Calculus 1

Chapter 4. Applications of Derivatives

4.5. Indeterminate Forms and L'Hôpital's Rule-Examples and Proofs

Table of contents

- [Exercise 4.5.A](#page-2-0)
- [Exercise 4.5.16](#page-5-0)
- [Exercise 4.5.38](#page-8-0)
- [Exercise 4.5.46](#page-11-0)
- [Exercise 4.5.32](#page-15-0)
- [Exercise 4.5.40](#page-18-0)
- 7 [Theorem 4.5.B](#page-22-0)
- 8 [Exercise 4.5.52](#page-24-0)
- [Exercise 4.5.58](#page-26-0)
- 10 [Exercise 4.5.81\(b\)](#page-32-0)
- 11 [Theorem 4.7. Cauchy's Mean Value Theorem](#page-35-0)
- 12 Theorem 4.6. L'Hôpital's Rule

Example 4.5.A. Use l'Hôpital's Rule to show $\begin{pmatrix} a \end{pmatrix} \lim_{x \to 0}$ sin x $\frac{m}{x} = 1$ and

(**b**) $\lim_{x\to 0}$ $1 - \cos x$ $\frac{1}{x}$ = 0. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and $g(x) = x$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \cos x$, and $g'(x) = 1$. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}.
$$

Example 4.5.A. Use l'Hôpital's Rule to show $\begin{pmatrix} a \end{pmatrix} \lim_{x \to 0}$ sin x $\frac{m}{x} = 1$ and

(**b**) $\lim_{x\to 0}$ $1 - \cos x$ $\frac{1}{x}$ = 0. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and $g(x) = x$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \cos x$, and $g'(x) = 1$. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}.
$$

(b) With $f(x) = 1 - \cos x$ and $g(x) = x$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \sin x$, and $g'(x) = 1$. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1 - \cos x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\sin(0)}{(1)} = \frac{0}{1} = \boxed{0}.
$$

Example 4.5.A. Use l'Hôpital's Rule to show $\begin{pmatrix} a \end{pmatrix} \lim_{x \to 0}$ sin x $\frac{m}{x} = 1$ and

(**b**) $\lim_{x\to 0}$ $1 - \cos x$ $\frac{1}{x}$ = 0. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. (a) With $f(x) = \sin x$ and $g(x) = x$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \cos x$, and $g'(x) = 1$. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} \stackrel{0}{=} \frac{f'(a)}{g'(a)} = \frac{\cos(0)}{(1)} = \frac{1}{1} = \boxed{1}.
$$

(b) With $f(x) = 1 - \cos x$ and $g(x) = x$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \sin x$, and $g'(x) = 1$. So the hypotheses of l'Hôpital's Rule hold and hence we have

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1 - \cos x}{x} \stackrel{0/0}{=} \frac{f'(a)}{g'(a)} = \frac{\sin(0)}{(1)} = \frac{0}{1} = \boxed{0}.
$$

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate

 $\lim_{x\to 0}$ $\sin x - x$ $\overline{x^3}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and $a = 0$, we have $f(\mathsf{a}) = g(\mathsf{a}) = 0$, $f'(\mathsf{x}) = \cos{\mathsf{x}} - 1$, and $g'(\mathsf{x}) = 3\mathsf{x}^2$. So the hypotheses of l'Hôpital's Rule hold, but $f'(a)/g'(a)$ does not exist since $g'(0) = 0$. However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$.

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate

 $\lim_{x\to 0}$ $\sin x - x$ $\overline{x^3}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and $a = 0$, we have $f(a)=g(a)=0, \ f'(x)=\cos x -1, \ {\rm and} \ \ g'(x)=3x^2.$ So the hypotheses of l'Hôpital's Rule hold, but $f'(a)/g'(a)$ does not exist since $g'(0)=0.$ However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$). We then have

$$
\lim_{x \to 0} \frac{\sin x - x}{x^3} \stackrel{0/0}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \stackrel{0/0}{=} \lim_{x \to 0} \frac{-\sin x}{6x}
$$

$$
\stackrel{0/0}{=} \lim_{x \to 0} \frac{-\cos x}{6} = \frac{-\cos(0)}{6} = \boxed{\frac{-1}{6}}.
$$

