Calculus 1

Chapter 4. Applications of Derivatives

4.2. The Mean Value Theorem —Examples and Proofs

Table of contents

- Theorem 4.3. Rolle's Theorem
- 2 Exercise 4.2.60. Rolle's Theorem Application
- 3 Theorem 4.4. The Mean Value Theorem
- 4 Exercise 4.2.2
- 5 Exercise 4.2.52
- 6 Exercise 4.2.68
- Corollary 4.1. Functions with Zero Derivatives Are Constant Functions
- 8 Corollary 4.2. Functions with the Same Derivative Differ by a Constant
 - Exercise 4.2.40
- Example 4.2.A. Finding Velocity and Position from Acceleration
 - Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural Logarithm
 - Department Theorem 4.2.B(1)

Theorem 4.3. Rolle's Theorem.

Suppose that y = f(x) is continuous at every point of [a, b] and differentiable at every point of (a, b). If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which f'(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute maximum and minimum for $x \in [a, b]$ by Theorem 4.1 (The Extreme-Value Theorem for Continuous Functions). As seen in Section 4.1, these extrema occur only

- 1. at interior points where f' is zero
- 2. at interior points where f' does not exist
- 3. at the endpoints of the function's domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option 2 is not possible.

Theorem 4.3. Rolle's Theorem.

Suppose that y = f(x) is continuous at every point of [a, b] and differentiable at every point of (a, b). If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which f'(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute maximum and minimum for $x \in [a, b]$ by Theorem 4.1 (The Extreme-Value Theorem for Continuous Functions). As seen in Section 4.1, these extrema occur only

- 1. at interior points where f' is zero
- 2. at interior points where f' does not exist
- 3. at the endpoints of the function's domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option 2 is not possible.

In the event of Option 1, the point at which an extreme value occurs, say c, must satisfy f'(c) = 0 by Theorem 4.2 (Local Extreme Values). Therefore the theorem holds.

Theorem 4.3. Rolle's Theorem.

Suppose that y = f(x) is continuous at every point of [a, b] and differentiable at every point of (a, b). If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which f'(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute maximum and minimum for $x \in [a, b]$ by Theorem 4.1 (The Extreme-Value Theorem for Continuous Functions). As seen in Section 4.1, these extrema occur only

- 1. at interior points where f' is zero
- 2. at interior points where f' does not exist
- 3. at the endpoints of the function's domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option 2 is not possible.

In the event of Option 1, the point at which an extreme value occurs, say c, must satisfy f'(c) = 0 by Theorem 4.2 (Local Extreme Values). Therefore the theorem holds.

Theorem 4.3 (continued)

Theorem 4.3. Rolle's Theorem.

Suppose that y = f(x) is continuous at every point of [a, b] and differentiable at every point of (a, b). If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which f'(c) = 0.

Proof (continued). In the event of Option 3 (extrema occur at the endpoints of the function's domain, *a* and *b*), the maximum and minimum occur at the endpoints *a* and *b* (where *f* is 0) and so *f* must be a constant of 0 throughout the interval. Therefore f'(x) = 0 for all $x \in (a, b)$, by Theorem 3.3.A (Derivative of a Constant Function), and the theorem holds.

Exercise 4.2.60. Rolle's Theorem Application.

(a) Construct a polynomial f(x) that has zeros at x = -2, -1, 0, 1, and 2. (b) Graph f and its derivative f' together. How is what you see related to Rolle's Theorem? (c) Do $g(x) = \sin x$ and its derivative g' illustrate the same phenomenon as f and f'?

Solution. (a) We take $f(x) = (x+2)(x+1)x(x-1)(x-2) = x(x^2-4)(x^2-1) = x^5-5x^3+4x$ so that f has the desired zeros (and no others) and f is degree F

Calculus 1

so that f has the desired zeros (and no others) and f is degree 5.

Exercise 4.2.60. Rolle's Theorem Application.

(a) Construct a polynomial f(x) that has zeros at x = -2, -1, 0, 1, and 2. (b) Graph f and its derivative f' together. How is what you see related to Rolle's Theorem? (c) Do $g(x) = \sin x$ and its derivative g' illustrate the same phenomenon as f and f'?

