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Exercise 4.4.2

Exercise 4.4.2

Exercise 4.4.2. Consider f (x) = x4/4− 2x2 + 4. Identify the inflection
points and local maxima and minima of f and identify the intervals on
which the function is concave up and concave down.

Solution. First, f ′(x) = x3 − 4x = x(x2 − 4) = x(x + 2)(x − 2) and we
see that −2, 0, and 2 are critical points since f ′ is 0 at these points. Next,
f ′′(x) = 3x2 − 4 so that x = ±

√
4/3 = ±2/

√
3 are potential points of

inflection.
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Exercise 4.4.2

Exercise 4.4.2 (continued 1)

Solution (continued). As in the previous section, since f ′′(x) = 3x2 − 4
is a polynomial (and so is continuous by Theorem 2.5.A) then by the
Intermediate Value Theorem (Theorem 2.11) the only way f ′′ can change
sign as x increases is for f ′′ to take on the value 0. That is, f ′′ has the
same sign on the intervals (−∞,−2/

√
3), (−2/

√
3, 2/

√
3), and

(2/
√

3,∞). So we use test values from these intervals to determine the
sign of f ′′ throughout these intervals.

interval (−∞,−2/
√

3) (−2/
√

3, 2/
√

3) (2/
√

3,∞)

test value k −2 0 2

f ′′(k) 3(−2)2 − 4 = 8 3(0)2 − 4 = −4 3(2)2 − 4 = 8

f ′′(x) + − +

f (x) CU CD CU

Here, the concavity is given by the Second Derivative Test for Concavity
(Theorem 4.4.A).

() Calculus 1 October 23, 2020 4 / 30



Exercise 4.4.2

Exercise 4.4.2 (continued 1)

Solution (continued). As in the previous section, since f ′′(x) = 3x2 − 4
is a polynomial (and so is continuous by Theorem 2.5.A) then by the
Intermediate Value Theorem (Theorem 2.11) the only way f ′′ can change
sign as x increases is for f ′′ to take on the value 0. That is, f ′′ has the
same sign on the intervals (−∞,−2/

√
3), (−2/

√
3, 2/

√
3), and

(2/
√

3,∞). So we use test values from these intervals to determine the
sign of f ′′ throughout these intervals.

interval (−∞,−2/
√

3) (−2/
√

3, 2/
√

3) (2/
√

3,∞)

test value k −2 0 2

f ′′(k) 3(−2)2 − 4 = 8 3(0)2 − 4 = −4 3(2)2 − 4 = 8

f ′′(x) + − +

f (x) CU CD CU

Here, the concavity is given by the Second Derivative Test for Concavity
(Theorem 4.4.A).

() Calculus 1 October 23, 2020 4 / 30



Exercise 4.4.2

Exercise 4.4.2 (continued 2)

Solution (continued). . . .

interval (−∞,−2/
√

3) (−2/
√

3, 2/
√

3) (2/
√

3,∞)

f (x) CU CD CU

So f does in fact change concavity at both x = −2/
√

3 and x = 2/
√

3.
Notice f (±2/

√
3) = (±2/

√
3)4/4− 2(±2/

√
3)2 + 4 = 4/9− 8/3 + 4 =

4/9− 24/9 + 36/9 = 16/9. So by definition, the

inflection points are (−2/
√

3, 16/9) and (2/
√

3, 16/9)) . f is

CU on (−∞,−2/
√

3) ∪ (2/
√

3,∞) and f is CD on (−2/
√

3, 2/
√

3) .

We are given the graph of f , so we see that it has a

local maximum of f (0) = (0)4/4− 2(0)2 + 4 = 4 and a

local minimum of f (−2) = f (2) = (2)4/4− 2(2)2 + 4 = 0 . �
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Theorem 4.5. Second Derivative Test for Local Extrema

Theorem 4.5

Theorem 4.5. Second Derivative Test for Local Extrema.
Suppose f ′′ is continuous on an open interval that contains x = c .

1. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at
x = c .

2. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at
x = c .

3. If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function
f may have a local maximum, a local minimum, or neither.

