{1}{y} \left[\frac{dy}{dx} \right] = \frac{5}{x+1} - \frac{5}{2x+1},
$$

y

So

Exercise 3.8.52 (continued 2)

Exercise 3.8.52. Find y' by first taking a natural logarithm and then

differentiating implicitly:
$$
y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}
$$
.

Solution. . . .

$$
\frac{d}{dx}[\ln y] = \frac{1}{y} \left[\frac{dy}{dx} \right] = \frac{5}{x+1} - \frac{5}{2x+1},
$$

and hence

$$
\frac{dy}{dx} = y \left(\frac{5}{x+1} - \frac{5}{2x+1} \right) = \boxed{\sqrt{\frac{(x+1)^{10}}{(2x+1)^5}} \left(\frac{5}{x+1} - \frac{5}{2x+1} \right)}.
$$

Theorem 3.8.B

Theorem 3.8.B. If $a > 0$ and u is a differentiable function of x, then a^u is a differentiable function of x and

$$
\frac{d}{dx}\left[a^u\right] = (\ln a)a^u\left[\frac{du}{dx}\right].
$$

Proof. First

$$
\frac{d}{dx}[a^x] = \frac{d}{dx}[e^{x\ln a}] = e^{x\ln a} \left[\frac{d}{dx}[x\ln a]\right] = a^x \ln a = (\ln a)a^x.
$$

Theorem 3.8.B

Theorem 3.8.B. If $a > 0$ and u is a differentiable function of x, then a^u is a differentiable function of x and

$$
\frac{d}{dx}\left[a^u\right] = (\ln a)a^u\left[\frac{du}{dx}\right].
$$

Proof. First

$$
\frac{d}{dx}\left[a^x\right] = \frac{d}{dx}\left[e^{x\ln a}\right] = e^{x\ln a}\left[\frac{d}{dx}[x\ln a]\right] = a^x\ln a = (\ln a)a^x.
$$

Then be the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx}\left[a^{u}\right]=\frac{da^{u}}{du}\left[\frac{du}{dx}\right]=\left(\ln a\right)a^{u}\left[\frac{du}{dx}\right],
$$

Theorem 3.8.B

Theorem 3.8.B. If $a > 0$ and u is a differentiable function of x, then a^u is a differentiable function of x and

$$
\frac{d}{dx}\left[a^u\right] = (\ln a)a^u\left[\frac{du}{dx}\right].
$$

Proof. First

$$
\frac{d}{dx}[a^x] = \frac{d}{dx}[e^{x \ln a}] = e^{x \ln a} \left[\frac{d}{dx}[x \ln a] \right] = a^x \ln a = (\ln a)a^x.
$$

Then be the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx}\left[a^u\right] = \frac{da^u}{du}\left[\frac{du}{dx}\right] = (\ln a)a^u\left[\frac{du}{dx}\right],
$$

Exercise 3.8.70. Find dy/dx when $y = 2^{(x^2)}$.

Solution. By Theorem 3.8.B (with $a = 2$ and $u(x = x^2)$, we have:

$$
\frac{d}{dx}[y] = \frac{dy}{dx} = \frac{d}{dx}[2^{(x^2)}] = (\ln 2)2^{(x^2)}[2x] = \boxed{(2 \ln 2) x 2^{(x^2)}}.
$$

Exercise 3.8.70. Find dy/dx when $y = 2^{(x^2)}$.

Solution. By Theorem 3.8.B (with $a = 2$ and $u(x = x^2)$, we have:

$$
\frac{d}{dx}[y] = \frac{dy}{dx} = \frac{d}{dx}[2^{(x^2)}] = (\ln 2)2^{(x^2)}[2x] = \boxed{(2 \ln 2) x 2^{(x^2)}}.
$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

$$
\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].
$$

Proof. This follows easily:

$$
\frac{d}{dx}\left[\log_a x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}.
$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

$$
\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].
$$

Proof. This follows easily:

$$
\frac{d}{dx}\left[\log_a x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}.
$$

Then be the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx}\left[\log_a u\right] = \frac{d \log_a \widehat{u}}{du} \left[\frac{du}{dx}\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right],
$$

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

$$
\frac{d}{dx}\left[\log_a u\right] = \frac{1}{\ln a} \frac{1}{u} \left[\frac{du}{dx}\right].
$$

Proof. This follows easily:

$$
\frac{d}{dx}\left[\log_a x\right] = \frac{d}{dx}\left[\frac{\ln x}{\ln a}\right] = \frac{1}{\ln a}\frac{d}{dx}\left[\ln x\right] = \frac{1}{\ln a}\frac{1}{x}.
$$

Then be the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx}\left[\log_a u\right] = \frac{d \log_a u}{du}\left[\frac{du}{dx}\right] = \frac{1}{\ln a} \frac{1}{u}\left[\frac{du}{dx}\right],
$$

Exercise 3.8.74. Find $dy/d\theta$ when $y = log_3(1 + \theta \ln 3)$.