Solution. (a) We take

$$f(x) = (x+2)(x+1)x(x-1)(x-2) = x(x^2-4)(x^2-1) = x^5-5x^3+4x$$

so that *f* has the desired zeros (and no others) and *f* is degree 5.
(b) We have $f'(x) = 5x^4 - 15x^2 + 4$ so that *f* has critical points when
 $x^2 = \frac{-(-15)\pm\sqrt{(-15)^2-4(5)(4)}}{2(5)} = \frac{15\pm\sqrt{145}}{10}$; that is when $x = \pm\sqrt{\frac{15\pm\sqrt{145}}{10}}$, or
 $x = -\sqrt{\frac{15-\sqrt{145}}{10}} \approx -0.544$, $x = -\sqrt{\frac{15+\sqrt{145}}{10}} \approx -1.644$,
 $x = \sqrt{\frac{15-\sqrt{145}}{10}} \approx 1.644$, or $x = \sqrt{\frac{15+\sqrt{145}}{10}} \approx 0.544$.

Exercise 4.2.60. Rolle's Theorem Application.

(a) Construct a polynomial f(x) that has zeros at x = -2, -1, 0, 1, and 2. (b) Graph f and its derivative f' together. How is what you see related to Rolle's Theorem? (c) Do $g(x) = \sin x$ and its derivative g' illustrate the same phenomenon as f and f'?

Solution. (a) We take

$$f(x) = (x+2)(x+1)x(x-1)(x-2) = x(x^2-4)(x^2-1) = x^5-5x^3+4x$$

so that *f* has the desired zeros (and no others) and *f* is degree 5.
(b) We have $f'(x) = 5x^4 - 15x^2 + 4$ so that *f* has critical points when
 $x^2 = \frac{-(-15)\pm\sqrt{(-15)^2-4(5)(4)}}{2(5)} = \frac{15\pm\sqrt{145}}{10}$; that is when $x = \pm\sqrt{\frac{15\pm\sqrt{145}}{10}}$, or
 $x = -\sqrt{\frac{15-\sqrt{145}}{10}} \approx -0.544$, $x = -\sqrt{\frac{15+\sqrt{145}}{10}} \approx -1.644$,
 $x = \sqrt{\frac{15-\sqrt{145}}{10}} \approx 1.644$, or $x = \sqrt{\frac{15+\sqrt{145}}{10}} \approx 0.544$.

Exercise 4.2.60 (continued 1)

(b) Graph f and its derivative f' together. How is what you see related to Rolle's Theorem?

Solution (continued). The graph of y = f(x) is:

Notice that between each pair a and b for which f(a) = f(b) = 0 (i.e., the zeros of f, indicated by the five blue points) there is a c such that f'(c) = 0 (i.e., the zeros of f', indicated by the four red points), as required by Rolle's Theorem.

Exercise 4.2.60 (continued 2)

(c) Do $g(x) = \sin x$ and its derivative g' illustrate the same phenomenon as f and f'?

Solution (continued). The graphs of $y = g(x) = \sin x$ and $y = g'(x) = \cos x$ are:

Notice that between each pair *a* and *b* for which g(a) = g(b) = 0 (i.e., the zeros of $g(x) = \sin x$, indicated by the blue points) there is a *c* such that g'(c) = 0 (i.e., the zeros of $g'(x) = \cos x$, indicated by the red points). So yes, the same behavior is the same as that of *f* and *f'* with respect to Rolle's Theorem. \Box

Theorem 4.4. The Mean Value Theorem

Suppose that y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval (a, b). Then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Consider the distinct points A(a, f(a)) and B(b, f(b)) on the graph of y = f(x); see Figure 4.14. The secant line through these two points, from the point-slope form of a line, is $g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$

Theorem 4.4. The Mean Value Theorem

Suppose that y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval (a, b). Then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Consider the distinct points A(a, f(a)) and B(b, f(b)) on the graph of y = f(x); see Figure 4.14. The secant line through these two points, from the point-slope form of a line, is $g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$

Theorem 4.4. The Mean Value Theorem

Suppose that y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval (a, b). Then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Consider the distinct points A(a, f(a)) and B(b, f(b)) on the graph of y = f(x); see Figure 4.14. The secant line through these two points, from the point-slope form of a line, is $g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$

Figure 4.14

Theorem 4.4 (continued 1)

Proof (continued). Define the difference between the graphs of y = f(x) and y = g(x)as h(x) so that

$$h(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right);$$

see Figure 4.15. The function h satisfies the hypotheses of Rolle's Theorem (Theorem 4.3; that's why we consider function h); h is continuous on [a, b] and differentiable on (a, b). Also, h(a) = h(b) = 0. So, by Rolle's Theorem, h'(c) = 0 for some $c \in (a, b)$. We now show that c is the desired point for the conclusion of the Mean Value Theorem.