Exercise 4.5.16. Use l'Hôpital's Rule (Theorem 4.6) to evaluate

 $\lim_{x\to 0}$ $\sin x - x$ $\overline{x^3}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and $a = 0$, we have $f(a)=g(a)=0, \ f'(x)=\cos x -1, \ {\rm and} \ \ g'(x)=3x^2.$ So the hypotheses of l'Hôpital's Rule hold, but $f'(a)/g'(a)$ does not exist since $g'(0)=0.$ However, $\lim_{x\to 0} f'(x)/g'(x)$ is itself of the 0/0 indeterminate form so that we may attempt to apply l'Hôpital's Rule to that (or maybe even $\lim_{x\to 0} f''(x)/g''(x)$). We then have

$$
\lim_{x \to 0} \frac{\sin x - x}{x^3} \stackrel{0/0}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \stackrel{0/0}{=} \lim_{x \to 0} \frac{-\sin x}{6x}
$$

$$
\stackrel{0/0}{=} \lim_{x \to 0} \frac{-\cos x}{6} = \frac{-\cos(0)}{6} = \boxed{\frac{-1}{6}}.
$$

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{\Delta t \to 0}$ (In x $-$ In sin x). Write the indeterminate form over the equal sign $x \rightarrow 0^+$ when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\ln x}$. sin x

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{\Delta t \to 0}$ (In x $-$ In sin x). Write the indeterminate form over the equal sign $x \rightarrow 0^+$ when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$. Then

$$
\lim_{x \to 0^{+}} (\ln x - \ln \sin x) = \lim_{x \to 0^{+}} \ln \frac{x}{\sin x}
$$
\n
$$
= \ln \left(\lim_{x \to 0^{+}} \frac{x}{\sin x} \right) \text{ since } \ln x \text{ is continuous}
$$
\n
$$
\stackrel{0/0}{=} \ln \left(\lim_{x \to 0^{+}} \frac{1}{\cos x} \right)
$$
\n
$$
= \ln \left(\frac{1}{\cos(0)} \right) \text{ since } \cos x \text{ is continuous at } 0
$$
\n
$$
= \ln(1) = 0. \quad \Box
$$

Exercise 4.5.38. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{\Delta t \to 0}$ (In x $-$ In sin x). Write the indeterminate form over the equal sign $x \rightarrow 0^+$ when you use l'Hôpital's Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$. Then

$$
\lim_{x \to 0^{+}} (\ln x - \ln \sin x) = \lim_{x \to 0^{+}} \ln \frac{x}{\sin x}
$$
\n
$$
= \ln \left(\lim_{x \to 0^{+}} \frac{x}{\sin x} \right) \text{ since } \ln x \text{ is continuous}
$$
\n
$$
\stackrel{0/0}{=} \ln \left(\lim_{x \to 0^{+}} \frac{1}{\cos x} \right)
$$
\n
$$
= \ln \left(\frac{1}{\cos(0)} \right) \text{ since } \cos x \text{ is continuous at } 0
$$
\n
$$
= \ln(1) = 0. \quad \Box
$$

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x^2e^{-x} . Write the indeterminate form over the equal sign when you x→∞ use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with $-x$). So lim $_{x\to\infty}x^2e^{-x}$ is of the $0\cdot\infty$ indeterminate form.

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x^2e^{-x} . Write the indeterminate form over the equal sign when you x→∞ use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with $-x)$. So lim $_{\mathsf{x}\rightarrow\infty}\mathsf{x}^2e^{-\mathsf{x}}$ is of the $0\cdot\infty$ $\mathsf{indeterminate\ form}.$ We rewrite the function x^2e^{-x} as x^2/e^x and note that $\lim_{x\to\infty}x^2=\infty$ and $\lim_{x\to\infty}e^x=\infty$, so that $\lim_{x\to\infty}x^2/e^x$ is of the ∞/∞ indeterminate form.

