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Corollary 4.3. The First Derivative Test for Increasing and
Decreasing

Corollary 4.3

Corollary 4.3. The First Derivative Test for Increasing and
Decreasing.
Suppose that f is continuous on [a, b] and differentiable on (a, b)

If f ′ > 0 at each point of (a, b), then f increases on [a, b].

If f ′ < 0 at each point of (a, b), then f decreases on [a, b].

Proof. Suppose x1, x2 ∈ [a, b] with x1 < x2. The Mean Value Theorem
(Theorem 4.4) applied to f on [x1, x2] implies that
f (x2)− f (x1) = f ′(c)(x2 − x1) for some c between x1 and x2. Since
x2 − x1 > 0, then f (x2)− f (x1) and f ′(c) are of the same sign. Therefore
f (x2) > f (x1) if f ′ is positive on (a, b), and f (x2) < f (x1) if f ′ is negative
on (a, b).
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Exercise 4.3.28(a)

Exercise 4.3.28(a)

Exercise 4.3.28(a). Find the sets on which the function
g(x) = x4 − 4x3 + 4x2 is increasing and decreasing. Use the critical points
of g to make a table of the sign of g ′ using test values from the intervals
on which g ′ has the same sign.

Solution. We have

g ′(x) = 4x3 − 12x2 + 8x = 4x(x2 − 3x + 2) = 4x(x − 1)(x − 2),

so the critical points of g are x = 0, x = 1, and x = 2 (where g ′ is 0).

Since g ′ is a polynomial (and so is continuous by Theorem 2.5.A) then by
the Intermediate Value Theorem (Theorem 2.11) the only way g ′ can
change sign as x increases is for g ′ to take on the value 0. That is, g ′ has
the same sign on the intervals (−∞, 0), (0, 1), (1, 2), and (2,∞). So we
use test values from these intervals to determine the sign of g ′ throughout
these intervals.
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Exercise 4.3.28(a)

Exercise 4.3.28(a) (continued 1)

Solution (continued). We have g ′(x) = 4x(x − 1)(x − 2). Consider:

interval (−∞, 0) (0, 1)

test value k −1 1/2

g ′(k) 4(−1)((−1)− 1)((−1)− 2) 4(1/2)((1/2)− 1)((1/2)− 2)

g ′(x) (−)(−)(−) = − (+)(−)(−) = +

g(x) DEC INC

interval (1, 2) (2,∞)

test value k 3/2 4

g ′(k) 4(3/2)((3/2)− 1)((3/2)− 2) 4(4)((4)− 1)((4)− 2)

g ′(x) (+)(+)(−) = − (+)(+)(+) = +

g(x) DEC INC

So by Corollary 4.3 (The First Derivative Test for Increasing and

Decreasing) g is increasing on [0, 1] ∪ [2,∞) and g is

decreasing on (−∞, 0] ∪ [1, 2] .
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Theorem 4.3.A. First Derivative Test for Local Extrema

Theorem 4.3.A

Theorem 4.3.A. First Derivative Test for Local Extrema.
Suppose that c is a critical point of a continuous function f , and that f is
differentiable at every point in some interval containing c except possibly
at c itself. Moving across this interval from left to right,

1. if f ′ changes from negative to positive at c , then f has a
local minimum at c ;

2. if f ′ changes from positive to negative at c , then f has a
local maximum at c ;

3. if f ′ does not change sign at c (that is, f ′ is positive on both
sides of c or negative on both sides), then f has no local
extremum at c .

Proof. (1) Since the sign of f ′ changes from negative to positive at c ,
there are numbers a and b such that a < c < b, f ′ < 0 on (a, c), and
f ′ > 0 on (c , b). If x ∈ (a, c) then f (c) < f (x) because f ′ < 0 implies
that f is decreasing on [a, c] by Corollary 4.3 (The First Derivative Test for
Increasing and Decreasing).
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Theorem 4.3.A. First Derivative Test for Local Extrema

Theorem 4.3.A (continued 1)

Theorem 4.3.A. First Derivative Test for Local Extrema.