Theorem 4.4 (continued 1)

Proof (continued). Define the difference
between the graphs of
$$y = f(x)$$
 and $y = g(x)$
as $h(x)$ so that
 $h(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$;
see Figure 4.15. The function h satisfies
the hypotheses of Rolle's Theorem (Theorem
4.3; that's why we consider function h);
 h is continuous on $[a, b]$ and differentiable
on (a, b) . Also, $h(a) = h(b) = 0$. So, by Rolle's Theorem, $h'(c) = 0$ for
some $c \in (a, b)$. We now show that c is the desired point for the
conclusion of the Mean Value Theorem.

Theorem 4.4 (continued 1)

Proof (continued). Define the difference
between the graphs of
$$y = f(x)$$
 and $y = g(x)$
as $h(x)$ so that
 $h(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$;
see Figure 4.15. The function h satisfies
the hypotheses of Rolle's Theorem (Theorem
4.3; that's why we consider function h);
 h is continuous on $[a, b]$ and differentiable
on (a, b) . Also, $h(a) = h(b) = 0$. So, by Rolle's Theorem, $h'(c) = 0$ for
some $c \in (a, b)$. We now show that c is the desired point for the
conclusion of the Mean Value Theorem.

Theorem 4.4 (continued 2)

Theorem 4.4. The Mean Value Theorem

Suppose that y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval (a, b). Then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof (continued). Since
$$h(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$$
,

then
$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
, and for $x = c$ we have

$$0 = h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

or

$$f'(c)=\frac{f(b)-f(a)}{b-a},$$

as claimed.

Calculus 1

Exercise 4.2.2. Find the value of c that satisfies $\frac{f(b) - f(a)}{b - a} = f'(c)$ in the conclusion of the Mean Value Theorem for $f(x) = x^{2/3}$ on interval [0, 1].

Solution. We have a = 0, b = 1, $f(x) = x^{2/3}$, and $f'(x) = (2/3)x^{-1/3}$. So we seek $c \in (0,1)$ such that $f'(c) = (2/3)c^{-1/3} = \frac{f(b) - f(a)}{b - a} = \frac{(1)^{2/3} - (0)^{2/3}}{(1) - (0)} = 1.$

Exercise 4.2.2. Find the value of c that satisfies $\frac{f(b) - f(a)}{b - a} = f'(c)$ in the conclusion of the Mean Value Theorem for $f(x) = x^{2/3}$ on interval [0, 1].

Solution. We have a = 0, b = 1, $f(x) = x^{2/3}$, and $f'(x) = (2/3)x^{-1/3}$. So we seek $c \in (0, 1)$ such that $f'(c) = (2/3)c^{-1/3} = \frac{f(b) - f(a)}{b - a} = \frac{(1)^{2/3} - (0)^{2/3}}{(1) - (0)} = 1$. So we need $c^{-1/3} = 3/2$ or $c = (3/2)^{-3} = (2/3)^3 = 8/27$. \Box

Exercise 4.2.2. Find the value of c that satisfies $\frac{f(b) - f(a)}{b - a} = f'(c)$ in the conclusion of the Mean Value Theorem for $f(x) = x^{2/3}$ on interval [0, 1].

Solution. We have a = 0, b = 1, $f(x) = x^{2/3}$, and $f'(x) = (2/3)x^{-1/3}$. So we seek $c \in (0, 1)$ such that $f'(c) = (2/3)c^{-1/3} = \frac{f(b) - f(a)}{b - a} = \frac{(1)^{2/3} - (0)^{2/3}}{(1) - (0)} = 1$. So we need $c^{-1/3} = 3/2$ or $c = (3/2)^{-3} = (2/3)^3 = \boxed{8/27}$. \Box

Exercise 4.2.52. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 mi on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

Solution. Introduce a Cartesian coordinate system where the truck is located at the origin when the 2 hours begin. We use units of hours on the horizontal *t*-axis and units of miles on the vertical *y*-axis. Let f(t) represent the location of the truck at time *t* for the 2 hours under discussion (so that f(0) = 0 mi and f(2) = 159 mi). Then for physical reasons, *f* is differentiable for $t \in (0, 2)$ and continuous for $t \in [0, 2]$ so that the hypotheses of the Mean Value Theorem (Theorem 4.4) are satisfied.