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x^2e^{-x} . Write the indeterminate form over the equal sign when you x→∞ use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with $-x)$. So lim $_{\mathsf{x}\rightarrow\infty}\mathsf{x}^2e^{-\mathsf{x}}$ is of the $0\cdot\infty$ indeterminate form. We rewrite the function x^2e^{-x} as x^2/e^{x} and note that $\lim_{x\to\infty}x^2=\infty$ and $\lim_{x\to\infty}e^x=\infty$, so that $\lim_{x\to\infty}x^2/e^x$ is of the ∞/∞ indeterminate form. So we have by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms," that

$$
\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2}{e^x}
$$

= 2 \lim_{x \to \infty} e^{-x} = 2(0) = 0 by Example 2.6.5.

Exercise 4.5.46. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x^2e^{-x} . Write the indeterminate form over the equal sign when you x→∞ use l'Hôpital's Rule.

Proof. With $f(x) = e^{-x}$ and $g(x) = x^2$ we have $\lim_{x\to\infty} g(x) = \lim_{x\to\infty} x^2 = \infty$ and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^{-x} = \lim_{x\to-\infty} e^x = 0$ by Example 2.6.5 (where we have replaced x with $-x)$. So lim $_{\mathsf{x}\rightarrow\infty}\mathsf{x}^2e^{-\mathsf{x}}$ is of the $0\cdot\infty$ indeterminate form. We rewrite the function x^2e^{-x} as x^2/e^{x} and note that $\lim_{x\to\infty}x^2=\infty$ and $\lim_{x\to\infty}e^x=\infty$, so that $\lim_{x\to\infty}x^2/e^x$ is of the ∞/∞ indeterminate form. So we have by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms," that

$$
\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{2}{e^x}
$$

= 2 \lim_{x \to \infty} e^{-x} = 2(0) = 0 by Example 2.6.5.

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x→∞ $\log_2 x$ $\frac{1}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x + 3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty}$ $\log_2 x$ $\frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form.

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x→∞ $\log_2 x$ $\frac{1}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x + 3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty}$ $log_2 x$ $\frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form. So by Theorem 4.5.A, "L'Hôpitals Rule for ∞/∞ Indeterminate Forms,"

$$
\lim_{x \to \infty} \frac{\log_2 x}{\log_3(x+3)} \approx \lim_{x \to \infty} \frac{(1/\ln 2)(1/x)}{(1/\ln 3)(1/(x+3))}
$$

$$
= \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{x+3}{x} \approx \lim_{x \to \infty} \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{1}{1} = \frac{\ln 3}{\ln 2}.
$$

Exercise 4.5.32. Use l'Hôpital's Rule (Theorem 4.6) to evaluate lim x→∞ $\log_2 x$ $\frac{1}{\log_3(x+3)}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = \log_2 x$ and $g(x) = \log_3(x + 3)$, we have $\lim_{x\to\infty} \log_2 x = \lim_{x\to\infty} \log_3(x+3) = \infty$, so $\lim_{x\to\infty}$ $log_2 x$ $\frac{\log_2 x}{\log_3(x+3)}$ is of the ∞/∞ indeterminate form. So by Theorem 4.5.A, "L'Hôpitals Rule for ∞ / ∞ Indeterminate Forms,"

$$
\lim_{x \to \infty} \frac{\log_2 x}{\log_3(x+3)} \approx \lim_{x \to \infty} \frac{(1/\ln 2)(1/x)}{(1/\ln 3)(1/(x+3))}
$$

$$
= \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{x+3}{x} \approx \lim_{x \to \infty} \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{1}{1} = \frac{\ln 3}{\ln 2} \quad \Box
$$

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin x . Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = (3x + 1)/x$ and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x+1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+}$ csc $x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ $\sin x$ $\bigg)$ is of the $\infty - \infty$ indeterminate form.

