Calculus 1

Chapter 4. Applications of Derivatives

4.5. Indeterminate Forms and L'Hôpital's Rule-Examples and Proofs

Table of contents

- Exercise 4.5.A
- 2 Exercise 4.5.16
- 3 Exercise 4.5.38
- Exercise 4.5.46
- 5 Exercise 4.5.32
- 6 Exercise 4.5.40
- Theorem 4.5.B
- 8 Exercise 4.5.52
 - Exercise 4.5.58
- 10 Exercise 4.5.81(b)
 - Theorem 4.7. Cauchy's Mean Value Theorem
 - 2 Theorem 4.6. L'Hôpital's Rule

Example 4.5.A. Use l'Hôpital's Rule to show (a) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and

(b) $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and g(x) = x and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x$, and g'(x) = 1. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}.$$

Example 4.5.A. Use l'Hôpital's Rule to show (a) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and

(b) $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and g(x) = x and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x$, and g'(x) = 1. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}. \quad \Box$$

(b) With $f(x) = 1 - \cos x$ and g(x) = x and a = 0, we have f(a) = g(a) = 0, $f'(x) = \sin x$, and g'(x) = 1. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1 - \cos x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\sin(0)}{(1)} = \frac{0}{1} = \boxed{0}.$$

Example 4.5.A. Use l'Hôpital's Rule to show (a) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and

(b) $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and g(x) = x and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x$, and g'(x) = 1. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}.$$

(b) With $f(x) = 1 - \cos x$ and g(x) = x and a = 0, we have f(a) = g(a) = 0, $f'(x) = \sin x$, and g'(x) = 1. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1 - \cos x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\sin(0)}{(1)} = \frac{0}{1} = \boxed{0}. \quad \Box$$

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Write the indeterminate form over the equal sign when you

$x \to 0$ x³ use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x - 1$, and $g'(x) = 3x^2$. So the hypotheses of l'Hôpital's Rule hold, but f'(a)/g'(a) does not exist since g'(0) = 0. However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$).

Calculus 1

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate

 $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x - 1$, and $g'(x) = 3x^2$. So the hypotheses of l'Hôpital's Rule hold, but f'(a)/g'(a) does not exist since g'(0) = 0. However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$). We then have

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} \stackrel{0/0}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \stackrel{0/0}{=} \lim_{x \to 0} \frac{-\sin x}{6x}$$
$$\stackrel{0/0}{=} \lim_{x \to 0} \frac{-\cos x}{6} = \frac{-\cos(0)}{6} = \boxed{\frac{-1}{6}}.$$

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate

 $\lim_{x\to 0} \frac{\sin x - x}{x^3}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and a = 0, we have f(a) = g(a) = 0, $f'(x) = \cos x - 1$, and $g'(x) = 3x^2$. So the hypotheses of l'Hôpital's Rule hold, but f'(a)/g'(a) does not exist since g'(0) = 0. However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$). We then have

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} \stackrel{0/0}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \stackrel{0/0}{=} \lim_{x \to 0} \frac{-\sin x}{6x}$$
$$\stackrel{0/0}{=} \lim_{x \to 0} \frac{-\cos x}{6} = \frac{-\cos(0)}{6} = \boxed{\frac{-1}{6}}. \quad \Box$$

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} (\ln x - \ln \sin x)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$.

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} (\ln x - \ln \sin x)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$. Then

$$\lim_{x \to 0^+} (\ln x - \ln \sin x) = \lim_{x \to 0^+} \ln \frac{x}{\sin x}$$
$$= \ln \left(\lim_{x \to 0^+} \frac{x}{\sin x} \right) \text{ since } \ln x \text{ is continuous}$$
$$\stackrel{0/0}{=} \ln \left(\lim_{x \to 0^+} \frac{1}{\cos x} \right)$$
$$= \ln \left(\frac{1}{\cos(0)} \right) \text{ since } \cos x \text{ is continuous at } 0$$
$$= \ln(1) = \boxed{0}. \qquad \Box$$

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} (\ln x - \ln \sin x)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$. Then

$$\lim_{x \to 0^+} (\ln x - \ln \sin x) = \lim_{x \to 0^+} \ln \frac{x}{\sin x}$$

= $\ln \left(\lim_{x \to 0^+} \frac{x}{\sin x} \right)$ since $\ln x$ is continuous
$$\stackrel{0/0}{=} \ln \left(\lim_{x \to 0^+} \frac{1}{\cos x} \right)$$

= $\ln \left(\frac{1}{\cos(0)} \right)$ since $\cos x$ is continuous at 0
= $\ln(1) = \boxed{0}$. \Box

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} x^2 e^{-x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with -x). So $\lim_{x\to\infty} x^2 e^{-x}$ is of the $0 \cdot \infty$ indeterminate form.