Exercise 4.2.52. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 mi on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

Solution. Introduce a Cartesian coordinate system where the truck is located at the origin when the 2 hours begin. We use units of hours on the horizontal *t*-axis and units of miles on the vertical *y*-axis. Let f(t)represent the location of the truck at time t for the 2 hours under discussion (so that f(0) = 0 mi and f(2) = 159 mi). Then for physical reasons, f is differentiable for $t \in (0, 2)$ and continuous for $t \in [0, 2]$ so that the hypotheses of the Mean Value Theorem (Theorem 4.4) are satisfied. So the conclusion of the Mean Value Theorem implies that there is a time $c \in (0,2)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a} = \frac{f(2)-f(0)}{2-0} = \frac{159-0}{2} = 79.5$ mi/hour. Since the derivative of position with respect to time is velocity, then at time c hours the truck was going 79.5 mph and hence the trucker was speeding at that time. \Box

Exercise 4.2.52. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 mi on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

Solution. Introduce a Cartesian coordinate system where the truck is located at the origin when the 2 hours begin. We use units of hours on the horizontal *t*-axis and units of miles on the vertical *y*-axis. Let f(t)represent the location of the truck at time t for the 2 hours under discussion (so that f(0) = 0 mi and f(2) = 159 mi). Then for physical reasons, f is differentiable for $t \in (0, 2)$ and continuous for $t \in [0, 2]$ so that the hypotheses of the Mean Value Theorem (Theorem 4.4) are satisfied. So the conclusion of the Mean Value Theorem implies that there is a time $c \in (0,2)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a} = \frac{f(2)-f(0)}{2-0} = \frac{159-0}{2} = 79.5$ mi/hour. Since the derivative of position with respect to time is velocity, then at time c hours the truck was going 79.5 mph and hence the trucker was speeding at that time. \Box

Exercise 4.2.68. If $|f(w) - f(x)| \le |w - x|$ for all values w and x and f is a differentiable function, prove that $-1 \le f'(x) \le 1$ for all x-values.

Prove. Consider the difference quotient for f as used in the alternative formula for derivative (see Exercise 3.2.24), $\frac{f(w) - f(x)}{w}$. By the hypothesis that $|f(w) - f(x)| \le |w - x|$, we have that the difference quotient satisfies $\left|\frac{f(w) - f(x)}{w - x}\right| \le 1$ for all $w \ne x$; that is $-1 \leq \frac{f(w) - f(x)}{w} \leq 1$ for all $w \neq x$. Now f is differentiable by hypothesis and by the alternative formula for derivative. $f'(x) = \lim_{w \to x} \frac{f(w) - f(x)}{w - x}.$

Exercise 4.2.68. If $|f(w) - f(x)| \le |w - x|$ for all values w and x and f is a differentiable function, prove that $-1 \le f'(x) \le 1$ for all x-values. **Prove.** Consider the difference quotient for f as used in the alternative formula for derivative (see Exercise 3.2.24), $\frac{f(w) - f(x)}{w - x}$. By the hypothesis that $|f(w) - f(x)| \le |w - x|$, we have that the difference quotient satisfies $\left|\frac{f(w) - f(x)}{w - x}\right| \le 1$ for all $w \ne x$; that is $-1 \le \frac{f(w) - f(x)}{w - x} \le 1$ for all $w \ne x$. Now f is differentiable by hypothesis and by the alternative formula for derivative. $f'(x) = \lim_{w \to x} \frac{f(w) - f(x)}{w - x}$. By "Additional and Advanced Exercise 2.23," if $M \leq f(x) \leq N$ for all x and if $\lim_{x\to c} f(x) = L$, then $M \leq L \leq N$. So by this result (with M = -1 and N = 1) we have $-1 \le \lim_{w \to w} \frac{f(w) - f(x)}{w} = f'(x) \le 1$. That is, $|f'(x)| \le 1$, as claimed.

Exercise 4.2.68. If $|f(w) - f(x)| \le |w - x|$ for all values w and x and f is a differentiable function, prove that $-1 \le f'(x) \le 1$ for all x-values. **Prove.** Consider the difference quotient for f as used in the alternative formula for derivative (see Exercise 3.2.24), $\frac{f(w) - f(x)}{w - x}$. By the hypothesis that $|f(w) - f(x)| \le |w - x|$, we have that the difference quotient satisfies $\left|\frac{f(w) - f(x)}{w - x}\right| \le 1$ for all $w \ne x$; that is $-1 \leq \frac{f(w) - f(x)}{w} \leq 1$ for all $w \neq x$. Now f is differentiable by hypothesis and by the alternative formula for derivative. $f'(x) = \lim_{w \to x} \frac{f(w) - f(x)}{w - x}$. By "Additional and Advanced Exercise 2.23," if $M \leq f(x) \leq N$ for all x and if $\lim_{x\to c} f(x) = L$, then $M \leq L \leq N$. So by this result (with M = -1 and N = 1) we have $-1 \leq \lim_{w \to x} \frac{f(w) - f(x)}{w - x} = f'(x) \leq 1$. That is, $|f'(x)| \leq 1$, as claimed.