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin x . Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = (3x + 1)/x$ and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x+1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+}$ csc $x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin \times $\bigg)$ is of the $\infty - \infty$ indeterminate form. So we get a common denominator as follows

$$
\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^+} \left(\frac{(3x + 1)\sin x}{x \sin x} - \frac{x}{x \sin x} \right)
$$

$$
= \lim_{x \to 0^+} \frac{(3x + 1)\sin x - x}{x \sin x} \stackrel{0}{=} \lim_{x \to 0^+} \frac{[3](\sin x) + (3x + 1)(\cos x] - 1}{[1](\sin x) + (x)(\cos x]}
$$

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin x . Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With $f(x) = (3x + 1)/x$ and $g(x) = 1/\sin x = \csc x$ we have $\lim_{x\to 0^+} (3x+1)/x = \infty$ (by Dr. Bob's Infinite Limits Theorem) and $\lim_{x\to 0^+}$ csc $x = \infty$ (see the graph of $y = \csc x$), so $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin \times $\big)$ is of the $\infty - \infty$ indeterminate form. So we get a common denominator as follows

$$
\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^+} \left(\frac{(3x + 1)\sin x}{x \sin x} - \frac{x}{x \sin x} \right)
$$

$$
= \lim_{x \to 0^+} \frac{(3x + 1)\sin x - x}{x \sin x} \stackrel{0}{=} \lim_{x \to 0^+} \frac{[3](\sin x) + (3x + 1)[\cos x] - 1}{[1](\sin x) + (x)[\cos x]}
$$

Exercise 4.5.40 (continued)

Exercise 4.5.40. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0^+}$ $(3x + 1)$ $\frac{+1}{x} - \frac{1}{\sin}$ sin \times $\big).$ Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution (continued). ...

$$
= \lim_{x \to 0^{+}} \frac{[3](\sin x) + (3x + 1)[\cos x] - 1}{[1](\sin x) + (x)[\cos x]} = \lim_{x \to 0^{+}} \frac{3\sin x + (3x + 1)\cos x - 1}{\sin x + x\cos x}
$$

$$
\stackrel{0/0}{=} \lim_{x \to 0^{+}} \frac{3\cos x + [3](\cos x) + (3x + 1)[- \sin x]}{\cos x + [1](\cos x) + (x)[- \sin x]}
$$

$$
= \lim_{x \to 0^{+}} \frac{6\cos x - (3x + 1)\sin x}{2\cos x - x\sin x} = \frac{6\cos(0) - (3(0) + 1)\sin(0)}{2\cos(0) - (0)\sin(0)} = \frac{6}{2} = \boxed{3}.\square
$$

Theorem 4.5.B

Theorem 4.5.B. If $\lim_{x\to a}$ In $f(x) = L$ then

$$
\lim_{x\to a}f(x)=\lim_{x\to a}e^{\ln f(x)}=e^{\lim_{x\to a}\ln f(x)}=e^L.
$$

Here, a may be finite or infinite.

Proof. Suppose $\lim_{x\to a} \ln f(x) = L$. Then by the definition of limit, $\ln f(x)$ is defined on some open interval *I* containing a, except possibly at a itself. Since the natural logarithm is the inverse of the natural exponential, then $e^{\ln f(x)} = f(x)$ on I except possibly at $x = a$. Since the natural exponential function is continuous everywhere (in particular, at L) then

$$
\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{\lim_{x \to a} \ln f(x)} = e^L,
$$

as claimed.

Theorem 4.5.B

Theorem 4.5.B. If $\lim_{x\to a}$ In $f(x) = L$ then

$$
\lim_{x\to a}f(x)=\lim_{x\to a}e^{\ln f(x)}=e^{\lim_{x\to a}\ln f(x)}=e^L.
$$

Here, a may be finite or infinite.

Proof. Suppose $\lim_{x\to a}$ In $f(x) = L$. Then by the definition of limit, In $f(x)$ is defined on some open interval I containing a , except possibly at a itself. Since the natural logarithm is the inverse of the natural exponential, then $e^{\ln f(x)} = f(x)$ on I except possibly at $x = a$. Since the natural exponential function is continuous everywhere (in particular, at L) then

$$
\lim_{x\to a}f(x)=\lim_{x\to a}e^{\ln f(x)}=e^{\lim_{x\to a}\ln f(x)}=e^L,
$$

as claimed.

