Calculus 1

Chapter 4. Applications of Derivatives

4.7. Newton's Method—Examples and Proofs

- [Exercise 4.7.16. Locating a Planet](#page-5-0)
- [Exercise 4.7.30. Factoring a Quartic](#page-10-0)
- [Exercise 4.7.20. Intersecting Curves](#page-23-0)

Exercise 4.7.2. Use Newton's Method to estimate the one real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then find x_2 .

Solution. First, we set $f(x) = x^3 + 3x + 1$ so that we can apply Newton's Method to the equation $f(x) = 0$, as needed. We then have $f'(x) = 3x^2 + 3$. We make a table of relevant values, as the text does in its Example 4.7.2:

Exercise 4.7.2. Use Newton's Method to estimate the one real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then find x_2 .

Solution. First, we set $f(x) = x^3 + 3x + 1$ so that we can apply Newton's Method to the equation $f(x) = 0$, as needed. We then have $f'(x) = 3x^2 + 3$. We make a table of relevant values, as the text does in its Example 4.7.2:

So two applications of Newton's Method produces $x_2 = -29/90$. □

Exercise 4.7.2. Use Newton's Method to estimate the one real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then find x_2 .

Solution. First, we set $f(x) = x^3 + 3x + 1$ so that we can apply Newton's Method to the equation $f(x) = 0$, as needed. We then have $f'(x) = 3x^2 + 3$. We make a table of relevant values, as the text does in its Example 4.7.2:

So two applications of Newton's Method produces $x_2 = -29/90$

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near $x = 1.5$. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution. Notice that the equation $f(x) = x - 1 - 0.5 \sin x = 0$ is equivalent to the desired equation $x = 1 + 0.5 \sin x$. With $f(x) = x - 1 - 0.5 \sin x$, we have $f'(x) = 1 - 0.5 \cos x$. With $x_0 = 1.5$ we have $f(x_0) = f(1.5) = (1.5) - 1 - 0.5 \sin(1.5) = 0.5 - 0.5 \sin(1.5)$ and $f'(x_0) = f'(1.5) = 1 - 0.5 \cos(1.5).$

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near $x = 1.5$. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution. Notice that the equation $f(x) = x - 1 - 0.5 \sin x = 0$ is equivalent to the desired equation $x = 1 + 0.5 \sin x$. With $f(x) = x - 1 - 0.5 \sin x$, we have $f'(x) = 1 - 0.5 \cos x$. With $x_0 = 1.5$ we have $f(x_0) = f(1.5) = (1.5) - 1 - 0.5 \sin(1.5) = 0.5 - 0.5 \sin(1.5)$ and $f'(x_0) = f'(1.5) = 1 - 0.5 \cos(1.5)$. So

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \boxed{1.5 - \frac{0.5 - 0.5 \sin(1.5)}{1 - \cos(1.5)}} \approx 1.498652.
$$

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near $x = 1.5$. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution. Notice that the equation $f(x) = x - 1 - 0.5 \sin x = 0$ is equivalent to the desired equation $x = 1 + 0.5 \sin x$. With $f(x) = x - 1 - 0.5 \sin x$, we have $f'(x) = 1 - 0.5 \cos x$. With $x_0 = 1.5$ we have $f(x_0) = f(1.5) = (1.5) - 1 - 0.5 \sin(1.5) = 0.5 - 0.5 \sin(1.5)$ and $f'(x_0) = f'(1.5) = 1 - 0.5 \cos(1.5)$. So

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \boxed{1.5 - \frac{0.5 - 0.5 \sin(1.5)}{1 - \cos(1.5)}} \approx 1.498652.
$$

Exercise 4.7.16 (continued)

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near $x = 1.5$. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution (continued). ...

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \boxed{1.5 - \frac{0.5 - 0.5 \sin(1.5)}{1 - \cos(1.5)}} \approx 1.498652.
$$

Notice that if we round our approximation to four decimal places, then it agrees with the "correct" answer to four decimal places (but not to five decimal places). \square

Exercise 4.7.16 (continued)

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near $x = 1.5$. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution (continued). ...

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \boxed{1.5 - \frac{0.5 - 0.5 \sin(1.5)}{1 - \cos(1.5)}} \approx 1.498652.
$$

Notice that if we round our approximation to four decimal places, then it agrees with the "correct" answer to four decimal places (but not to five decimal places). \square

Exercise 4.7.30. Factoring a Quartic.

Find the approximate values of r_1 through r_4 in the factorization

$$
8x4 - 14x3 - 9x2 + 11x - 1 = 8(x - r1)(x - r2)(x - r3)(x - r4).
$$

Solution. Let $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$ so that finding a root is the same as finding a solution to the equation $f(x) = 0$.

Exercise 4.7.30. Factoring a Quartic.

Find the approximate values of r_1 through r_4 in the factorization

$$
8x4 - 14x3 - 9x2 + 11x - 1 = 8(x - r1)(x - r2)(x - r3)(x - r4).
$$

Solution. Let $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$ so that finding a root is the same as finding a solution to the equation $f(x) = 0$.

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x)=32x^3-42x^2-18x+11$. It looks like a solution is given by $x = -1$. So to find the root close to -1 , we start with $x_0 = -1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values ... \odot

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x)=32x^3-42x^2-18x+11$. It looks like a solution is given by $x = -1$. So to find the root close to -1 , we start with $x_0 = -1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values ... \odot

We have $x_2 \approx -0.97683$ and so take the first root as $r_1 = -0.97683$.

