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Theorem 4.3. Rolle’s Theorem

Theorem 4.3

Theorem 4.3. Rolle’s Theorem.
Suppose that y = f (x) is continuous at every point of [a, b] and
differentiable at every point of (a, b). If f (a) = f (b) = 0, then there is at
least one number c in (a, b) at which f ′(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute
maximum and minimum for x ∈ [a, b] by Theorem 4.1 (The
Extreme-Value Theorem for Continuous Functions). As seen in Section
4.1, these extrema occur only

1. at interior points where f ′ is zero
2. at interior points where f ′ does not exist
3. at the endpoints of the function’s domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option
2 is not possible.

In the event of Option 1, the point at which an extreme value occurs, say
c , must satisfy f ′(c) = 0 by Theorem 4.2 (Local Extreme Values).
Therefore the theorem holds.

() Calculus 1 October 18, 2020 3 / 22



Theorem 4.3. Rolle’s Theorem

Theorem 4.3

Theorem 4.3. Rolle’s Theorem.
Suppose that y = f (x) is continuous at every point of [a, b] and
differentiable at every point of (a, b). If f (a) = f (b) = 0, then there is at
least one number c in (a, b) at which f ′(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute
maximum and minimum for x ∈ [a, b] by Theorem 4.1 (The
Extreme-Value Theorem for Continuous Functions). As seen in Section
4.1, these extrema occur only

1. at interior points where f ′ is zero
2. at interior points where f ′ does not exist
3. at the endpoints of the function’s domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option
2 is not possible.

In the event of Option 1, the point at which an extreme value occurs, say
c , must satisfy f ′(c) = 0 by Theorem 4.2 (Local Extreme Values).
Therefore the theorem holds.

() Calculus 1 October 18, 2020 3 / 22



Theorem 4.3. Rolle’s Theorem

Theorem 4.3

Theorem 4.3. Rolle’s Theorem.
Suppose that y = f (x) is continuous at every point of [a, b] and
differentiable at every point of (a, b). If f (a) = f (b) = 0, then there is at
least one number c in (a, b) at which f ′(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute
maximum and minimum for x ∈ [a, b] by Theorem 4.1 (The
Extreme-Value Theorem for Continuous Functions). As seen in Section
4.1, these extrema occur only

1. at interior points where f ′ is zero
2. at interior points where f ′ does not exist
3. at the endpoints of the function’s domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option
2 is not possible.

In the event of Option 1, the point at which an extreme value occurs, say
c , must satisfy f ′(c) = 0 by Theorem 4.2 (Local Extreme Values).
Therefore the theorem holds.

() Calculus 1 October 18, 2020 3 / 22



Theorem 4.3. Rolle’s Theorem

Theorem 4.3 (continued)

Theorem 4.3. Rolle’s Theorem.
Suppose that y = f (x) is continuous at every point of [a, b] and
differentiable at every point of (a, b). If f (a) = f (b) = 0, then there is at
least one number c in (a, b) at which f ′(c) = 0.

Proof (continued). In the event of Option 3 (extrema occur at the
endpoints of the function’s domain, a and b), the maximum and minimum
occur at the endpoints a and b (where f is 0) and so f must be a constant
of 0 throughout the interval. Therefore f ′(x) = 0 for all x ∈ (a, b), by
Theorem 3.3.A (Derivative of a Constant Function), and the theorem
holds.
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Exercise 4.2.60. Rolle’s Theorem Application

Exercise 4.2.60

Exercise 4.2.60. Rolle’s Theorem Application.
(a) Construct a polynomial f (x) that has zeros at x = −2, −1, 0, 1, and
2. (b) Graph f and its derivative f ′ together. How is what you see related
to Rolle’s Theorem? (c) Do g(x) = sin x and its derivative g ′ illustrate
the same phenomenon as f and f ′?

Solution. (a) We take

f (x) = (x + 2)(x + 1)x(x − 1)(x − 2) = x(x2−4)(x2−1) = x5−5x3+4x

so that f has the desired zeros (and no others) and f is degree 5.