1. if f ′ changes from negative to positive at c , then f has a
local minimum at c ;

2. if f ′ changes from positive to negative at c , then f has a
local maximum at c .

Proof (continued). If x ∈ (c , b), then f (c) < f (x) because f ′ > 0 implies
that f is increasing on [c , b] by Corollary 4.3. Therefore, f (x) ≥ f (c) for
every x ∈ (a, b). By definition, f has a local minimum at c .

(2) Since the sign of f ′ changes from positive to negative at c , there are
numbers a and b such that a < c < b, f ′ > 0 on (a, c), and f ′ < 0 on
(c , b). If x ∈ (a, c) then f (c) > f (x) because f ′ > 0 implies that f is
increasing on [a, c] by Corollary 4.3.

If x ∈ (c , b), then f (c) > f (x)
because f ′ < 0 implies that f is decreasing on [c , b] by Corollary 4.3.
Therefore, f (x) ≤ f (c) for every x ∈ (a, b). By definition, f has a local
maximum at c .
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Theorem 4.3.A. First Derivative Test for Local Extrema

Theorem 4.3.A (continued 2)

Theorem 4.3.A. First Derivative Test for Local Extrema.

3. if f ′ does not change sign at c (that is, f ′ is positive on both
sides of c or negative on both sides), then f has no local
extremum at c .

Proof (continued). (3) We show this in the case that f ′ is positive on
both sides of c , the case that f ′ is negative on both sides of c being
similar. Then there are numbers a and b such that a < c < b, f ′ > 0 on
(a, c), and f ′ > 0 on (c , b). If x ∈ (a, c) then f (c) > f (x) because f ′ > 0
implies that f is increasing on [a, c] by Corollary 4.3. If y ∈ (c , b), then
f (c) < f (y) because f ′ > 0 implies that f is increasing on [c , b] by
Corollary 4.3. Therefore, f (x) ≤ f (c) ≤ f (y) for every x ∈ (a, c) and
every y ∈ (c , b). By definition, f has a neither a local maximum nor a
local minimum at c .
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Exercise 4.3.28(b)

Exercise 4.3.28(b)

Exercise 4.3.28(b). Identify the local and absolute extreme values, if any,
of g(x) = x4 − 4x3 + 4x2.

Solution. From part (a) above, we have

interval (−∞, 0) (0, 1) (1, 2) (2,∞)

g ′(x) − + − +

g(x) DEC INC DEC INC

So by Theorem 4.3.A (First Derivative Test for Local Extrema), g has a

local minimum at x = 0 of g(0) = (0)4 − 4(0)3 + 4(0)2 = 0 ,

local minimum at x = 2 of g(2) = (2)4 − 4(2)3 + 4(2)2 = 0 , and

g has a local maximum at x = 1 of g(1) = (1)4 − 4(1)3 + 4(1)2 = 1 .
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Exercise 4.3.28(b)

Exercise 4.3.28(b) (continued)

Solution (continued). Plotting the points of local extreme values, the
critical points, and the increasing/decreasing information, we can get a
good idea of the shape of the graph of y = g(x) = x4 − 4x3 + 4x2:

�
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Exercise 4.3.14

Exercise 4.3.14

Exercise 4.3.14. Consider function f defined on [a, b] = [0, 2π] with
derivative f ′(x) = (sin x + cos x)(sin x − cos x). (a) What are the critical
points? (b) On what sets is f increasing or decreasing? (c) At what
points, if any, does f assume local maximum and minimum values?

Solution. First, f ′(x) = sin2 x − cos2 x and so
f ′(x) = −(cos2 x − sin2 x) = − cos 2x by the double angle formula.

(a) For the critical points, we consider f ′(x) = − cos 2x = 0 on [0, 2π], or
cos 2x = 0 on [0, 2π]. So the critical points in [0, 2π] are

x = π/4, x = 3π/4, x = 5π/4, and x = 7π/4 .