Proof. (1) If f ′′ < 0, then f ′′ < 0 on some open interval I containing the
point c , since f ′′ is continuous (by Exercise 2.5.70). Therefore by Corollary
4.3 (“The First Derivative Test for Increasing and Decreasing”), f ′ is
decreasing on I . Since f ′(c) = 0, the sign of f ′ changes from positive to
negative as x increases through the value c , and so f has a local maximum
at x = c by Theorem 4.3.A(2), “First Derivative Test for Local Extrema,”
as claimed.
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Theorem 4.5. Second Derivative Test for Local Extrema

Theorem 4.5 (continued 1)

Theorem 4.5. Second Derivative Test for Local Extrema.
Suppose f ′′is continuous on an open interval that contains x = c .

2. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at
x = c .

3. If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function
f may have a local maximum, a local minimum, or neither.

Proof. (2) If f ′′ > 0, then f ′′ > 0 on some open interval I containing the
point c , since f ′′ is continuous (by Exercise 2.5.70). Therefore by Corollary
4.3 (“The First Derivative Test for Increasing and Decreasing”), f ′ is
increasing on I . Since f ′(c) = 0, the sign of f ′ changes from negative to
positive as x increases through the value c , and so f has a local minimum
at x = c by Theorem 4.3.A(2), “First Derivative Test for Local Extrema,”
as claimed.
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Theorem 4.5. Second Derivative Test for Local Extrema

Theorem 4.5 (continued 2)

Theorem 4.5. Second Derivative Test for Local Extrema.
Suppose f ′′is continuous on an open interval that contains x = c .

3. If f ′(c) = 0 and f ′′(c) = 0, then the test fails. The function
f may have a local maximum, a local minimum, or neither.

Proof. (3) We establish by this by giving examples. Consider f1(x) = x4,
f2(x) = −x4, and f3(x) = x3. We have f ′1(0) = f ′2(0) = f ′3(0) = 0 (so we
take c = 0), and f ′′1 (0) = f ′′2 (0) = f ′′3 (0) = 0. But f1(x) = x4 has a local
minimum at x = 0, f2(x) = −x4 has a local maximum at x = 0, and
f3(x) = x3 has neither a maximum nor a minimum at x = 0. So, as
claimed, the test fails (is “inconclusive”).
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Exercise 4.4.12

Exercise 4.4.12

Exercise 4.4.12. Consider y = f (x) = x(6− 2x)2. Identity the
coordinates of any local and absolute extreme points and inflection points.
Graph y = f (x).

Solution. First, f ′(x) = [1](6− 2x)2 + (x)[
y

2(6− 2x)[−2]] =
(6− 2x)((6− 2x)− 4x) = (6− 2x)(6− 6x) so that x = 1 and x = 3 are
critical points since f ′ is 0 at these points. Next
f ′′(x) = [−2](6−6x)+(6−2x)[−6] = −12+12x−36+12x = −48+24x ,
so x = 2 is a potential point of inflection.

As above, since f ′′ is continuous
then we test the sign of f ′′ as:

interval (−∞, 2) (2,∞)

test value k 1 3

f ′′(k) −48 + 24(1) = −24 −48 + 24(3) = 24

f ′′(x) − +

f (x) CD CU
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Exercise 4.4.12

Exercise 4.4.12 (continued 1)

Solution (continued). So f does in fact change concavity at x = 2.

Notice f (2) = (2)(6− 2(2))2 = 8 so the point of inflection is (2, 8) . We

used the critical points as test values above, so we see by the Second
Derivative Test for Local Extrema (Theorem 4.5) that f has a local
maximum at x = 1 of f (1) = (1)(6− 2(1))2 = 16 and f has a local
minimum at x = 3 of f (3) = (3)(6− 2(3))2 = 0. The coordinates of the

local maximum point is (1, 16) and the coordinates of the

local minimum point is (3, 0) .

To graph y = f (x), we plot each extreme point and the point of inflection.
We use little horizontal hash marks “—” through the extreme points
(since tangent lines are horizontal there) and we use a “X” to indicate a
point of inflection. We also plot the x-intercepts (0, 0) and (3, 0), and the
y -intercept (0, 0). Finally, we flesh out the graph in a way that reflects the
known concavity.
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Exercise 4.4.12

Exercise 4.4.12 (continued 2)

Exercise 4.4.12. Consider y = f (x) = x(6− 2x)2. Identity the
coordinates of any local and absolute extreme points and inflection points.
Graph y = f (x).
Solution (continued). We then have:

�
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Exercise 4.4.104

Exercise 4.4.104

Exercise 4.4.104. Sketch a smooth connected curve y = f (x) with:
f (−2) = 8, f (0) = 4, f (2) = 0, f ′(x) > 0 for |x | > 2, f ′(2) = f ′(−2) = 0,
f ′(x) < 0 for |x | < 2, f ′′(x) < 0 for x < 0, and f ′′(x) > 0 for x > 0.
Indicate points where f ′ is 0 with horizontal hash marks and indicate
points of inflection with X’s.