Corollary 4.1. Functions with Zero Derivatives Are Constant Functions.

If f'(x) = 0 at each point of an interval *I*, then f(x) = k for all $x \in I$, where *k* is a constant.

Proof. Let x_1 and x_2 be any two points in (a, b) with $x_1 < x_2$. Then f is differentiable on $[x_1, x_2]$ and continuous on (x_1, x_2) , so that we can apply the Mean Value Theorem to f on $[x_1, x_2]$. Therefore, there is $c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

Corollary 4.1. Functions with Zero Derivatives Are Constant Functions.

If f'(x) = 0 at each point of an interval *I*, then f(x) = k for all $x \in I$, where *k* is a constant.

Proof. Let x_1 and x_2 be any two points in (a, b) with $x_1 < x_2$. Then f is differentiable on $[x_1, x_2]$ and continuous on (x_1, x_2) , so that we can apply the Mean Value Theorem to f on $[x_1, x_2]$. Therefore, there is $c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Since f'(x) = 0 for all $x \in (a, b)$ by hypothesis, then f'(c) = 0 and so $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$ or $f(x_2) - f(x_1) = 0$ or $f(x_1) = f(x_2)$ (say $f(x_1) = f(x_2) = k$). Since x_1 and x_2 are arbitrary points in (a, b) then we have that f(x) = k for all $x \in (a, b)$, as claimed.

Calculus 1

Corollary 4.1. Functions with Zero Derivatives Are Constant Functions.

If f'(x) = 0 at each point of an interval *I*, then f(x) = k for all $x \in I$, where *k* is a constant.

Proof. Let x_1 and x_2 be any two points in (a, b) with $x_1 < x_2$. Then f is differentiable on $[x_1, x_2]$ and continuous on (x_1, x_2) , so that we can apply the Mean Value Theorem to f on $[x_1, x_2]$. Therefore, there is $c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Since f'(x) = 0 for all $x \in (a, b)$ by hypothesis, then f'(c) = 0 and so $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$ or $f(x_2) - f(x_1) = 0$ or $f(x_1) = f(x_2)$ (say $f(x_1) = f(x_2) = k$). Since x_1 and x_2 are arbitrary points in (a, b) then we have that f(x) = k for all $x \in (a, b)$, as claimed.

Corollary 4.2. Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point of an interval (a, b), then there exists a constant k such that f(x) = g(x) + k for all $x \in (a, b)$.

Proof. Consider the function h(x) = f(x) - g(x). Then we have h'(x) = f'(x) - g'(x) and so h'(x) = 0 for all $x \in (a, b)$, by hypothesis. So h(x) is constant on (a, b) by Corollary 4.1, say h(x) = k for all $x \in (a, b)$. Therefore f(x) - g(x) = k and f(x) = g(x) + k, as claimed.

Corollary 4.2. Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point of an interval (a, b), then there exists a constant k such that f(x) = g(x) + k for all $x \in (a, b)$.

Proof. Consider the function h(x) = f(x) - g(x). Then we have h'(x) = f'(x) - g'(x) and so h'(x) = 0 for all $x \in (a, b)$, by hypothesis. So h(x) is constant on (a, b) by Corollary 4.1, say h(x) = k for all $x \in (a, b)$. Therefore f(x) - g(x) = k and f(x) = g(x) + k, as claimed.

Exercise 4.2.40. Find the function g with derivative $g'(x) = \frac{1}{x^2} + 2x$ whose graph passes through the point P(-1, 1).

Solution. First, $g'(x) = x^{-2} + 2x$ and one function that has this as its derivative is $-x^{-1} + x^2$. We know by Corollary 4.2, "Functions with the Same Derivative Differ by a Constant," that any function with derivative $x^{-2} + 2x$ must be of the form $-x^{-1} + x^2 + k$ for some constant k. So we must have that g itself is of this form, $g(x) = -x^{-1} + x^2 + k$ for some k.

Exercise 4.2.40. Find the function g with derivative $g'(x) = \frac{1}{x^2} + 2x$ whose graph passes through the point P(-1, 1).