(b) As in Exercise 4.3.28(a) above, we use the critical points in [0, 2π] to
determine the intervals in [0, 2π] on which the sign of f ′ is constant:
[0, π/4), (π/4, 3π/4), (3π/4, 5π/4), (5π/4, 7π/4), and (7π/4, 2π].
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Exercise 4.3.14

Exercise 4.3.14 (continued 1)

Solution (continued). We have f ′(x) = − cos 2x , so:

interval [0, π/4) (π/4, 3π/4) (3π/4, 5π/4)

test value k 0 π/2 π

f ′(k) − cos(2(0)) − cos(2(π/2)) − cos(2(π))
= −1 = 1 = −1

f ′(x) − + −
f (x) DEC INC DEC

interval (5π/4, 7π/4) (7π/4, 2π]

test value k 3π/2 2π

f ′(k) − cos(2(3π/2)) − cos(2(2π))
= 1 = −1

f ′(x) + −
f (x) INC DEC

So f is increasing on [π/4, 3π/4] ∪ [5π/4, 7π/4] , and f is

decreasing on [0, π/4] ∪ [3π/4, 5π/4] ∪ [7π/4, 2π] .
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Exercise 4.3.14

Exercise 4.3.14 (continued 2)

Exercise 4.3.14. Consider f (x) = (sin x + cos x)(sin x − cos x) on
[a, b] = [0, 2π]. (c) At what points, if any, does f assume local maximum
and minimum values?

Solution (continued). . . . So f is

increasing on [π/4, 3π/4] ∪ [5π/4, 7π/4] , and f is

decreasing on [0, π/4] ∪ [3π/4, 5π/4] ∪ [7π/4, 2π] .

(c) By Theorem 4.3.A (“First Derivative Test for Local Extrema”), f has

a local maximum at x = 3π/4 and x = 7π/4 , and f has a

local minimum at x = π/4 and x = 5π/4 . Since f decreases on [0, π/4]

then f has a local maximum at x = 0 , and since f is decreasing on

[7π/4, 2π] then f has a local minimum at x = 2π . �
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Exercise 4.3.38

Exercise 4.3.38

Exercise 4.3.38. (a) Find the sets on which the function
g(x) = x2/3(x + 5) is increasing and decreasing. Use the critical points of
g to make a table of the sign of g ′ using test values from the intervals on
which g ′ has the same sign. (b) Identify the local and absolute extreme
values of g , if any.

Solution. First,

g ′(x) = [(2/3)x−1/3](x + 5) + (x2/3)[1] =
2(x + 5)

3x1/3
+

3x

3x1/3
=

5x + 10

3x1/3
.

(a) For the critical points, since g ′(x) =
5x + 10

3x1/3
then x = −2 is a critical

point since g ′(−2) = 0 and x = 0 is a critical point since g ′ is not defined
at x = 0. As in Exercise 4.3.28(a) above, we see that the sign of g ′ is the
same throughout each of the intervals (−∞,−2), (−2, 0), and (0,∞). So
we consider: . . .
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5x + 10

3x1/3
then x = −2 is a critical

point since g ′(−2) = 0 and x = 0 is a critical point since g ′ is not defined
at x = 0. As in Exercise 4.3.28(a) above, we see that the sign of g ′ is the
same throughout each of the intervals (−∞,−2), (−2, 0), and (0,∞). So
we consider: . . .
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Exercise 4.3.38

Exercise 4.3.38 (continued 1)

Solution (continued). So we consider:

interval (−∞,−2) (−2, 0) (0,∞)

test value k −3 −1 1

g ′(k) 5(−3)+10

3(−3)1/3

5(−1)+10

3(−1)1/3

5(1)+10

3(1)1/3

= (−5/3)(1/(−3)1/3) = (5/3)(1/(−1)1/3) = 5

g ′(x) + − +

g(x) INC DEC INC

So g is increasing on (−∞,−2] ∪ [0,∞) , and g is

decreasing on [−2, 0] .
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Exercise 4.3.38

Exercise 4.3.38 (continued 2)