Solution. By Theorem 3.3.C (with $a = 3$ and $u(\theta) = 1 + \theta \ln 3$) we have:

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} [\log_3(1 + \theta \ln 3)] = \frac{1}{\ln 3} \frac{1}{1 + \theta \ln 3} [0 + \ln 3] = \boxed{\frac{1}{1 + \theta \ln 3}}.
$$

Exercise 3.8.74. Find $dy/d\theta$ when $y = log_3(1 + \theta \ln 3)$.

Solution. By Theorem 3.3.C (with $a = 3$ and $u(\theta) = 1 + \theta \ln 3$) we have:

$$
\frac{dy}{d\theta} = \frac{d}{d\theta}[\log_3(1+\theta\ln 3)] = \frac{1}{\ln 3} \frac{1}{1+\theta\ln 3} [0 + \ln 3] = \boxed{\frac{1}{1+\theta\ln 3}}.
$$

Exercise 3.8.80. Find dy/dx when $y = log_5$ $\sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$
y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}
$$

$$
= \frac{\ln 5}{2} \left(\log_5 (7x) - \log_5 (3x+2)\right).
$$

Exercise 3.8.80. Find dy/dx when $y = log_5$ $\sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$
y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}
$$

$$
= \frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2)\right).
$$

So by Theorem 3.8.C (with $a = 5$, $u_1(x) = 7x$, and $u_2(x) = 3x + 2$) we have

$$
\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x + 2) \right) \right]
$$

$$
= \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x + 2)] \right)
$$

Exercise 3.8.80. Find dy/dx when $y = log_5$ $\sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. We first apply some properties of logarithms:

$$
y = \log_5 \sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}} = \log_5 \left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5 \frac{7x}{3x+2}
$$

$$
= \frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x+2)\right).
$$

So by Theorem 3.8.C (with $a = 5$, $u_1(x) = 7x$, and $u_2(x) = 3x + 2$) we have

$$
\frac{dy}{dx} = \frac{d}{dx} \left[\frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x + 2) \right) \right]
$$

$$
= \frac{\ln 5}{2} \left(\frac{d}{dx} \left[\log_5(7x) \right] - \frac{d}{dx} \left[\log_5(3x + 2) \right] \right)
$$

Exercise 3.8.80 (continued)

Exercise 3.8.80. Find dy/dx when $y = log_5$ $\sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. . . .

$$
\frac{dy}{dx} = \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x + 2)] \right)
$$

$$
= \frac{\ln 5}{2} \left(\frac{1}{\ln 5} \frac{1}{7x} [7] - \frac{1}{\ln 5} \frac{1}{3x + 2} [3] \right)
$$

$$
= \boxed{\frac{1}{2} \left(\frac{1}{x} - \frac{3}{3x + 2} \right)}.
$$

Exercise 3.8.80 (continued)

Exercise 3.8.80. Find dy/dx when $y = log_5$ $\sqrt{\left(\frac{7x}{3x+2}\right)^{\ln 5}}$.

Solution. . . .

$$
\frac{dy}{dx} = \frac{\ln 5}{2} \left(\frac{d}{dx} [\log_5(7x)] - \frac{d}{dx} [\log_5(3x + 2)] \right)
$$

$$
= \frac{\ln 5}{2} \left(\frac{1}{\ln 5} \frac{1}{7x} [7] - \frac{1}{\ln 5} \frac{1}{3x + 2} [3] \right)
$$

$$
= \boxed{\frac{1}{2} \left(\frac{1}{x} - \frac{3}{3x + 2} \right)}.
$$

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx : $y = x^{x+1}$.

Solution. Notice that y has x in both the base and the exponent, so that it is neither an exponential function nor a power of x . We must take a logarithm and use logarithmic differentiation. First, we have

 $\ln y = \ln x^{x+1} = (x+1) \ln x$.

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx : $y = x^{x+1}$.

Solution. Notice that y has x in both the base and the exponent, so that it is neither an exponential function nor a power of x . We must take a logarithm and use logarithmic differentiation. First, we have

$$
\ln y = \ln x^{x+1} = (x+1)\ln x. \text{ Then } \frac{d}{dx}[\ln y] = \frac{d}{dx}[(x+1)\ln x] \text{ or }
$$

$$
\frac{1}{y}\left[\frac{dy}{dx}\right] = [1](\ln x) + (x+1)\left[\frac{1}{x}\right] \text{ or } \frac{dy}{dx} = y\left(\ln x + \frac{x+1}{x}\right), \text{ so }
$$

$$
\frac{dy}{dx} = x^{x+1} \left(\ln x + \frac{x+1}{x} \right).
$$

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx : $y = x^{x+1}$.