Solution. Since f ′(x) > 0 for |x | > 2 and f ′(x) < 0 for |x | < 2, then by
The First Derivative Test for Increasing and Decreasing (Corollary 4.3) f is
INC on (−∞,−2) ∪ (2,∞) and f is DEC on (−2, 2). Since f ′′(x) < 0 for
x < 0 and f ′′(x) > 0 for x > 0, the by the Second Derivative Test for
Concavity (Theorem 4.4.A) f is CU on (0,∞) and f is CD on (−∞, 0).

We combine this information in a table:

interval (−∞,−2) (−2, 0) (0, 2) (2,∞)

f ′(x) + − − +

f ′′(x) − − + +

f (x) INC, CD DEC, CD DEC, CU INC, CU

Notice that (0, f (0)) = (0, 4) is a point of inflection.
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Exercise 4.4.104

Exercise 4.4.104 (continued)

Solution (continued). . . .

interval (−∞,−2) (−2, 0) (0, 2) (2,∞)

f (x) INC, CD DEC, CD DEC, CU INC, CU

Plotting the points f (−2) = 8, f (0) = 4, f (2) = 0, and using the
INC/DEC and CU/CD information, along with the fact that f is “smooth”
gives:

�
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Exercise 4.4.42

Exercise 4.4.42

Exercise 4.4.42. Consider y = f (x) = 3
√

x3 + 1. Identity the coordinates
of any local and absolute extreme points and inflection points. Graph
y = f (x). Indicate points where f ′ is 0 with horizontal hash marks and
indicate points of inflection with X’s.
Solution. First, f (x) = (x3 + 1)1/3 and so

f ′(x) =
y

(1/3)(x3 + 1)−2/3[3x2] = x2(x3 + 1)−2/3 =
x2

(x3 + 1)2/3
, so x = 0

is a critical point since f ′(0) = 0 and x = −1 is a critical point since
x = −1 is in the domain of f but f ′ is undefined at x = −1.

Next

f ′′(x) = [2x ]((x3 + 1)−2/3) + (x2)[
y

(−2/3)(x3 + 1)−5/3[3x2]]

=
2x

(x3 + 1)2/3
− 2x4

(x3 + 1)5/3
=

2x(x3 + 1)− 2x4

(x3 + 1)5/3
=

2x

(x3 + 1)5/3
,

so f has a potential point of inflection at x = 0 and at x = −1 (notice
that f ′′ is undefined at x = −1, but we could show that y = f (x) has a
vertical tangent at x = −1).
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Exercise 4.4.42
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√
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of any local and absolute extreme points and inflection points. Graph
y = f (x). Indicate points where f ′ is 0 with horizontal hash marks and
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y
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Exercise 4.4.42

Exercise 4.4.42 (continued 1)

Solution (continued). We find the signs of f ′(x) = x2/(x3 + 1)2/3 and
f ′′(x) = 2x/(x3 + 1)5/3 over the appropriate intervals:

interval (−∞,−1) (−1, 0) (0,∞)

test value k −2 −1/2 1

f ′(k) (−2)2/((−2)3 + 1)2/3 (−1/2)2/((−1/2)3 + 1)2/3 (1)2/((1)3 + 1)2/3

f ′(x) (+)/(+) = + (+)/(+) = + (+)/(+) = +

f ′′(k) 2(−2)/((−2)3 + 1)5/3 2(−1/2)/((−1/2)3 + 1)5/3 2(1)/((1)3 + 1)5/3

f ′′(x) (−)/(−) = + (−)/(+) = − (+)/(+) = +

f (x) INC, CU INC, CD INC, CU

Since f is always increasing then it has
no local maximum nor local minimum (by the First Derivative Test for
Local Extrema, Theorem 4.3.A(3)). Notice that f changes concavity at
x = −1 and x = 0, so the
points of inflection are (−1, f (−1)) = (−1, 0) and (0, f (0)) = (0, 1) .
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Exercise 4.4.42