Exercise 4.5.52. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x \to 1} x^{1/(x-1)}$. Write the indeterminate form over the equal sign when you $x \rightarrow 1^+$ use l'Hôpital's Rule.

Solution. With $f(x) = x$ and $g(x) = 1/(x - 1)$, we have $\lim_{x\to 1^+} f(x) = 1$ and $\lim_{x\to 1^+} g(x) = \infty$, so $\lim_{x\to 1^+} x^{1/(x-1)}$ is of the 1^{∞} indeterminate form. We take a natural logarithm to get

$$
\lim_{x \to 1^{+}} \ln(x^{1/(x-1)}) = \lim_{x \to 1^{+}} \frac{1}{x-1} \ln x = \lim_{x \to 1^{+}} \frac{\ln x}{x-1}
$$

$$
\stackrel{0/0}{=} \lim_{x \to 1^{+}} \frac{1/x}{1} = \frac{1/(1)}{1} = 1.
$$

So by Theorem 4.5.B, $\lim_{x \to 1^+} x^{1/(x-1)} = e^{\lim_{x \to 1^+} \ln x^{1/(x-1)}} = e^1 = e^1$. \Box

Exercise 4.5.52. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x \to 1} x^{1/(x-1)}$. Write the indeterminate form over the equal sign when you $x \rightarrow 1^+$ use l'Hôpital's Rule.

Solution. With $f(x) = x$ and $g(x) = 1/(x - 1)$, we have $\lim_{x\to 1^+} f(x) = 1$ and $\lim_{x\to 1^+} g(x) = \infty$, so $\lim_{x\to 1^+} x^{1/(x-1)}$ is of the 1^{∞} indeterminate form. We take a natural logarithm to get

$$
\lim_{x \to 1^{+}} \ln(x^{1/(x-1)}) = \lim_{x \to 1^{+}} \frac{1}{x-1} \ln x = \lim_{x \to 1^{+}} \frac{\ln x}{x-1}
$$

$$
\stackrel{0/0}{=} \lim_{x \to 1^{+}} \frac{1/x}{1} = \frac{1/(1)}{1} = 1.
$$

So by Theorem 4.5.B, $\lim_{x \to 1^+} x^{1/(x-1)} = e^{\lim_{x \to 1^+} \ln x^{1/(x-1)}} = e^1 = e$. \Box

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x \to \infty} (e^{x} + x)^{1/x}$. Write the indeterminate form over the equal sign when $x\rightarrow 0$ you use l'Hˆopital's Rule.

Solution. With $f(x) = e^x + x$ and $g(x) = 1/x$, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and lim_{x→0}– $(e^x + x)^{1/x}$ are of the 1[∞] indeterminate form.

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x \to \infty} (e^{x} + x)^{1/x}$. Write the indeterminate form over the equal sign when $x\rightarrow 0$ you use l'Hˆopital's Rule.

Solution. With $f(x) = e^x + x$ and $g(x) = 1/x$, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and lim_{x→0}− $(e^x + x)^{1/x}$ are of the 1[∞] indeterminate form. To evaluate $\lim_{x\to 0^+} (e^x + x)^{1/x}$, we take a natural logarithm to get

$$
\lim_{x \to 0^+} \ln(e^x + x)^{1/x} = \lim_{x \to 0^+} (1/x) \ln(e^x + x) = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}
$$

$$
\frac{0/0}{x} \lim_{x \to 0^+} \frac{(1/(e^x + x))[e^x + 1]}{[1]} = \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.
$$

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x \to \infty} (e^{x} + x)^{1/x}$. Write the indeterminate form over the equal sign when $x\rightarrow 0$ you use l'Hˆopital's Rule.