Calculus 1

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} x^2 e^{-x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with -x). So $\lim_{x\to\infty} x^2 e^{-x}$ is of the $0 \cdot \infty$ indeterminate form. We rewrite the function $x^2 e^{-x}$ as x^2/e^x and note that $\lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} e^x = \infty$, so that $\lim_{x\to\infty} x^2/e^x$ is of the ∞/∞ indeterminate form.

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} x^2 e^{-x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with -x). So $\lim_{x\to\infty} x^2 e^{-x}$ is of the $0 \cdot \infty$ indeterminate form. We rewrite the function $x^2 e^{-x}$ as x^2/e^x and note that $\lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} e^x = \infty$, so that $\lim_{x\to\infty} x^2/e^x$ is of the ∞/∞ indeterminate form. So we have by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms," that

$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2}{e^x}$$
$$= 2\lim_{x \to \infty} e^{-x} = 2(0) = 0 \text{ by Example 2.6.5.} \quad \Box$$

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} x^2 e^{-x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with -x). So $\lim_{x\to\infty} x^2 e^{-x}$ is of the $0 \cdot \infty$ indeterminate form. We rewrite the function $x^2 e^{-x}$ as x^2/e^x and note that $\lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} e^x = \infty$, so that $\lim_{x\to\infty} x^2/e^x$ is of the ∞/∞ indeterminate form. So we have by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms," that

$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2}{e^x}$$
$$= 2 \lim_{x \to \infty} e^{-x} = 2(0) = 0 \text{ by Example 2.6.5.} \quad \Box$$

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x+3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form.

Calculus 1

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x+3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form. So by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms,"

$$\lim_{x \to \infty} \frac{\log_2 x}{\log_3(x+3)} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{(1/\ln 2)(1/x)}{(1/\ln 3)(1/(x+3))}$$
$$= \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{x+3}{x} \stackrel{\infty/\infty}{=} \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{1}{1} = \boxed{\frac{\ln 3}{\ln 2}}. \Box$$

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x+3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty} \frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form. So by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms,"

$$\lim_{x \to \infty} \frac{\log_2 x}{\log_3(x+3)} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{(1/\ln 2)(1/x)}{(1/\ln 3)(1/(x+3))}$$
$$= \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{x+3}{x} \stackrel{\infty/\infty}{=} \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{1}{1} = \boxed{\frac{\ln 3}{\ln 2}}. \Box$$

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With f(x) = (3x + 1)/x and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x + 1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+} \csc x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$ is of the $\infty - \infty$ indeterminate form.

Calculus 1

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With f(x) = (3x + 1)/x and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x + 1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+} \csc x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$ is of the $\infty - \infty$ indeterminate form. So we get a common denominator as follows

$$\lim_{x \to 0^{+}} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^{+}} \left(\frac{(3x+1)\sin x}{x\sin x} - \frac{x}{x\sin x} \right)$$
$$= \lim_{x \to 0^{+}} \frac{(3x+1)\sin x - x}{x\sin x} \stackrel{0/0}{=} \lim_{x \to 0^{+}} \frac{[3](\sin x) + (3x+1)[\cos x] - 1}{[1](\sin x) + (x)[\cos x]}$$

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With f(x) = (3x + 1)/x and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x + 1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+} \csc x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$ is of the $\infty - \infty$ indeterminate form. So we get a common denominator as follows

$$\lim_{x \to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^+} \left(\frac{(3x+1)\sin x}{x\sin x} - \frac{x}{x\sin x} \right)$$
$$= \lim_{x \to 0^+} \frac{(3x+1)\sin x - x}{x\sin x} \stackrel{0/0}{=} \lim_{x \to 0^+} \frac{[3](\sin x) + (3x+1)[\cos x] - 1}{[1](\sin x) + (x)[\cos x]}$$

Exercise 4.5.40 (continued)

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x}\right)$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution (continued). ...

$$= \lim_{x \to 0^+} \frac{[3](\sin x) + (3x+1)[\cos x] - 1}{[1](\sin x) + (x)[\cos x]} = \lim_{x \to 0^+} \frac{3\sin x + (3x+1)\cos x - 1}{\sin x + x\cos x}$$
$$\stackrel{0/0}{=} \lim_{x \to 0^+} \frac{3\cos x + [3](\cos x) + (3x+1)[-\sin x]}{\cos x + [1](\cos x) + (x)[-\sin x]}$$
$$= \lim_{x \to 0^+} \frac{6\cos x - (3x+1)\sin x}{2\cos x - x\sin x} = \frac{6\cos(0) - (3(0)+1)\sin(0)}{2\cos(0) - (0)\sin(0)} = \frac{6}{2} = \boxed{3}.\Box$$