(b) We have f ′(x) = 5x4 − 15x2 + 4 so that f has critical points when

x2 =
−(−15)±

√
(−15)2−4(5)(4)

2(5) = 15±
√

145
10 ; that is when x = ±

√
15±

√
145

10 , or

x = −
√

15−
√

145
10 ≈ −0.544, x = −

√
15+

√
145

10 ≈ −1.644,

x =

√
15−

√
145

10 ≈ 1.644, or x =

√
15+

√
145

10 ≈ 0.544.
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Exercise 4.2.60. Rolle’s Theorem Application

Exercise 4.2.60 (continued 1)

(b) Graph f and its derivative f ′ together. How is what you see related to
Rolle’s Theorem?
Solution (continued). The graph of y = f (x) is:

Notice that between each pair a and b for which f (a) = f (b) = 0 (i.e., the
zeros of f , indicated by the five blue points) there is a c such that
f ′(c) = 0 (i.e., the zeros of f ′, indicated by the four red points),

as required by Rolle’s Theorem .
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Exercise 4.2.60. Rolle’s Theorem Application

Exercise 4.2.60 (continued 2)

(c) Do g(x) = sin x and its derivative g ′ illustrate the same phenomenon
as f and f ′?
Solution (continued). The graphs of y = g(x) = sin x and
y = g ′(x) = cos x are:

Notice that between each pair a and b for which g(a) = g(b) = 0 (i.e.,
the zeros of g(x) = sin x , indicated by the blue points) there is a c such
that g ′(c) = 0 (i.e., the zeros of g ′(x) = cos x , indicated by the red
points). So yes , the same behavior is the same as that of f and f ′ with
respect to Rolle’s Theorem. �
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Theorem 4.4. The Mean Value Theorem

Theorem 4.4

Theorem 4.4. The Mean Value Theorem
Suppose that y = f (x) is continuous on a closed interval [a, b] and
differentiable on the interval (a, b). Then there is at least one point

c ∈ (a, b) such that f ′(c) =
f (b)− f (a)

b − a
.

Proof. Consider the distinct points
A(a, f (a)) and B(b, f (b)) on the graph
of y = f (x); see Figure 4.14. The secant
line through these two points, from the
point-slope form of a line, is

g(x) =
f (b)− f (a)

b − a
(x − a) + f (a).

Figure 4.14
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Theorem 4.4. The Mean Value Theorem

Theorem 4.4 (continued 1)

Proof (continued). Define the difference
between the graphs of y = f (x) and y = g(x)
as h(x) so that

h(x) = f (x)−
(

f (b)− f (a)

b − a
(x − a) + f (a)

)
;

see Figure 4.15. The function h satisfies
the hypotheses of Rolle’s Theorem (Theorem
4.3; that’s why we consider function h);
h is continuous on [a, b] and differentiable
on (a, b). Also, h(a) = h(b) = 0. So, by Rolle’s Theorem, h′(c) = 0 for
some c ∈ (a, b). We now show that c is the desired point for the
conclusion of the Mean Value Theorem.

Figure 4.15
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Theorem 4.4. The Mean Value Theorem

Theorem 4.4 (continued 2)

Theorem 4.4. The Mean Value Theorem
Suppose that y = f (x) is continuous on a closed interval [a, b] and
differentiable on the interval (a, b). Then there is at least one point

c ∈ (a, b) such that f ′(c) =
f (b)− f (a)

b − a
.

Proof (continued). Since h(x) = f (x)−
(

f (b)− f (a)

b − a
(x − a) + f (a)

)
,

then h′(x) = f ′(x)− f (b)− f (a)

b − a
, and for x = c we have

0 = h′(c) = f ′(c)− f (b)− f (a)

b − a

or

f ′(c) =
f (b)− f (a)

b − a
,

as claimed.
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Exercise 4.2.2

Exercise 4.2.2

Exercise 4.2.2. Find the value of c that satisfies
f (b)− f (a)

b − a
= f ′(c) in

the conclusion of the Mean Value Theorem for f (x) = x2/3 on interval
[0, 1].

Solution. We have a = 0, b = 1, f (x) = x2/3, and f ′(x) = (2/3)x−1/3.
So we seek c ∈ (0, 1) such that

f ′(c) = (2/3)c−1/3 =
f (b)− f (a)

b − a
=

(1)2/3 − (0)2/3

(1)− (0)
= 1.

So we need

c−1/3 = 3/2 or c = (3/2)−3 = (2/3)3 = 8/27 . �

() Calculus 1 October 18, 2020 11 / 22



Exercise 4.2.2

Exercise 4.2.2

Exercise 4.2.2. Find the value of c that satisfies
f (b)− f (a)

b − a
= f ′(c) in

the conclusion of the Mean Value Theorem for f (x) = x2/3 on interval
[0, 1].