Solution (continued). (b) By Theorem 4.3.A (“First Derivative Test for

Local Extrema”), g has a local maximum at x = −2 (of

g(−2) = (−2)2/3((−2) + 5) = 3 3
√

4), and g has a

local minimum at x = 0 (of g(0) = (0)2/3((0) + 5) = 0). Now
g(x) = x2/3(x + 5) can be made arbitrarily large and positive by making x
large and positive, and g(x) = x2/3(x + 5) can be made arbitrarily large
and negative by making x large and negative. So g has
no absolute extrema . �

�
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Exercise 4.3.44

Exercise 4.3.44

Exercise 4.3.44. (a) Find the open intervals on which the function
f (x) = x2 ln x is increasing and decreasing. Use the critical points of f to
make a table of the sign of f ′ using test values from the intervals on which
f ′ has the same sign. (b) Identify the local and absolute extreme values of
f , if any.

Solution. First, notice that the domain of f is (0,∞) and
f ′(x) = [2x ](ln x) + (x2)[1/x ] = x(1 + 2 ln x).

(a) For the critical point(s), since f ′(x) = x(1 + 2 ln x) we see that we
have f ′(x) = 0 when ln x = −1/2 or e ln x = e−1/2 or x = e−1/2 (notice
that x = 0 is not in the domain of f ). So we use the critical point to break
the domain of f into open intervals and consider. . .
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Exercise 4.3.44

Exercise 4.3.44 (continued)

Solution (continued).

interval (0, e−1/2) (e−1/2,∞)

test value k e−3/4 1

f ′(k) (e−3/4)(1 + 2 ln(e−3/4)) (1)(1 + 2 ln(1))

e−3/4(1− 3/2) 1

f ′(x) − +

f (x) DEC INC

So f is increasing on (e−1/2,∞) , and f is decreasing on (0, e−1/2) .

(b) By Theorem 4.3.A (“First Derivative Test for Local Extrema”), f has

a local minimum at x = e−1/2 (of
f (e−1/2) = (e−1/2)2 ln e−1/2 = e−1(−1/2) = −1/(2e)). �
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Exercise 4.3.44
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Exercise 4.3.44

Exercise 4.3.44 (continued)
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Exercise 4.3.58

Exercise 4.3.58

Exercise 4.3.58. Consider g(x) =
x2

4− x2
on (−2, 1]. (a) Identify the

local extreme values of g and say where they occur. (b) Which of the
extreme values, if any, are absolute?

Solution. Notice that g is a rational function and, by Dr. Bob’s Infinite
Limits Theorem, g has a vertical asymptote at x = −2. Now

g ′(x) =
[2x ](4− x2)− (x2)[−2x ]

(4− x2)2
=

8x

(4− x2)2
, and x = 0 is a critical

point of g since g ′(0) = 0 (notice that there are no other critical points of
g).

(a) We partition the interval (−2, 1] by removing the critical point x = 0
and consider: . . .
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Exercise 4.3.58

Exercise 4.3.58 (continued 1)

Exercise 4.3.58. Consider g(x) =
x2

4− x2
on (−2, 1]. (a) Identify the

local extreme values of g and say where they occur. (b) Which of the
extreme values, if any, are absolute?

Solution (continued). (a) We partition the interval (−2, 1] by removing
the critical point x = 0 and consider: . . .

interval (−2, 0) (0, 1]

test value k −1 1

g ′(k) (8(−1))/(4− (−1)2)2 = −8/9 (8(1))/(4− (1)2)2 = 8/9

g ′(x) − +

g(x) DEC INC

By Theorem 4.3.A (“First Derivative Test for Local Extrema”), g has a

local minimum at x = 0 of g(0) = 0 . Since g is increasing on [0, 1], then

g has a local maximum at x = 1 of g(1) = (1)2/(4− (1)2) = 1/3 .
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Exercise 4.3.58

Exercise 4.3.58 (continued 2)

Exercise 4.3.58. Consider g(x) =
x2

4− x2
on (−2, 1]. (a) Identify the

local extreme values of g and say where they occur. (b) Which of the
extreme values, if any, are absolute?