Solution. With $f(x) = e^x + x$ and $g(x) = 1/x$, we have $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} 1/x = \infty$, and $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} 1/x = -\infty$, so both $\lim_{x\to 0^+} (e^x + x)^{1/x}$ and lim $_{\chi \rightarrow 0^-} (e^\chi + \chi)^{1/\chi}$ are of the 1 $^\infty$ indeterminate form. To evaluate $\lim_{x\to 0^+} (e^x + x)^{1/x}$, we take a natural logarithm to get

$$
\lim_{x \to 0^+} \ln(e^x + x)^{1/x} = \lim_{x \to 0^+} (1/x) \ln(e^x + x) = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}
$$

$$
\frac{0/0}{\pi} \lim_{x \to 0^+} \frac{(1/(e^x + x))[e^x + 1]}{[1]} = \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x} = \frac{e^{(0)} + 1}{e^{(0)} + (0)} = 2.
$$

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hˆopital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2$. To evaluate lim_{x→0}– $(e^x + x)^{1/x}$, we take a natural logarithm to get $\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x} = \lim_{x \to 0^{-}} (1/x) \ln(e^{x} + x) = \lim_{x \to 0^{-}}$ $\ln(e^x + x)$ \times $\frac{0/0}{2}$ lim
 $x \to 0^ \triangle$ $(1/(e^x+x))[e^x+1]$ $\frac{y}{1} = \lim_{x \to 0^{-}}$ $e^{\chi}+1$ $\frac{e^x+1}{e^x+x} = \frac{e^{(0)}+1}{e^{(0)}+(0)}$ $\frac{e^{-(0)}+2}{e^{(0)}+(0)}=2.$ So by Theorem 4.5.B, $\lim_{x \to 0^{-}} (e^{x} + x)^{1/x} = e^{\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x}} = e^{2}$.

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2$. To evaluate lim $_{x\rightarrow0^-}(e^x+x)^{1/x}$, we take a natural logarithm to get $\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x} = \lim_{x \to 0^{-}} (1/x) \ln(e^{x} + x) = \lim_{x \to 0^{-}}$ $\ln(e^x + x)$ x $\overset{0/0}{=} \lim_{x \to 0^{-}}$ \sim $(1/(e^x+x))[e^x+1]$ $\frac{y}{1} = \lim_{x \to 0^{-}}$ $e^x + 1$ $\frac{e^{\chi}+1}{e^{\chi}+\chi}=\frac{e^{(0)}+1}{e^{(0)}+(0)}$ $\frac{e^{-(0)}+1}{e^{(0)}+(0)}=2.$ So by Theorem 4.5.B, $\lim_{x \to 0^{-}} (e^{x} + x)^{1/x} = e^{\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x}} = e^{2}$. Therefore by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," $\lim_{x\to 0} (e^x + x)^{1/x} = \boxed{e^2}$. (1) [Calculus 1](#page-0-0) September 24, 2020 13 / 19

Exercise 4.5.58 (continued)

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to 0} (e^x + x)^{1/x}$. Write the indeterminate form over the equal sign when you use l'Hˆopital's Rule.

Solution (continued). So by Theorem 4.5.B,

 $\lim_{x \to 0^+} (e^x + x)^{1/x} = e^{\lim_{x \to 0^+} \ln(e^x + x)^{1/x}} = e^2$. To evaluate lim $_{x\rightarrow0^-}(e^x+x)^{1/x}$, we take a natural logarithm to get $\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x} = \lim_{x \to 0^{-}} (1/x) \ln(e^{x} + x) = \lim_{x \to 0^{-}}$ $\ln(e^x + x)$ x $\overset{0/0}{=} \lim_{x \to 0^{-}}$ \sim $(1/(e^x+x))[e^x+1]$ $\frac{y}{1} = \lim_{x \to 0^{-}}$ $e^x + 1$ $\frac{e^{\chi}+1}{e^{\chi}+\chi}=\frac{e^{(0)}+1}{e^{(0)}+(0)}$ $\frac{e^{-(0)}+1}{e^{(0)}+(0)}=2.$ So by Theorem 4.5.B, $\lim_{x \to 0^{-}} (e^{x} + x)^{1/x} = e^{\lim_{x \to 0^{-}} \ln(e^{x} + x)^{1/x}} = e^{2}$. Therefore by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," $\lim_{x\to 0} (e^x + x)^{1/x} = \boxed{e^2}$. () [Calculus 1](#page-0-0) September 24, 2020 13 / 19

Exercise 4.5.81(b)

Exercise 4.5.81(b). Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty}$ $(x - \sqrt{x^2 + x})$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule. HINT: As the first step, multiply by $\sqrt{2}$ $(x + \sqrt{x^2} + x)/(x + \sqrt{x^2} + x)$ and simplify the new numerator.