Solution. We have a = 0, b = 1, f (x) = x2/3, and f ′(x) = (2/3)x−1/3.
So we seek c ∈ (0, 1) such that

f ′(c) = (2/3)c−1/3 =
f (b)− f (a)

b − a
=

(1)2/3 − (0)2/3

(1)− (0)
= 1. So we need

c−1/3 = 3/2 or c = (3/2)−3 = (2/3)3 = 8/27 . �

() Calculus 1 October 18, 2020 11 / 22



Exercise 4.2.2

Exercise 4.2.2

Exercise 4.2.2. Find the value of c that satisfies
f (b)− f (a)

b − a
= f ′(c) in

the conclusion of the Mean Value Theorem for f (x) = x2/3 on interval
[0, 1].

Solution. We have a = 0, b = 1, f (x) = x2/3, and f ′(x) = (2/3)x−1/3.
So we seek c ∈ (0, 1) such that

f ′(c) = (2/3)c−1/3 =
f (b)− f (a)

b − a
=

(1)2/3 − (0)2/3

(1)− (0)
= 1. So we need

c−1/3 = 3/2 or c = (3/2)−3 = (2/3)3 = 8/27 . �

() Calculus 1 October 18, 2020 11 / 22



Exercise 4.2.52

Exercise 4.2.52

Exercise 4.2.52. A trucker handed in a ticket at a toll booth showing
that in 2 hours she had covered 159 mi on a toll road with speed limit 65
mph. The trucker was cited for speeding. Why?

Solution. Introduce a Cartesian coordinate system where the truck is
located at the origin when the 2 hours begin. We use units of hours on the
horizontal t-axis and units of miles on the vertical y -axis. Let f (t)
represent the location of the truck at time t for the 2 hours under
discussion (so that f (0) = 0 mi and f (2) = 159 mi). Then for physical
reasons, f is differentiable for t ∈ (0, 2) and continuous for t ∈ [0, 2] so
that the hypotheses of the Mean Value Theorem (Theorem 4.4) are
satisfied.

So the conclusion of the Mean Value Theorem implies that there
is a time c ∈ (0, 2) such that f ′(c) = f (b)−f (a)

b−a = f (2)−f (0)
2−0 = 159−0

2 = 79.5
mi/hour. Since the derivative of position with respect to time is velocity,

then at time c hours the truck was going 79.5 mph and hence the
trucker was speeding at that time. �
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Exercise 4.2.68

Exercise 4.2.68

Exercise 4.2.68. If |f (w)− f (x)| ≤ |w − x | for all values w and x and f
is a differentiable function, prove that −1 ≤ f ′(x) ≤ 1 for all x-values.

Prove. Consider the difference quotient for f as used in the alternative

formula for derivative (see Exercise 3.2.24),
f (w)− f (x)

w − x
. By the

hypothesis that |f (w)− f (x)| ≤ |w − x |, we have that the difference

quotient satisfies

∣∣∣∣ f (w)− f (x)

w − x

∣∣∣∣ ≤ 1 for all w 6= x ; that is

−1 ≤ f (w)− f (x)

w − x
≤ 1 for all w 6= x . Now f is differentiable by

hypothesis and by the alternative formula for derivative,

f ′(x) = lim
w→x

f (w)− f (x)

w − x
.

By “Additional and Advanced Exercise 2.23,” if

M ≤ f (x) ≤ N for all x and if limx→c f (x) = L, then M ≤ L ≤ N. So by
this result (with M = −1 and N = 1) we have

−1 ≤ lim
w→x

f (w)− f (x)

w − x
= f ′(x) ≤ 1. That is, |f ′(x)| ≤ 1, as claimed.
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Corollary 4.1. Functions with Zero Derivatives Are Constant
Functions

Corollary 4.1

Corollary 4.1. Functions with Zero Derivatives Are Constant
Functions.
If f ′(x) = 0 at each point of an interval I , then f (x) = k for all x ∈ I ,
where k is a constant.

Proof. Let x1 and x2 be any two points in (a, b) with x1 < x2. Then f is
differentiable on [x1, x2] and continuous on (x1, x2), so that we can apply
the Mean Value Theorem to f on [x1, x2]. Therefore, there is c ∈ (x1, x2)

such that f ′(c) =
f (x2)− f (x1)

x2 − x1
.