Theorem 4.5.B

Theorem 4.5.B. If $\lim_{x \to a} \ln f(x) = L$ then

$$\lim_{x\to a} f(x) = \lim_{x\to a} e^{\ln f(x)} = e^{\lim_{x\to a} \ln f(x)} = e^L.$$

Here, a may be finite or infinite.

Proof. Suppose $\lim_{x\to a} \ln f(x) = L$. Then by the definition of limit, $\ln f(x)$ is defined on some open interval *I* containing *a*, except possibly at *a* itself. Since the natural logarithm is the inverse of the natural exponential, then $e^{\ln f(x)} = f(x)$ on *I* except possibly at x = a. Since the natural exponential function is continuous everywhere (in particular, at *L*) then

$$\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{\lim_{x \to a} \ln f(x)} = e^{L},$$

as claimed.

Theorem 4.5.B

Theorem 4.5.B. If $\lim_{x\to a} \ln f(x) = L$ then

$$\lim_{x\to a} f(x) = \lim_{x\to a} e^{\ln f(x)} = e^{\lim_{x\to a} \ln f(x)} = e^L.$$

Here, a may be finite or infinite.

Proof. Suppose $\lim_{x\to a} \ln f(x) = L$. Then by the definition of limit, $\ln f(x)$ is defined on some open interval *I* containing *a*, except possibly at *a* itself. Since the natural logarithm is the inverse of the natural exponential, then $e^{\ln f(x)} = f(x)$ on *I* except possibly at x = a. Since the natural exponential function is continuous everywhere (in particular, at *L*) then

$$\lim_{x\to a} f(x) = \lim_{x\to a} e^{\ln f(x)} = e^{\lim_{x\to a} \ln f(x)} = e^L,$$

as claimed.

Exercise 4.5.52. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 1^+} x^{1/(x-1)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With f(x) = x and g(x) = 1/(x-1), we have $\lim_{x\to 1^+} f(x) = 1$ and $\lim_{x\to 1^+} g(x) = \infty$, so $\lim_{x\to 1^+} x^{1/(x-1)}$ is of the 1^{∞} indeterminate form. We take a natural logarithm to get

$$\lim_{x \to 1^{+}} \ln(x^{1/(x-1)}) = \lim_{x \to 1^{+}} \frac{1}{x-1} \ln x = \lim_{x \to 1^{+}} \frac{\ln x}{x-1}$$
$$\stackrel{0/0}{=} \lim_{x \to 1^{+}} \frac{1/x}{1} = \frac{1/(1)}{1} = 1.$$

So by Theorem 4.5.B, $\lim_{x \to 1^+} x^{1/(x-1)} = e^{\lim_{x \to 1^+} \ln x^{1/(x-1)}} = e^1 = \boxed{e}$.

Exercise 4.5.52. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 1^+} x^{1/(x-1)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With f(x) = x and g(x) = 1/(x-1), we have $\lim_{x\to 1^+} f(x) = 1$ and $\lim_{x\to 1^+} g(x) = \infty$, so $\lim_{x\to 1^+} x^{1/(x-1)}$ is of the 1^{∞} indeterminate form. We take a natural logarithm to get

$$\lim_{x \to 1^{+}} \ln(x^{1/(x-1)}) = \lim_{x \to 1^{+}} \frac{1}{x-1} \ln x = \lim_{x \to 1^{+}} \frac{\ln x}{x-1}$$
$$\stackrel{0/0}{=} \lim_{x \to 1^{+}} \frac{1/x}{1} = \frac{1/(1)}{1} = 1.$$

So by Theorem 4.5.B, $\lim_{x \to 1^+} x^{1/(x-1)} = e^{\lim_{x \to 1^+} \ln x^{1/(x-1)}} = e^1 = \boxed{e}$.

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = e^x + x$ and g(x) = 1/x, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and $\lim_{x\to 0^-} (e^x + x)^{1/x}$ are of the 1^∞ indeterminate form.