Solution (continued). (b) Notice that since g has a vertical asymptote
at x = −2 and g is decreasing on (−2, 0), then we must have

limx→2+ g(x) =∞ and so g has no absolute maximum . Since g has a

local minimum at x = 0 of g(0) = 0, g is decreasing on (−2, 0], and g is
increasing on [0, 1], then g has an

absolute minimum at x = 0 of g(0) = 0 .
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Exercise 4.3.58

Exercise 4.3.58 (continued 3)

Solution (continued). Plotting the points of local extreme values, the
critical point, the vertical asymptote, and the increasing/decreasing
information, we can get a good idea of the shape of the graph of

y = g(x) =
x2

4− x2
on (−2, 1]:

�
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Exercise 4.3.72

Exercise 4.3.72

Exercise 4.3.72. Sketch the graph of a differentiable function y = f (x)
that has (a) a local minimum at (1, 1) and a local maximum at (3, 3); (b)
a local maximum at (1, 1) and a local minimum at (3, 3); (c) local
maxima at (1, 1) and (3, 3); (d) local minima at (1, 1) and (3, 3).

Solution. We try to make y = f (x) simple by minimizing the number of
critical points.
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Exercise 4.3.72

Exercise 4.3.72 (continued)

Exercise 4.3.72. Sketch the graph of a differentiable function y = f (x)
that has (c) local maxima at (1, 1) and (3, 3); (d) local minima at (1, 1)
and (3, 3).

Solution(continued). We try to make y = f (x) simple by minimizing the
number of critical points.

�
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Exercise 4.3.72

Exercise 4.3.72 (continued)

Exercise 4.3.72. Sketch the graph of a differentiable function y = f (x)
that has (c) local maxima at (1, 1) and (3, 3); (d) local minima at (1, 1)
and (3, 3).

Solution(continued). We try to make y = f (x) simple by minimizing the
number of critical points.

�
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Exercise 4.3.80

Exercise 4.3.80

Exercise 4.3.80. (a) Prove that f (x) = x − ln x is increasing for x > 1.
(b) Using part (a), show that ln x < x if x > 1.

Solution. Notice that the domain of f is (0,∞). We have
f ′(x) = 1− 1/x = (x − 1)/x , so x = 1 is a critical point of f since
f ′(1) = 0.

(a) We partition the domain (0,∞) by removing the critical point x = 1
and consider:

interval (0, 1) (1,∞)

test value k 1/2 2

g ′(k) ((1/2)− 1)/(1/2) = −1 ((2)− 1)/(2) = 1/2

g ′(x) − +

g(x) DEC INC

So f is increasing on [1,∞) (in particular, for x > 1), as claimed; we are
using a version of Corollary 4.3, “The First Derivative Test for Increasing
and Decreasing” here. �
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Exercise 4.3.80

Exercise 4.3.80 (continued)

Exercise 4.3.80. (a) Prove that f (x) = x − ln x is increasing for x > 1.
(b) Using part (a), show that ln x < x if x > 1.

Solution (continued). So f is increasing on [1,∞) (in particular, for
x > 1), as claimed; we are using a version of Corollary 4.3, “The First
Derivative Test for Increasing and Decreasing” here. �

(b) Since f (1) = (1)− ln(1) = 1− 0 = 1 and f (x) = x − ln x is increasing
on [1,∞), then we have f (x) = x − ln x ≥ 1 for x > 1. That is,
x ≥ ln x + 1 > ln x for x > 1, as claimed. �
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Exercise 4.3.80

Exercise 4.3.80 (continued)

Exercise 4.3.80. (a) Prove that f (x) = x − ln x is increasing for x > 1.
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Solution (continued). So f is increasing on [1,∞) (in particular, for
x > 1), as claimed; we are using a version of Corollary 4.3, “The First
Derivative Test for Increasing and Decreasing” here. �

(b) Since f (1) = (1)− ln(1) = 1− 0 = 1 and f (x) = x − ln x is increasing
on [1,∞), then we have f (x) = x − ln x ≥ 1 for x > 1. That is,
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