Solution. Notice that y has x in both the base and the exponent, so that it is neither an exponential function nor a power of x . We must take a logarithm and use logarithmic differentiation. First, we have

$$
\ln y = \ln x^{x+1} = (x+1)\ln x. \text{ Then } \frac{d}{dx}[\ln y] = \frac{d}{dx}[(x+1)\ln x] \text{ or }
$$

$$
\frac{1}{y} \left[\frac{dy}{dx}\right] = [1](\ln x) + (x+1)\left[\frac{1}{x}\right] \text{ or } \frac{dy}{dx} = y\left(\ln x + \frac{x+1}{x}\right), \text{ so }
$$

$$
\frac{dy}{dx} = x^{x+1} \left(\ln x + \frac{x+1}{x} \right) \qquad \Box
$$

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives. For $x > 0$ and any real number *n*,

$$
\frac{d}{dx}\left[x^n\right] = nx^{n-1}.
$$

If $x < 0$, then the formula holds whenever the derivative, x^n , and x^{n-1} all exist.

Proof. We have for $x > 0$ that

$$
\frac{d}{dx} [x^n] = \frac{d}{dx} \left[e^{n \ln x} \right]
$$
\n
$$
= e^{n \ln x} \frac{d}{dx} [n \ln x] \text{ by the Chain Rule}
$$
\n
$$
= x^n \frac{n}{x} = nx^{n-1},
$$

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives. For $x > 0$ and any real number *n*,

$$
\frac{d}{dx}\left[x^n\right] = nx^{n-1}.
$$

If $x < 0$, then the formula holds whenever the derivative, x^n , and x^{n-1} all exist.

Proof. We have for $x > 0$ that

$$
\frac{d}{dx} [x^n] = \frac{d}{dx} \left[e^{n \ln x} \right]
$$

= $e^{n \ln x} \frac{d}{dx} [n \ln x]$ by the Chain Rule
= $x^n \frac{n}{x} = nx^{n-1}$,

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When $x < 0$, if $y = x^n$, y' , and x^{n-1} all exist, then we have In $|y|=$ In $|x^n|=$ In $|x|^n=n$ In $|x|$. Differentiating implicitly (this is where we must assume that y' exists) we have that

$$
\frac{d}{dx}[\ln |y|] = \frac{d}{dx}[n \ln |x|],
$$
 which implies (by Example 3.8.3(c))

$$
\frac{1}{y} \left[\frac{dy}{dx} \right] = n\frac{1}{x},
$$
 or
$$
\frac{dy}{dx} = ny\frac{1}{x} = nx^n \frac{1}{x} = nx^{n-1},
$$
 as claimed.

This still leaves the case that for $x = 0$ and $n \ge 1$, the derivative is 0; this is to be shown in Exercise $3.8.103.$ \Box

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When $x < 0$, if $y = x^n$, y' , and x^{n-1} all exist, then we have In $|y|=$ In $|x^n|=$ In $|x|^n=n$ In $|x|$. Differentiating implicitly (this is where we must assume that y' exists) we have that

$$
\frac{d}{dx}[\ln |y|] = \frac{d}{dx}[n \ln |x|],
$$
 which implies (by Example 3.8.3(c))

$$
\frac{1}{y} \left[\frac{dy}{dx} \right] = n\frac{1}{x},
$$
 or
$$
\frac{dy}{dx} = ny\frac{1}{x} = nx^n \frac{1}{x} = nx^{n-1},
$$
 as claimed.

This still leaves the case that for $x = 0$ and $n \ge 1$, the derivative is 0; this is to be shown in Exercise 3.8.103. \Box

Example 3.8.72. Differentiate $y = t^{1-e}$.

Solution. This is an easy problem computationally, but we do it at this time because the exponent $1 - e$ is irrational. By Theorem 3.3.C/3.8.D. "General Power Rule for Derivatives," we have

$$
\frac{dy}{dt} = \frac{d}{dt}[t^{1-e}] = (1-e)t^{(1-e)-1} = \boxed{(1-e)t^{-e}}.
$$

Example 3.8.72. Differentiate $y = t^{1-e}$.