Solution. First, $g'(x) = x^{-2} + 2x$ and one function that has this as its derivative is $-x^{-1} + x^2$. We know by Corollary 4.2, "Functions with the Same Derivative Differ by a Constant," that any function with derivative $x^{-2} + 2x$ must be of the form $-x^{-1} + x^2 + k$ for some constant k. So we must have that g itself is of this form, $g(x) = -x^{-1} + x^2 + k$ for some k. To find k, we know that since the graph of y = g(x) passes through the point P(-1, 1), then we must have g(-1) = 1; that is, we have $g(-1) = -(-1)^{-1} + (-1)^2 + k = 1$ or 1 + 1 + k = 1 or k = -1. Hence, $g(x) = -x^{-1} + x^2 - 1$. \Box

Exercise 4.2.40. Find the function g with derivative $g'(x) = \frac{1}{x^2} + 2x$ whose graph passes through the point P(-1, 1).

Solution. First, $g'(x) = x^{-2} + 2x$ and one function that has this as its derivative is $-x^{-1} + x^2$. We know by Corollary 4.2, "Functions with the Same Derivative Differ by a Constant," that any function with derivative $x^{-2} + 2x$ must be of the form $-x^{-1} + x^2 + k$ for some constant k. So we must have that g itself is of this form, $g(x) = -x^{-1} + x^2 + k$ for some k. To find k, we know that since the graph of y = g(x) passes through the point P(-1, 1), then we must have g(-1) = 1; that is, we have $g(-1) = -(-1)^{-1} + (-1)^2 + k = 1$ or 1 + 1 + k = 1 or k = -1. Hence, $g(x) = -x^{-1} + x^2 - 1$. \Box

Example 4.2.A

Example 4.2.A. Finding Velocity and Position from Acceleration. Suppose an object falls vertically in a gravitational field with constant acceleration of -9.8 m/sec^2 . If the height at time *t* is given by s(t) (so that $s''(t) = a(t) = -9.8 \text{ m/sec}^2$), the initial height is $s(0) = s_0$ m, and the initial velocity is $s'(0) = v(0) = v_0$ m/sec, then find the velocity function v(t) and the height function s(t).

Solution. With s(t) as position, v(t) as velocity, and a(t) as acceleration, we have a(t) = v'(t) and v(t) = s'(t). Since $a(t) = -9.8 \text{ m/sec}^2$, then one function that has this as its derivative is -9.8t. We know by Corollary 4.2, "Functions with the Same Derivative Differ by a Constant," that any function with derivative -9.8 must be of the form $-9.8t + k_1$ for some constant k_1 ; in particular, $v(t) = -9.8t + k_1$ m/sec for some constant k_1 . Since $v(0) = v_0$ then we have $v(0) = -9.8(0) + k_1 = v_0$ or $k_1 = v_0$. Therefore, $v(t) = -9.8t + v_0$.

Example 4.2.A

Example 4.2.A. Finding Velocity and Position from Acceleration. Suppose an object falls vertically in a gravitational field with constant acceleration of -9.8 m/sec^2 . If the height at time *t* is given by s(t) (so that $s''(t) = a(t) = -9.8 \text{ m/sec}^2$), the initial height is $s(0) = s_0$ m, and the initial velocity is $s'(0) = v(0) = v_0$ m/sec, then find the velocity function v(t) and the height function s(t).

Solution. With s(t) as position, v(t) as velocity, and a(t) as acceleration, we have a(t) = v'(t) and v(t) = s'(t). Since $a(t) = -9.8 \text{ m/sec}^2$, then one function that has this as its derivative is -9.8t. We know by Corollary 4.2, "Functions with the Same Derivative Differ by a Constant," that any function with derivative -9.8 must be of the form $-9.8t + k_1$ for some constant k_1 ; in particular, $v(t) = -9.8t + k_1$ m/sec for some constant k_1 . Since $v(0) = v_0$ then we have $v(0) = -9.8(0) + k_1 = v_0$ or $k_1 = v_0$. Therefore, $v(t) = -9.8t + v_0$.

Example 4.2.A (continued)

Example 4.2.A. Finding Velocity and Position from Acceleration. Suppose an object falls vertically in a gravitational field with constant acceleration of -9.8 m/sec^2 . If the height at time t is given by s(t) (so that $s''(t) = a(t) = -9.8 \text{ m/sec}^2$), the initial height $s(0) = s_0$ m and the initial velocity is $s'(0) = v(0) = v_0$ m/sec, then find the velocity function v(t) and the height function s(t).