Exercise 4.4.42 (continued 2)

Solution (continued). Since f ′(0) = 0, f ′ is undefined at x = −1,
f (−1) = 0, f (0) = 1, and

interval (−∞,−1) (−1, 0) (0,∞)

f (x) INC, CU INC, CD INC, CU

then the graph of y = f (x) = 3
√

x3 + 1 is:

�

() Calculus 1 October 23, 2020 16 / 30



Exercise 4.4.42

Exercise 4.4.42 (continued 2)

Solution (continued). Since f ′(0) = 0, f ′ is undefined at x = −1,
f (−1) = 0, f (0) = 1, and

interval (−∞,−1) (−1, 0) (0,∞)

f (x) INC, CU INC, CD INC, CU

then the graph of y = f (x) = 3
√

x3 + 1 is:

�

() Calculus 1 October 23, 2020 16 / 30



Exercise 4.4.42

Exercise 4.4.42 (continued 2)

Solution (continued). Since f ′(0) = 0, f ′ is undefined at x = −1,
f (−1) = 0, f (0) = 1, and

interval (−∞,−1) (−1, 0) (0,∞)

f (x) INC, CU INC, CD INC, CU

then the graph of y = f (x) = 3
√

x3 + 1 is:

�

() Calculus 1 October 23, 2020 16 / 30



Exercise 4.4.54

Exercise 4.4.54

Exercise 4.4.54. Consider y = f (x) = xe−x . Identity the coordinates of
any local and absolute extreme points and inflection points. Graph
y = f (x). Indicate points where f ′ is 0 with horizontal hash marks and
indicate points of inflection with X’s.
Solution. First f ′(x) = [1](e−x) + (x)[

y
e−x [−1]] = e−x(1− x), so x = 1 is

a critical point since f ′(1) = 0.

Next f ′′(x) = [
y

e−x [−1]](1− x)
+(e−x)[−1] = −e−x((1− x) + 1) = −e−x(2− x) so x = 2 is a potential
point of inflection. We perform a sign test on f ′ and f ′′:

interval (−∞, 1) (1, 2) (2,∞)

test value k 0 3/2 3

f ′(k) e−(0)(1− (0)) e−(3/2)(1− (3/2)) e−(3)(1− (3))

= 1 = −(1/2)e−3/2 = −2e−3

f ′(x) + − −
f ′′(k) −e−(0)(2− (0)) −e−(3/2)(2− (3/2)) −e−(3)(2− (3))

= −2 = −(1/2)e−3/2 = e−3

f ′′(x) − − +

f (x) INC, CD DEC, CD DEC, CU

() Calculus 1 October 23, 2020 17 / 30



Exercise 4.4.54

Exercise 4.4.54

Exercise 4.4.54. Consider y = f (x) = xe−x . Identity the coordinates of
any local and absolute extreme points and inflection points. Graph
y = f (x). Indicate points where f ′ is 0 with horizontal hash marks and
indicate points of inflection with X’s.
Solution. First f ′(x) = [1](e−x) + (x)[

y
e−x [−1]] = e−x(1− x), so x = 1 is

a critical point since f ′(1) = 0. Next f ′′(x) = [
y

e−x [−1]](1− x)
+(e−x)[−1] = −e−x((1− x) + 1) = −e−x(2− x) so x = 2 is a potential
point of inflection.

We perform a sign test on f ′ and f ′′:
interval (−∞, 1) (1, 2) (2,∞)

test value k 0 3/2 3

f ′(k) e−(0)(1− (0)) e−(3/2)(1− (3/2)) e−(3)(1− (3))

= 1 = −(1/2)e−3/2 = −2e−3

f ′(x) + − −
f ′′(k) −e−(0)(2− (0)) −e−(3/2)(2− (3/2)) −e−(3)(2− (3))