Since f ′(x) = 0 for all x ∈ (a, b) by

hypothesis, then f ′(c) = 0 and so
f (x2)− f (x1)

x2 − x1
= 0 or f (x2)− f (x1) = 0

or f (x1) = f (x2) (say f (x1) = f (x2) = k). Since x1 and x2 are arbitrary
points in (a, b) then we have that f (x) = k for all x ∈ (a, b), as
claimed.
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If f ′(x) = 0 at each point of an interval I , then f (x) = k for all x ∈ I ,
where k is a constant.

Proof. Let x1 and x2 be any two points in (a, b) with x1 < x2. Then f is
differentiable on [x1, x2] and continuous on (x1, x2), so that we can apply
the Mean Value Theorem to f on [x1, x2]. Therefore, there is c ∈ (x1, x2)

such that f ′(c) =
f (x2)− f (x1)

x2 − x1
. Since f ′(x) = 0 for all x ∈ (a, b) by

hypothesis, then f ′(c) = 0 and so
f (x2)− f (x1)

x2 − x1
= 0 or f (x2)− f (x1) = 0

or f (x1) = f (x2) (say f (x1) = f (x2) = k). Since x1 and x2 are arbitrary
points in (a, b) then we have that f (x) = k for all x ∈ (a, b), as
claimed.

() Calculus 1 October 18, 2020 14 / 22



Corollary 4.1. Functions with Zero Derivatives Are Constant
Functions

Corollary 4.1

Corollary 4.1. Functions with Zero Derivatives Are Constant
Functions.
If f ′(x) = 0 at each point of an interval I , then f (x) = k for all x ∈ I ,
where k is a constant.

Proof. Let x1 and x2 be any two points in (a, b) with x1 < x2. Then f is
differentiable on [x1, x2] and continuous on (x1, x2), so that we can apply
the Mean Value Theorem to f on [x1, x2]. Therefore, there is c ∈ (x1, x2)

such that f ′(c) =
f (x2)− f (x1)

x2 − x1
. Since f ′(x) = 0 for all x ∈ (a, b) by

hypothesis, then f ′(c) = 0 and so
f (x2)− f (x1)

x2 − x1
= 0 or f (x2)− f (x1) = 0

or f (x1) = f (x2) (say f (x1) = f (x2) = k). Since x1 and x2 are arbitrary
points in (a, b) then we have that f (x) = k for all x ∈ (a, b), as
claimed.

() Calculus 1 October 18, 2020 14 / 22



Corollary 4.2. Functions with the Same Derivative Differ by a
Constant

Corollary 4.2

Corollary 4.2. Functions with the Same Derivative Differ by a
Constant
If f ′(x) = g ′(x) at each point of an interval (a, b), then there exists a
constant k such that f (x) = g(x) + k for all x ∈ (a, b).

Proof. Consider the function h(x) = f (x)− g(x). Then we have
h′(x) = f ′(x)− g ′(x) and so h′(x) = 0 for all x ∈ (a, b), by hypothesis. So
h(x) is constant on (a, b) by Corollary 4.1, say h(x) = k for all x ∈ (a, b).
Therefore f (x)− g(x) = k and f (x) = g(x) + k, as claimed.
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Exercise 4.2.40

Exercise 4.2.40

Exercise 4.2.40. Find the function g with derivative g ′(x) =
1

x2
+ 2x

whose graph passes through the point P(−1, 1).

Solution. First, g ′(x) = x−2 + 2x and one function that has this as its
derivative is −x−1 + x2. We know by Corollary 4.2, “Functions with the
Same Derivative Differ by a Constant,” that any function with derivative
x−2 + 2x must be of the form −x−1 + x2 + k for some constant k. So we
must have that g itself is of this form, g(x) = −x−1 + x2 + k for some k.

To find k, we know that since the graph of y = g(x) passes through the
point P(−1, 1), then we must have g(−1) = 1; that is, we have
g(−1) = −(−1)−1 + (−1)2 + k = 1 or 1 + 1 + k = 1 or k = −1. Hence,

g(x) = −x−1 + x2 − 1 . �
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Example 4.2.A. Finding Velocity and Position from Acceleration

Example 4.2.A

Example 4.2.A. Finding Velocity and Position from Acceleration.
Suppose an object falls vertically in a gravitational field with constant
acceleration of −9.8 m/sec2. If the height at time t is given by s(t) (so
that s ′′(t) = a(t) = −9.8 m/sec2), the initial height is s(0) = s0 m, and
the initial velocity is s ′(0) = v(0) = v0 m/sec, then find the velocity
function v(t) and the height function s(t).