Solution (continued). Therefore, $v(t) = -9.8t + v_0$. One function that has $-9.8t + v_0$ as its derivative is $-4.9t^2 + v_0t$, and by Corollary 4.2 any function with derivative $-9.8t + v_0$ is of the form $-4.9t^2 + v_0t + k_2$ for come constant k_2 ; in particular, $s(t) = -4.9t^2 + v_0t + k_2$ m for some constant k_2 . Since $s(0) = s_0$ then we have $s(0) = -4.9(0)^2 + v_0(0) + k_2 = s_0$ or $k_2 = s_0$. Therefore, $s(t) = -4.9t^2 + v_0t + s_0$ m.

Example 4.2.A (continued)

Example 4.2.A. Finding Velocity and Position from Acceleration. Suppose an object falls vertically in a gravitational field with constant acceleration of -9.8 m/sec^2 . If the height at time *t* is given by s(t) (so that $s''(t) = a(t) = -9.8 \text{ m/sec}^2$), the initial height $s(0) = s_0$ m and the initial velocity is $s'(0) = v(0) = v_0$ m/sec, then find the velocity function v(t) and the height function s(t).

Solution (continued). Therefore, $v(t) = -9.8t + v_0$. One function that has $-9.8t + v_0$ as its derivative is $-4.9t^2 + v_0t$, and by Corollary 4.2 any function with derivative $-9.8t + v_0$ is of the form $-4.9t^2 + v_0t + k_2$ for come constant k_2 ; in particular, $s(t) = -4.9t^2 + v_0t + k_2$ m for some constant k_2 . Since $s(0) = s_0$ then we have $s(0) = -4.9(0)^2 + v_0(0) + k_2 = s_0$ or $k_2 = s_0$. Therefore, $s(t) = -4.9t^2 + v_0t + s_0$ m. \Box

Theorem 1.6.1/Theorem 4.2.A

Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural Logarithm

For any numbers b > 0 and x > 0 we have

1.
$$\ln bx = \ln b + \ln x$$

2.
$$\ln \frac{b}{x} = \ln b - \ln x$$

3.
$$\ln \frac{1}{x} = -\ln x$$

4.
$$\ln x^{r} = r \ln x.$$

Proof. First for (1). Notice that $\frac{d}{dx} [\ln bx] = \frac{1}{bx} \frac{d}{dx} [bx] = \frac{1}{bx} \frac{d}{bx} [b] = \frac{1}{x}$.

Theorem 1.6.1/Theorem 4.2.A

Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural Logarithm

For any numbers b > 0 and x > 0 we have

1.
$$\ln bx = \ln b + \ln x$$

2.
$$\ln \frac{b}{x} = \ln b - \ln x$$

3.
$$\ln \frac{1}{x} = -\ln x$$

4.
$$\ln x^{r} = r \ln x.$$

Proof. First for (1). Notice that $\frac{d}{dx} [\ln bx] = \frac{1}{bx} \frac{d}{dx} [bx] = \frac{1}{bx} [b] = \frac{1}{x}$. This is the same as the derivative of $\ln x$. Therefore by Corollary 4.2, $\ln bx$ and $\ln x$ differ by a constant, say $\ln bx = \ln x + k_1$ for some constant k_1 . By setting x = 1 we need $\ln b = \ln 1 + k_1 = 0 + k_1 = k_1$. Therefore $k_1 = \ln b$ and we have the identity $\ln bx = \ln b + \ln x$.

Theorem 1.6.1/Theorem 4.2.A

Theorem 1.6.1/Theorem 4.2.A. Algebraic Properties of the Natural Logarithm

For any numbers b > 0 and x > 0 we have

1.
$$\ln bx = \ln b + \ln x$$

2.
$$\ln \frac{b}{x} = \ln b - \ln x$$

3.
$$\ln \frac{1}{x} = -\ln x$$

4.
$$\ln x^{r} = r \ln x.$$

Proof. First for (1). Notice that $\frac{d}{dx} [\ln bx] = \frac{1}{bx} \frac{d}{dx} [bx] = \frac{1}{bx} [b] = \frac{1}{x}$. This is the same as the derivative of $\ln x$. Therefore by Corollary 4.2, $\ln bx$ and $\ln x$ differ by a constant, say $\ln bx = \ln x + k_1$ for some constant k_1 . By setting x = 1 we need $\ln b = \ln 1 + k_1 = 0 + k_1 = k_1$. Therefore $k_1 = \ln b$ and we have the identity $\ln bx = \ln b + \ln x$.