Solution. N<u>otice t</u>hat lim $_{x\rightarrow\infty}$ $x=\infty$ and lim $_{x\rightarrow\infty}$ $x^2 + x = \infty$, so that $\lim_{x\to\infty} (x-\sqrt{x^2+x})$ is of an $\infty-\infty$ indeterminate form. We follow the hint and consider

$$
\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) \left(\frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \right)
$$

$$
= \lim_{x \to \infty} \frac{(x)^2 - (\sqrt{x^2 + x})^2}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}
$$

Exercise 4.5.81(b)

Exercise 4.5.81(b). Use l'Hôpital's Rule (Theorem 4.6) to evaluate $\lim_{x\to\infty}$ $(x - \sqrt{x^2 + x})$. Write the indeterminate form over the equal sign when you use l'Hôpital's Rule. HINT: As the first step, multiply by $\sqrt{2}$ $(x + \sqrt{x^2} + x)/(x + \sqrt{x^2} + x)$ and simplify the new numerator.

Solution. N<u>otice t</u>hat lim $_{x\rightarrow\infty}$ $x=\infty$ and lim $_{x\rightarrow\infty}$ √ $x^2 + x = \infty$, so that $\displaystyle \lim_{x\to \infty} (x-\sqrt{x^2+x})$ is of an $\infty -\infty$ indeterminate form. We follow the hint and consider

$$
\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) \left(\frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \right)
$$

$$
= \lim_{x \to \infty} \frac{(x)^2 - (\sqrt{x^2 + x})^2}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}
$$

Exercise 4.5.81(b)

Exercise 4.5.81(b) (continued)

Solution (continued).

$$
\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}
$$

$$
\approx \lim_{x \to \infty} \frac{-1}{1 + (1/2)(x^2 + x)^{-1/2} [2x + 1]}
$$

$$
= \lim_{x \to \infty} \frac{-1}{1 + (2x + 1)/(2\sqrt{x^2 + x})} = \frac{-1}{1 + (1)} = \boxed{\frac{-1}{2}}
$$

because

$$
\lim_{x \to \infty} \frac{2x + 1}{2\sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{2x + 1}{2\sqrt{x^2 + x}} \frac{1/x}{1/x} = \lim_{x \to \infty} \frac{(2x + 1)/x}{2\sqrt{x^2 + x}/\sqrt{x^2}}
$$

$$
= \lim_{x \to \infty} \frac{2 + 1/x}{2\sqrt{1 + 1/x}} = \frac{2 + (0)}{2\sqrt{1 + (0)}} = 1. \quad \Box
$$

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a,b) and also suppose $g'(x)\neq 0$ throughout $(a,b).$ Then there exists a number c in (a, b) at which $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$ $\frac{f(z)}{g(b)-g(a)}.$

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if $g(a) = g(b)$ then by the the Mean Value Theorem we have $g'(c) = \frac{g(b) - g(a)}{b - a} = 0$ for some $c \in (a, b)$ contradicting the hypotheses of the theorem.

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a,b) and also suppose $g'(x)\neq 0$ throughout $(a,b).$ Then there exists a number c in (a, b) at which $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$ $\frac{f(z)}{g(b)-g(a)}.$

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if $g(a) = g(b)$ then by the the Mean Value Theorem we have $g'(c) = \dfrac{g(b)-g(a)}{b-a} = 0$ for some $c \in (a,b)$ contradicting the hypotheses of the theorem. Next, consider

$$
F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).
$$

Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and $F(a) = F(b) = 0$.