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = e^x + x$ and g(x) = 1/x, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and $\lim_{x\to 0^-} (e^x + x)^{1/x}$ are of the 1^∞ indeterminate form. To evaluate $\lim_{x\to 0^+} (e^x + x)^{1/x}$, we take a natural logarithm to get

$$\lim_{x \to 0^+} \ln(e^x + x)^{1/x} = \lim_{x \to 0^+} (1/x) \ln(e^x + x) = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}$$
$$\stackrel{o/o}{=} \lim_{x \to 0^+} \frac{(1/(e^x + x))(e^x + 1)}{[1]} = \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.$$

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = e^x + x$ and g(x) = 1/x, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and $\lim_{x\to 0^-} (e^x + x)^{1/x}$ are of the 1^∞ indeterminate form. To evaluate $\lim_{x\to 0^+} (e^x + x)^{1/x}$, we take a natural logarithm to get

$$\lim_{x \to 0^+} \ln(e^x + x)^{1/x} = \lim_{x \to 0^+} (1/x) \ln(e^x + x) = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}$$
$$\stackrel{0/0}{=} \lim_{x \to 0^+} \frac{(1/(e^x + x))(e^x + 1)}{[1]} = \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.$$

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2.$ To evaluate $\lim_{x \to 0^-} (e^x + x)^{1/x}, \text{ we take a natural logarithm to get}$ $\lim_{x \to 0^-} \ln(e^x + x)^{1/x} = \lim_{x \to 0^-} (1/x) \ln(e^x + x) = \lim_{x \to 0^-} \frac{\ln(e^x + x)}{x}$ $\stackrel{0/0}{=} \lim_{x \to 0^-} \frac{(1/(e^x + x))(e^x + 1)}{[1]} = \lim_{x \to 0^-} \frac{e^x + 1}{e^x + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.$ So by Theorem 4.5.B, $\lim_{x \to 0^-} (e^x + x)^{1/x} = e^{\lim_{x \to 0^-} \ln(e^x + x)^{1/x}} = e^2.$

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when vou use l'Hôpital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2.$ To evaluate $\lim_{x\to 0^-} (e^x + x)^{1/x}$, we take a natural logarithm to get $\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x} = \lim_{x \to 0^{-}} (1/x) \ln(e^{x} + x) = \lim_{x \to 0^{-}} \frac{\ln(e^{x} + x)}{x}$ $\lim_{x \to 0^{-}} \lim_{x \to 0^{-}} \frac{(1/(e^{x} + x))[e^{x} + 1]}{[1]} = \lim_{x \to 0^{-}} \frac{e^{x} + 1}{e^{x} + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.$ So by Theorem 4.5.B, $\lim_{x\to 0^-} (e^x + x)^{1/x} = e^{\lim_{x\to 0^-} \ln(e^x + x)^{1/x}} = e^2$. Therefore by Theorem 2.6, "Relation Between One-Sided and Two-Sided $\text{Limits,''} \lim_{x \to 0} (e^x + x)^{1/x} = \boxed{e^2}. \square$ Calculus 1

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2.$ To evaluate $\lim_{x\to 0^-} (e^x + x)^{1/x}$, we take a natural logarithm to get $\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x} = \lim_{x \to 0^{-}} (1/x) \ln(e^{x} + x) = \lim_{x \to 0^{-}} \frac{\ln(e^{x} + x)}{x}$ $\lim_{x \to 0^{-}} \lim_{x \to 0^{-}} \frac{(1/(e^{x} + x))[e^{x} + 1]}{[1]} = \lim_{x \to 0^{-}} \frac{e^{x} + 1}{e^{x} + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.$ So by Theorem 4.5.B, $\lim_{x\to 0^-} (e^x + x)^{1/x} = e^{\lim_{x\to 0^-} \ln(e^x + x)^{1/x}} = e^2$. Therefore by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," $\lim_{x\to 0} (e^x + x)^{1/x} = \boxed{e^2}. \square$ Calculus 1

Exercise 4.5.81(b)

Exercise 4.5.81(b). Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} (x - \sqrt{x^2 + x})$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule. HINT: As the first step, multiply by $(x + \sqrt{x^2 + x})/(x + \sqrt{x^2 + x})$ and simplify the new numerator.

Solution. Notice that $\lim_{x\to\infty} x = \infty$ and $\lim_{x\to\infty} \sqrt{x^2 + x} = \infty$, so that $\lim_{x\to\infty} (x - \sqrt{x^2 + x})$ is of an $\infty - \infty$ indeterminate form. We follow the hint and consider

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) \left(\frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \right)$$
$$(x)^2 = \left(\sqrt{x^2 + x} \right)^2 = x^2 = \left(x^2 + x \right)$$

 $= \lim_{x \to \infty} \frac{(x) - (\sqrt{x^2 + x})}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}$

Exercise 4.5.81(b)

Exercise 4.5.81(b). Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty} (x - \sqrt{x^2 + x})$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule. HINT: As the first step, multiply by $(x + \sqrt{x^2 + x})/(x + \sqrt{x^2 + x})$ and simplify the new numerator.