= −2 = −(1/2)e−3/2 = e−3

f ′′(x) − − +

f (x) INC, CD DEC, CD DEC, CU

() Calculus 1 October 23, 2020 17 / 30



Exercise 4.4.54

Exercise 4.4.54

Exercise 4.4.54. Consider y = f (x) = xe−x . Identity the coordinates of
any local and absolute extreme points and inflection points. Graph
y = f (x). Indicate points where f ′ is 0 with horizontal hash marks and
indicate points of inflection with X’s.
Solution. First f ′(x) = [1](e−x) + (x)[

y
e−x [−1]] = e−x(1− x), so x = 1 is

a critical point since f ′(1) = 0. Next f ′′(x) = [
y

e−x [−1]](1− x)
+(e−x)[−1] = −e−x((1− x) + 1) = −e−x(2− x) so x = 2 is a potential
point of inflection. We perform a sign test on f ′ and f ′′:

interval (−∞, 1) (1, 2) (2,∞)

test value k 0 3/2 3

f ′(k) e−(0)(1− (0)) e−(3/2)(1− (3/2)) e−(3)(1− (3))

= 1 = −(1/2)e−3/2 = −2e−3

f ′(x) + − −
f ′′(k) −e−(0)(2− (0)) −e−(3/2)(2− (3/2)) −e−(3)(2− (3))

= −2 = −(1/2)e−3/2 = e−3

f ′′(x) − − +

f (x) INC, CD DEC, CD DEC, CU

() Calculus 1 October 23, 2020 17 / 30



Exercise 4.4.54

Exercise 4.4.54
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Exercise 4.4.54

Exercise 4.4.54 (continued)

Solution (continued). . . .
interval (−∞, 1) (1, 2) (2,∞)

f (x) INC, CD DEC, CD DEC, CU

By the First Derivative Test for Local Extrema (Theorem 4.3.A), f has a
local maximum at x = 1 of f (1) = (1)e−(1) = e−1. By definition, f has a
point of inflection at (2, f (2)) = (2, (2)e−(2)) = (2, 2e−2). So the

coordinates of the local maximum are (1, e−1) and the coordinates of the

point of inflection are (2, 2e−2) . Notice f (0) = 0 (notice that xe−1 > 0

for x > 0; we can show that limx→∞ xe−x = 0 in the next section). The
graph is:

�
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Exercise 4.4.74

Exercise 4.4.74

Exercise 4.4.74. Let y = f (x) be a continuous function with y ′(t) = sin t
for t ∈ [0, 2π]. Find y ′′ and then use Steps 2–4 of the graphing procedure
to sketch the general shape of the graph of f . Indicate points where f ′ is 0
with horizontal hash marks.

Solution. First, if y ′(t) = sin t then y ′′(t) = cos t .

(2) We have y ′ and y ′′ above.

(3) Since y ′(t) = sin t then the critical points of y for t ∈ [0, 2π] are

t = 0, t = π, and t = 2π, since y ′ is 0 at each of these.

(4) We perform a sign test on y ′(t) = sin t:

interval (0, π) (π, 2π)

test value k π/4 5π/4

f ′(k) sin π/4 =
√

2/2 sin 5π/4 = −
√

2/2

f ′(x) + −
f (x) INC DEC
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Exercise 4.4.74

Exercise 4.4.74

Exercise 4.4.74. Let y = f (x) be a continuous function with y ′(t) = sin t
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Exercise 4.4.74

Exercise 4.4.74 (continued)

Exercise 4.4.74. Let y = f (x) be a continuous function with y ′(t) = sin t
for t ∈ [0, 2π]. Find y ′′ and then use Steps 2–4 of the graphing procedure
to sketch the general shape of the graph of f . Indicate points where f ′ is 0
with horizontal hash marks.

Solution (continued). . . .
interval (0, π) (π, 2π)

f (x) INC DEC

We don’t know any function values (but suspect some periodic behavior
since y ′(t) = sin t), and so have:

�
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Exercise 4.4.92

Exercise 4.4.92

Exercise 4.4.92. Graph the rational function y = f (x) =
x2 − 4

x2 − 2
. Use all

the steps in the graphing procedure. Indicate points where f ′ is 0 with
horizontal hash marks and indicate points of inflection with X’s.

Solution. We throw all of our graphing knowledge at this one!