Solution. This is an easy problem computationally, but we do it at this time because the exponent $1 - e$ is irrational. By Theorem 3.3.C/3.8.D. "General Power Rule for Derivatives," we have

$$
\frac{dy}{dt} = \frac{d}{dt}[t^{1-e}] = (1-e)t^{(1-e)-1} = \boxed{(1-e)t^{-e}}.
$$

Theorem 3.4. The Number e as a Limit

We can find e as a limit:

 $e = \lim_{x \to 0} (1+x)^{1/x}.$

Proof. Let $f(x) = \ln x$. Then $f'(x) = 1/x$ and $f'(1) = 1$. Now by the definition of derivative:

$$
f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}
$$

=
$$
\lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)
$$

=
$$
\lim_{x \to 0} \ln(1+x)^{1/x}
$$

=
$$
\ln \left(\lim_{x \to 0} (1+x)^{1/x} \right)
$$
 since $\ln x$ is continuous.

Theorem 3.4. The Number e as a Limit

We can find e as a limit:

$$
e = \lim_{x \to 0} (1+x)^{1/x}.
$$

Proof. Let $f(x) = \ln x$. Then $f'(x) = 1/x$ and $f'(1) = 1$. Now by the definition of derivative:

$$
f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}
$$

=
$$
\lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)
$$

=
$$
\lim_{x \to 0} \ln(1+x)^{1/x}
$$

=
$$
\ln \left(\lim_{x \to 0} (1+x)^{1/x} \right)
$$
 since $\ln x$ is continuous.

Theorem 3.4 (continued)

Theorem 3.4. The Number e as a Limit We can find e as a limit:

$$
e=\lim_{x\to 0}(1+x)^{1/x}.
$$

Proof (continued). Therefore, since $f'(1) = 1$, we have

$$
\ln\left(\lim_{x\to 0}(1+x)^{1/x}\right)=1.
$$

Since $\ln e = 1$ and $\ln x$ is one-to-one,

$$
\lim_{x\to 0}(1+x)^{1/x}=e.
$$

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)$ $n = e^x$ for any $x > 0$.

Solution. As in the proof of Theorem 3.4, "The Number e as a Limit," we let $f(x) = \ln x$ (this is where we need $x > 0$) so that $f'(x) = 1/x$ and by the definition of derivative,

$$
\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}.
$$

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)$ $n = e^x$ for any $x > 0$.

Solution. As in the proof of Theorem 3.4, "The Number e as a Limit," we let $f(x) = \ln x$ (this is where we need $x > 0$) so that $f'(x) = 1/x$ and by the definition of derivative,

$$
\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}.
$$

Now the exponential function is continuous at all real numbers, so

$$
e^{1/x} = e^{\lim_{h \to 0} (\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(1/h)\ln((x+h)/x)}
$$

$$
= \lim_{h \to 0} e^{\ln((x+h)/x)^{1/h}} = \lim_{h \to 0} \left(\frac{x+h}{x} \right)^{1/h} = \lim_{h \to 0} \left(1 + \frac{h}{x} \right)^{1/h}
$$

.

Exercise 3.8.102. Show that $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)$ $n = e^x$ for any $x > 0$.

Solution. As in the proof of Theorem 3.4, "The Number e as a Limit," we let $f(x) = \ln x$ (this is where we need $x > 0$) so that $f'(x) = 1/x$ and by the definition of derivative,

$$
\frac{1}{x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}.
$$

Now the exponential function is continuous at all real numbers, so

$$
e^{1/x} = e^{\lim_{h \to 0} (\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{(1/h) \ln((x+h)/x)}
$$

$$
= \lim_{h \to 0} e^{\ln((x+h)/x)^{1/h}} = \lim_{h \to 0} \left(\frac{x+h}{x} \right)^{1/h} = \lim_{h \to 0} \left(1 + \frac{h}{x} \right)^{1/h}.
$$

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that
$$
\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x
$$
 for any $x > 0$.
\n**Solution (continued).** ... $e^{1/x} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}$. In particular, we have $e^{1/x} = \lim_{h \to 0^+} \left(1 + \frac{h}{x}\right)^{1/h}$. Replacing *h* with $1/n$ and noting that $h \to 0^+$
\nif and only if $n \to \infty$, we then have $e^{1/x} = \lim_{n \to \infty} \left(1 + \frac{1}{nx}\right)^n$. Now replacing *x* with $1/x$ we get $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$, as claimed.

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that
$$
\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x
$$
 for any $x > 0$.
\n**Solution (continued).** ... $e^{1/x} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}$. In particular, we have
\n $e^{1/x} = \lim_{h \to 0^+} \left(1 + \frac{h}{x}\right)^{1/h}$. Replacing *h* with $1/n$ and noting that $h \to 0^+$
\nif and only if $n \to \infty$, we then have $e^{1/x} = \lim_{n \to \infty} \left(1 + \frac{1}{nx}\right)^n$. Now
\nreplacing *x* with $1/x$ we get $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$, as claimed.