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a,b) and also suppose $g'(x)\neq 0$ throughout $(a,b).$ Then there exists a number c in (a, b) at which $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$ $\frac{f(z)}{g(b)-g(a)}.$

Proof. First, notice that f and g both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that $g(a) \neq g(b)$, for if $g(a) = g(b)$ then by the the Mean Value Theorem we have $g'(c) = \frac{g(b)-g(a)}{b-a} = 0$ for some $c \in (a, b)$ contradicting the hypotheses of the theorem. Next, consider

$$
F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).
$$

Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and $F(a) = F(b) = 0$.

Theorem 4.7 (continued)

Theorem 4.7. Cauchy's Mean Value Theorem.

Suppose functions f and g are continuous on [a, b] and differentiable throughout (a,b) and also suppose $g'(x)\neq 0$ throughout $(a,b).$ Then there exists a number c in (a, b) at which $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$ $\frac{f(z)}{g(b)-g(a)}.$

Proof (continued). Since f and g are continuous on [a, b] then so is F, since f and g are differentiable on (a, b) then so is F, and $F(a) = F(b) = 0$. So by Rolle's Theorem (Theorem 4.3) there is $c \in (a, b)$ such that $F'(c) = 0$. Since $F'(x) = f'(x) - \frac{f(b) - f(a)}{f(b) - f(a)}$ $\frac{f(b) - f(a)}{g(b) - g(a)} g'(x),$ then $F'(c) = f'(c) - \frac{f(b) - f(a)}{f(b) - f(a)}$ $\frac{f(b)-f(d)}{g(b)-g(a)}g'(c)=0$ and hence $f'(c)$ $\frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)}$ $\frac{f(z)-f(z)}{g(b)-g(a)}$, as claimed.

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \rightarrow a^+$ and $x \in I$. Then $g'(x)\neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval $[a, x]$ we have for some $c \in (a, x)$ that $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}$ $\frac{f(x)-f(x)}{g(x)-g(a)}.$

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \rightarrow a^+$ and $x \in I$. Then $g'(x)\neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval [a, x] we have for some $c \in (a, x)$ that $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(x)-f(a)}{g(x)-g(a)}$ $\frac{f(x)-f(x)}{g(x)-g(a)}.$ Since $f(a) = g(a) = 0$ by hypothesis, then $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$ $\frac{\partial}{\partial g(x)}$. Notice that as $x \to a^+$ then $c \to a^+$ (since for any given x, the corresponding c is between a and x).

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose $x \rightarrow a^+$ and $x \in I$. Then $g'(x)\neq 0$, so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval [a, x] we have for some $c \in (a, x)$ that $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(x)-f(a)}{g(x)-g(a)}$ $\frac{f(x)-f(x)}{g(x)-g(a)}.$ Since $f(a) = g(a) = 0$ by hypothesis, then $\frac{f'(c)}{f'(c)}$ $\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$ $\frac{\partial f(x)}{\partial g(x)}$. Notice that as $x \to a^+$ then $c \to a^+$ (since for any given x, the corresponding c is between a and x).

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$
\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},
$$

so l'Hôpital's Rule holds as $x \to a^+$.

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$
\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},
$$

 so l'Hôpital's Rule holds as $\mathsf{x}\to\mathsf{a}^+$. The same argument (except with Cauchy's Mean Value Theorem applied on the interval $[x, a]$) shows that l'Hôpital's Rule holds as $x \rightarrow a^-$ also. So by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the claim holds.

Theorem 4.6 (continued)

Theorem 4.6. L'Hôpital's Rule.

Suppose that $f(a) = g(a) = 0$, that f and g are differentiable on an open interval I containing a , and that $g'(x)\neq 0$ on I if $x\neq a$. Then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},
$$

assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore

$$
\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},
$$

so l'Hôpital's Rule holds as $x \to a^+$. The same argument (except with Cauchy's Mean Value Theorem applied on the interval $[x, a]$) shows that l'Hôpital's Rule holds as $x \to a^-$ also. So by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the claim holds.