(1) With y = f (x) =
x2 − 4

x2 − 2
, the domain is all x ∈ R except x = ±

√
2

(since the denominator is 0 there). That is, the

domain is (−∞,−
√

2) ∪ (−
√

2,
√

2) ∪ (
√

2,∞) . Notice that

f (−x) =
(−x)2 − 4

(−x)2 − 2
=

x2 − 4

x2 − 2
= f (x), so f is an even function and hence

symmetric with respect to the y -axis .
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Exercise 4.4.92

Exercise 4.4.92 (continued 1)

Solution (continued). (2) We have

y ′ =
[2x ](x2 − 2)− (x2 − 4)[2x ]

(x2 − 2)2
=

4x

(x2 − 2)2
, and

y ′′ =
[4](x2 − 2)2 − (4x)[

y
2(x2 − 2)[2x ]]

((x2 − 2)2)2
=

4(x2 − 2)((x2 − 2)− 4x2)

(x2 − 2)4
=

−4(3x2 + 2)

(x2 − 2)3
.

(3) We see from y ′ =
4x

(x2 − 2)2
that x = 0 is the only critical point

(since ±
√

2 are not in the domain of f ), and f ′(0) = 0. Notice

f (0) =
(0)2 − 4

(0)2 − 2
= 2.
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Exercise 4.4.92

Exercise 4.4.92 (continued 1)

Solution (continued). (2) We have
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Exercise 4.4.92

Exercise 4.4.92 (continued 2)

Solution (continued). (4) We perform a sign test on y ′ by removing the
critical point from the domain of y :

interval (−∞,−
√

2) (−
√

2, 0) (0,
√

2) (
√

2,∞)

test value k −2 −1 1 2

f ′(k) 4(−2)

((−2)2−2)2
4(−1)

((−1)2−2)2
4(1)

((1)2−2)2
4(2)

((2)2−2)2

f ′(x) − − + +

f (x) DEC DEC INC INC

So y is decreasing on (−∞,−
√

2) ∪ (−
√

2, 0) and y

increasing on (0,
√

2) ∪ (
√

2,∞) .

(5) We see from y ′′ =
−4(3x2 + 2)

(x2 − 2)3
that y has no potential points of

inflection (since the numerator is never 0 and the denominator is never 0
at points in the domain of y). So we perform a sign test on y ′′ on the
domain of y . . .
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Exercise 4.4.92

Exercise 4.4.92 (continued 3)

Solution (continued).

interval (−∞,−
√

2) (−
√

2,
√

2) (
√

2,∞)

test value k −2 0 2

f ′′(k) −4(3(−2)2+2)

((−2)2−2)3
= −56

8
−4(3(0)2+2)

((0)2−2)3
= −8

−8
−4(3(2)2+2)

((2)2−2)3
= −56

8

f ′′(x) − + −
f (x) CD CU CD

So y is CU on (−
√

2,
√

2) and y is CD on (−∞,−
√

2) ∪ (
√

2,∞) .

(6) Now for asymptotes. Notice

lim
x→±∞

x2 − 4

x2 − 2
= lim

x→±∞

x2 − 4

x2 − 2

1/x2

1/x2
= lim

x→±∞

(x2 − 4)/x2

(x2 − 2)/x2

= lim
x→±∞

1− 4/x2

1− 2/x2
=

1− 4 (limx→±∞ 1/x)2

1− 2 (limx→±∞ 1/x)2
=

1− 4(0)2

1− 2(0)2
= 1.

So y = 1 is a horizontal asymptote.
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Exercise 4.4.92

Exercise 4.4.92 (continued 4)

Solution (continued). By Dr. Bob’s Infinite Limits Theorem,

f (x) =
x2 − 4

x2 − 2
=

x2 − 4

(x +
√

2)(x −
√

2)
satisfies limx→±

√
2 f (x) = ±∞ and

so f has vertical asymptotes at x = ±
√

2 . We consider the four sign

diagrams: (1) For x → −
√

2
−

(so that x is “close to” −
√

2 and less than

−
√

2) we have
x2 − 4

(x +
√

2)(x −
√

2)
=⇒ (−)

(−)(−)
= −, (2) for x → −

√
2

+

we have
x2 − 4

(x +
√

2)(x −
√

2)
=⇒ (−)

(+)(−)
= +, (3) for x →

√
2
−

we have

x2 − 4

(x +
√

2)(x −
√

2)
=⇒ (−)

(+)(−)
= +, and (4) for x →

√
2

+
we have

x2 − 4

(x +
√

2)(x −
√

2)
=⇒ (−)

(+)(+)
= −.