Theorem 1.6.1/Theorem 4.2.A (continued 1)

For any numbers b > 0 and x > 0 we have

2.
$$\ln \frac{b}{x} = \ln b - \ln x$$

3.
$$\ln \frac{1}{x} = -\ln x$$

4.
$$\ln x^{r} = r \ln x.$$

Proof (continued). Now for (2). We know by (1) that $\ln \frac{1}{x} + \ln x = \ln \left(\frac{1}{x}x\right) = \ln 1 = 0$. Therefore $\ln \frac{1}{x} = -\ln x$. Again by (1) we have $\ln \frac{b}{x} = \ln \left(\frac{b}{x}\right) = \ln b + \ln \frac{1}{x} = \ln b - \ln x$. Notice that (3) follows from this with b = 1.

()

Theorem 1.6.1/Theorem 4.2.A (continued 1)

For any numbers b > 0 and x > 0 we have

2.
$$\ln \frac{b}{x} = \ln b - \ln x$$

3.
$$\ln \frac{1}{x} = -\ln x$$

4.
$$\ln x^{r} = r \ln x.$$

Proof (continued). Now for (2). We know by (1) that $\ln \frac{1}{x} + \ln x = \ln \left(\frac{1}{x}x\right) = \ln 1 = 0$. Therefore $\ln \frac{1}{x} = -\ln x$. Again by (1) we have $\ln \frac{b}{x} = \ln \left(b\frac{1}{x}\right) = \ln b + \ln \frac{1}{x} = \ln b - \ln x$. Notice that (3) follows from this with b = 1.

Theorem 1.6.1/Theorem 4.2.A (continued 2)

For any numbers b > 0 and x > 0 we have

4.
$$\ln x^r = r \ln x$$
.

Proof (continued). Now for part (4). We have by the Chain Rule (Theorem 3.2) and the General Power Rule for Derivatives (Theorem 3.3.C/3.8.D):

$$\frac{d}{dx} [\ln x^{r}] = \frac{1}{x^{r}} \frac{d}{dx} [x^{r}] = \frac{1}{x^{r}} [rx^{r-1}] = r\frac{1}{x} = r\frac{d}{dx} [\ln x] = \frac{d}{dx} [r \ln x].$$

As in the proof of (1), since $\ln x rn$ and $r \ln x$ have the same derivative, we have $\ln x^r = r \ln x + k_2$ for some k_2 . With x = 1 we see that $k_2 = 0$ and we have $\ln x^r = r \ln x$.

()

Theorem 1.6.1/Theorem 4.2.A (continued 2)

For any numbers b > 0 and x > 0 we have

4.
$$\ln x^r = r \ln x$$
.

Proof (continued). Now for part (4). We have by the Chain Rule (Theorem 3.2) and the General Power Rule for Derivatives (Theorem 3.3.C/3.8.D):

$$\frac{d}{dx}[\ln x^{r}] = \frac{1}{x^{r}} \frac{d}{dx}[x^{r}] = \frac{1}{x^{r}} [rx^{r-1}] = r\frac{1}{x} = r\frac{d}{dx}[\ln x] = \frac{d}{dx}[r\ln x].$$

As in the proof of (1), since $\ln xrn$ and $r \ln x$ have the same derivative, we have $\ln x^r = r \ln x + k_2$ for some k_2 . With x = 1 we see that $k_2 = 0$ and we have $\ln x^r = r \ln x$.

()

Theorem 4.2.B(1)

Theorem 4.2.B. For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1. $e^{x_1}e^{x_2} = e^{x_1+x_2}$.

Proof. Let $y_1 = e^{x_1}$ and $y_2 = e^{x_2}$. Then $\ln y_1 = \ln e^{x_1} = x_1$ and $\ln y_2 = \ln e^{x_2} = x_2$. So $x_1 + x_2 = \ln y_1 + \ln y_2 = \ln y_1 y_2$, and hence

$$e^{x_1+x_2} = e^{\ln y_1y_2} = y_1y_2 = e^{x_1}e^{x_2},$$

as claimed.

Theorem 4.2.B(1)

Theorem 4.2.B. For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1}e^{x_2} = e^{x_1+x_2}$$
.

Proof. Let $y_1 = e^{x_1}$ and $y_2 = e^{x_2}$. Then $\ln y_1 = \ln e^{x_1} = x_1$ and $\ln y_2 = \ln e^{x_2} = x_2$. So $x_1 + x_2 = \ln y_1 + \ln y_2 = \ln y_1 y_2$, and hence

$$e^{x_1+x_2} = e^{\ln y_1y_2} = y_1y_2 = e^{x_1}e^{x_2},$$

as claimed.