Solution. With s(t) as position, v(t) as velocity, and a(t) as acceleration,
we have a(t) = v ′(t) and v(t) = s ′(t). Since a(t) = −9.8 m/sec2, then
one function that has this as its derivative is −9.8t. We know by Corollary
4.2, “Functions with the Same Derivative Differ by a Constant,” that any
function with derivative −9.8 must be of the form −9.8t + k1 for some
constant k1; in particular, v(t) = −9.8t + k1 m/sec for some constant k1.
Since v(0) = v0 then we have v(0) = −9.8(0) + k1 = v0 or k1 = v0.
Therefore, v(t) = −9.8t + v0.
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Example 4.2.A. Finding Velocity and Position from Acceleration

Example 4.2.A (continued)

Example 4.2.A. Finding Velocity and Position from Acceleration.
Suppose an object falls vertically in a gravitational field with constant
acceleration of −9.8 m/sec2. If the height at time t is given by s(t) (so
that s ′′(t) = a(t) = −9.8 m/sec2), the initial height s(0) = s0 m and the
initial velocity is s ′(0) = v(0) = v0 m/sec, then find the velocity function
v(t) and the height function s(t).

Solution (continued). Therefore, v(t) = −9.8t + v0. One function that
has −9.8t + v0 as its derivative is −4.9t2 + v0t, and by Corollary 4.2 any
function with derivative −9.8t + v0 is of the form −4.9t2 + v0t + k2 for
come constant k2; in particular, s(t) = −4.9t2 + v0t + k2 m for some
constant k2. Since s(0) = s0 then we have
s(0) = −4.9(0)2 + v0(0) + k2 = s0 or k2 = s0. Therefore,

s(t) = −4.9t2 + v0t + s0 m . �
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Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural
Logarithm

Theorem 1.6.1/Theorem 4.2.A

Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural
Logarithm
For any numbers b > 0 and x > 0 we have

1. ln bx = ln b + ln x

2. ln
b

x
= ln b − ln x

3. ln
1

x
= − ln x

4. ln x r = r ln x .

Proof. First for (1). Notice that
d

dx
[ln bx ] =

y
1

bx

d

dx
[bx ] =

y
1

bx
[b] =

1

x
.

This is the same as the derivative of ln x . Therefore by Corollary 4.2, ln bx
and ln x differ by a constant, say ln bx = ln x + k1 for some constant k1.
By setting x = 1 we need ln b = ln 1 + k1 = 0 + k1 = k1. Therefore
k1 = ln b and we have the identity ln bx = ln b + ln x .
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Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural
Logarithm

Theorem 1.6.1/Theorem 4.2.A (continued 1)

For any numbers b > 0 and x > 0 we have

2. ln
b

x
= ln b − ln x

3. ln
1

x
= − ln x

4. ln x r = r ln x .

Proof (continued). Now for (2). We know by (1) that

ln
1

x
+ ln x = ln

(
1

x
x

)
= ln 1 = 0. Therefore ln

1

x
= − ln x . Again by (1)

we have ln
b

x
= ln

(
b

1

x

)
= ln b + ln

1

x
= ln b − ln x . Notice that (3)

follows from this with b = 1.
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Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural
Logarithm

Theorem 1.6.1/Theorem 4.2.A (continued 2)

For any numbers b > 0 and x > 0 we have

4. ln x r = r ln x .

Proof (continued). Now for part (4). We have by the Chain Rule
(Theorem 3.2) and the General Power Rule for Derivatives (Theorem
3.3.C/3.8.D):

d

dx
[ln x r ] =

y
1

x r

d

dx
[x r ] =

y
1

x r

[
rx r−1

]
= r

1

x
= r

d

dx
[ln x ] =

d

dx
[r ln x ] .

As in the proof of (1), since ln xrn and r ln x have the same derivative, we
have ln x r = r ln x + k2 for some k2. With x = 1 we see that k2 = 0 and
we have ln x r = r ln x .
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Theorem 4.2.B(1)

Theorem 4.2.B(1)

Theorem 4.2.B. For all numbers x , x1, and x2, the natural exponential ex

obeys the following laws:

1. ex1ex2 = ex1+x2 .

Proof. Let y1 = ex1 and y2 = ex2 . Then ln y1 = ln ex1 = x1 and
ln y2 = ln ex2 = x2. So x1 + x2 = ln y1 + ln y2 = ln y1y2, and hence

ex1+x2 = e ln y1y2 = y1y2 = ex1ex2 ,

as claimed.
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