So lim
x→−

√
2
− f (x) = −∞,

lim
x→−

√
2

+ f (x) =∞, lim
x→
√

2
− f (x) =∞, and lim

x→
√

2
+ f (x) = −∞.
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Exercise 4.4.92

Exercise 4.4.92 (continued 5)

Solution (continued).

(7) We have: interval (−∞,−
√

2) (−
√

2, 0) (0,
√

2) (
√

2,∞)

f (x) DEC, CD DEC, CU INC, CU INC, CD

Since y = f (x) =
x2 − 4

x2 − 2
, then the y -intercepts are x = ±2. We have

f (0) = 2 from above. So. . .

�
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Exercise 4.4.122. Parabolas

Exercise 4.4.122

Exercise 4.4.122. Parabolas.
(a) Find the coordinates of the vertex of the parabola y = ax2 + bx + c ,
where a 6= 0. (b) When is the parabola concave up? Concave down? Give
reasons for your answer.

Solution. We have y ′ = 2ax + b and y ′′ = 2a.

(a) The vertex of a parabola y = ax2 + bx + c is an absolute extreme of
the function f (x) = ax2 + bx + c , and hence a local extreme value. So by
Theorem 4.2, “Local Extreme Values,” the vertex occurs at a critical point
of f . Since f ′(x) = 2ax + b then the only critical point is x = −b/(2a).

Since f

(
−b

2a

)
= a

(
−b

2a

)2

+ b

(
−b

2a

)
+ c =

b2

4a
− b2

2a
+ c =

b2

4a
− 2b2

4a
+

4ac

4a
=
−b2 + 4ac

4a
So the coordinates of the vertex is

(−b/(2a), f (−b/(2a))) = (−b/a, (−b2 + 4ac)/(4a)) .
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Exercise 4.4.122
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Exercise 4.4.122. Parabolas

Exercise 4.4.122 (continued)

Exercise 4.4.122. Parabolas.
(a) Find the coordinates of the vertex of the parabola y = ax2 + bx + c ,
where a 6= 0. (b) When is the parabola concave up? Concave down? Give
reasons for your answer.

Solution (continued). (b) Since y ′′ = f ′′(x) = 2a then by the Second
Derivative Test for Concavity (Theorem 4.4.A), the parabola is

concave up everywhere when a > 0 and the parabola is

concave down everywhere when a < 0 . �

Note. Notice that the second degree polynomial function
f (x) = ax2 + bx + c has no point of inflection.
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Exercise 4.4.122. Parabolas
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Exercise 4.4.124. Cubic Curves

Exercise 4.4.124

Exercise 4.4.124. Cubic Curves.
What can you say about the inflection points of a cubic curve
y = ax3 + bx2 + cx + d , where a 6= 0? Give reasons for your answer.

Solution. We have y ′ = 3ax2 + 2bx + c and y ′′ = 6ax + 2b. With
y = f (x) we have f ′′(−b/(3a)) = 0 then −b/(3a) is a potential point of
inflection. So we perform a sign test on f ′′(x):

interval (−∞,−b/(3a)) (−b/(3a),∞)

test value k −b/(3a)− 1 −b/(3a) + 1

f ′′(k) 6a(−b/(3a)− 1) + 2b = −6a 6a(−b/(3a) + 1) + 2b = 6a

Since a 6= 0 by hypothesis, then by the Second Derivative Test for
Concavity (Theorem 4.4.A) f changes concavity at x = −b/(3a). So there
is only one inflection point and, since. . .
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Exercise 4.4.124. Cubic Curves

Exercise 4.4.124 (continued)

Exercise 4.4.124. Cubic Curves.
What can you say about the inflection points of a cubic curve
y = ax3 + bx2 + cx + d , where a 6= 0? Give reasons for your answer.

Solution (continued). So there is only one inflection point and, since

f

(
−b

3a

)
= a

(
−b

3a

)3

+ b

(
−b

3a

)2

+ c

(
−b

3a

)
+ c

=
−b3

27a2
+

b3

9a2
+
−bc

3a
+ c =

−b3

27a2
+

3b3

27a2
+
−9abc

27a2
+

27a2c

27a2

=
2b3 − 9abc + 27a2c

27a2
,

the inflection point is

(
−b

3a
,
2b3 − 9abc + 27a2c

27a2

)
. �
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Exercise 4.4.124. Cubic Curves

Exercise 4.4.124 (continued)
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