Solution. Notice that $\lim_{x\to\infty} x = \infty$ and $\lim_{x\to\infty} \sqrt{x^2 + x} = \infty$, so that $\lim_{x\to\infty} (x - \sqrt{x^2 + x})$ is of an $\infty - \infty$ indeterminate form. We follow the hint and consider

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) \left(\frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \right)$$

 $= \lim_{x \to \infty} \frac{(x)^2 - (\sqrt{x^2 + x})^2}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}$

Exercise 4.5.81(b)

Exercise 4.5.81(b) (continued)

Solution (continued).

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}$$
$$\stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{-1}{1 + (1/2)(x^2 + x)^{-1/2}[2x + 1]}$$
$$= \lim_{x \to \infty} \frac{-1}{1 + (2x + 1)/(2\sqrt{x^2 + x})} = \frac{-1}{1 + (1)} = \boxed{\frac{-1}{2}}$$

because

$$\lim_{x \to \infty} \frac{2x+1}{2\sqrt{x^2+x}} = \lim_{x \to \infty} \frac{2x+1}{2\sqrt{x^2+x}} \frac{1/x}{1/x} = \lim_{x \to \infty} \frac{(2x+1)/x}{2\sqrt{x^2+x}/\sqrt{x^2}}$$
$$= \lim_{x \to \infty} \frac{2+1/x}{2\sqrt{1+1/x}} = \frac{2+(0)}{2\sqrt{1+(0)}} = 1. \quad \Box$$

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a, b) and also suppose $g'(x) \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if g(a) = g(b) then by the the Mean Value Theorem we have $g'(c) = \frac{g(b) - g(a)}{b - a} = 0$ for some $c \in (a, b)$ contradicting the hypotheses of the theorem.

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a, b) and also suppose $g'(x) \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if g(a) = g(b) then by the the Mean Value Theorem we have $g'(c) = \frac{g(b) - g(a)}{b - a} = 0$ for some $c \in (a, b)$ contradicting the hypotheses of the theorem. Next, consider

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and F(a) = F(b) = 0.

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a, b) and also suppose $g'(x) \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if g(a) = g(b) then by the the Mean Value Theorem we have $g'(c) = \frac{g(b) - g(a)}{b - a} = 0$ for some $c \in (a, b)$ contradicting the hypotheses of the theorem. Next, consider

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and F(a) = F(b) = 0.

Theorem 4.7 (continued)

Theorem 4.7. Cauchy's Mean Value Theorem. Suppose functions f and g are continuous on [a, b] and differentiable throughout (a, b) and also suppose $g'(x) \neq 0$ throughout (a, b). Then there exists a number c in (a, b) at which $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Proof (continued). Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and F(a) = F(b) = 0. So by Rolle's Theorem (Theorem 4.3) there is $c \in (a, b)$ such that F'(c) = 0. Since $F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x)$, then $F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$ and hence $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$, as claimed.

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \to a^+$ and $x \in I$. Then $g'(x) \neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval [a, x] we have for some $c \in (a, x)$ that $\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}$.

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \to a^+$ and $x \in I$. Then $g'(x) \neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval [a, x] we have for some $c \in (a, x)$ that $\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}$. Since f(a) = g(a) = 0 by hypothesis, then $\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$. Notice that as $x \to a^+$ then $c \to a^+$ (since for any given x, the corresponding c is between a and x).

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \to a^+$ and $x \in I$. Then $g'(x) \neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval [a, x] we have for some $c \in (a, x)$ that $\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}$. Since f(a) = g(a) = 0 by hypothesis, then $\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$. Notice that as $x \to a^+$ then $c \to a^+$ (since for any given x, the corresponding c is between a and x).

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},$$

so l'Hôpital's Rule holds as $x \to a^+$.

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},$$

so l'Hôpital's Rule holds as $x \to a^+$. The same argument (except with Cauchy's Mean Value Theorem applied on the interval [x, a]) shows that l'Hôpital's Rule holds as $x \to a^-$ also. So by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the claim holds.

()

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},$$

so l'Hôpital's Rule holds as $x \to a^+$. The same argument (except with Cauchy's Mean Value Theorem applied on the interval [x, a]) shows that l'Hôpital's Rule holds as $x \to a^-$ also. So by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the claim holds.

()