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x)=32x^3-42x^2-18x+11$. It looks like a solution is given by $x = -1$. So to find the root close to -1 , we start with $x_0 = -1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values ... \odot

We have $x_2 \approx -0.97683$ and so take the first root as $r_1 = -0.97683$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. It looks like a solution is given by $x = 2$. So to find the root close to 2, we start with $x_0 = 2$.

We have $x_2 \approx 1.98371$ and so take the root as $r_4 = 1.98371$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. It looks like a solution is given by $x = 2$. So to find the root close to 2, we start with $x_0 = 2$.

We have $x_2 \approx 1.98371$ and so take the root as $r_4 = 1.98371$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. We start with $x_0 = 0$ and look for the root which is a bit greater than 0.

We have $x_2 \approx 0.10026$ and so take the root as $r_2 = 0.10026$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. We start with $x_0 = 0$ and look for the root which is a bit greater than 0.

We have $x_2 \approx 0.10026$ and so take the root as $r_2 = 0.10026$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x)=32x^3-42x^2-18x+11.$ We start with $x_0=1$ and look for the root which is a bit less than 1 (we iterate Newton's Method more here since our guess is more crude).

We have $x_3 \approx 0.64280$ and so take the root as $r_3 = 0.64280$.

<code>Solution</code> (continued). With $f(x)=8x^4-14x^3-9x^2+11x-1$, we have $f'(x)=32x^3-42x^2-18x+11.$ We start with $x_0=1$ and look for the root which is a bit less than 1 (we iterate Newton's Method more here since our guess is more crude).

We have $x_3 \approx 0.64280$ and so take the root as $r_3 = 0.64280$.

Exercise 4.7.30. Factoring a Quartic

Exercise 4.7.30 (continued 5)

Solution (continued). We approximate the roots as $r_1 = -0.97683$ $r_2 = 0.10026$, $r_3 = 0.64280$, and $r_4 = 1.98371$. \Box

Note. A computer algebra system, such as [Wolfram Alpha,](https://www.wolframalpha.com/) gives the values to five decimal places as $r_1 = -0.97682$, $r_2 = 0.10036$, $r_3 = 0.64274$, and $r_4 = 1.98371$.

Exercise 4.7.30. Factoring a Quartic

Exercise 4.7.30 (continued 5)

Solution (continued). We approximate the roots as $r_1 = -0.97683$ $r_2 = 0.10026$, $r_3 = 0.64280$, and $r_4 = 1.98371$.

Note. A computer algebra system, such as [Wolfram Alpha,](https://www.wolframalpha.com/) gives the values to five decimal places as $r_1 = -0.97682$, $r_2 = 0.10036$, $r_3 = 0.64274$, and $r_4 = 1.98371$.

Exercise 4.7.20. Intersecting Curves.

(a) Does cos $3x$ ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution. A very careful graph of $y = cos 3x$ and $y = x$ suggests that there are three points of intersection.

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution. A very careful graph of $y = \cos 3x$ and $y = x$ suggests that there are three points of intersection.

We show that there is a solution in $[0, \pi/3]$.

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution. A very careful graph of $y = cos 3x$ and $y = x$ suggests that there are three points of intersection.

We show that there is a solution in $[0, \pi/3]$.

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution (continued). We consider $f(x) = \cos(3x) - x$ so that the equation cos $3x = x$ is equivalent to the equation $f(x) = 0$.

(a) We have $f(0) = cos(3(0)) - (0) = 1 > 0$ and $f(\pi/3) = \cos(3(\pi/3)) - (\pi/3) = -1 - \pi/3 < 0$. Since $f(x) = \cos(3x) - x$ is continuous, $f(0) > 0$, and $f(\pi/3) < 0$ then by the Intermediate Value Theorem (Theorem 2.11), YES, there exists $r \in [0, \pi/3]$ such that $f(r) = 0.$

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution (continued). We consider $f(x) = \cos(3x) - x$ so that the equation cos $3x = x$ is equivalent to the equation $f(x) = 0$.

(a) We have $f(0) = cos(3(0)) - (0) = 1 > 0$ and $f(\pi/3) = \cos(3(\pi/3)) - (\pi/3) = -1 - \pi/3 < 0$. Since $f(x) = \cos(3x) - x$ is continuous, $f(0) > 0$, and $f(\pi/3) < 0$ then by the Intermediate Value Theorem (Theorem 2.11), YES , there exists $r \in [0, \pi/3]$ such that $f(r) = 0.$

(b) Based on the graph, we start with $x_0 = \pi/6$. We have $f(x) = \cos(3x) - x$ then $f'(x) = -3\sin(3x) - 1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values . . .

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution (continued). We consider $f(x) = \cos(3x) - x$ so that the equation $\cos 3x = x$ is equivalent to the equation $f(x) = 0$.

(a) We have $f(0) = cos(3(0)) - (0) = 1 > 0$ and $f(\pi/3) = \cos(3(\pi/3)) - (\pi/3) = -1 - \pi/3 < 0$. Since $f(x) = \cos(3x) - x$ is continuous, $f(0) > 0$, and $f(\pi/3) < 0$ then by the Intermediate Value Theorem (Theorem 2.11), YES , there exists $r \in [0, \pi/3]$ such that $f(r) = 0.$

(b) Based on the graph, we start with $x_0 = \pi/6$. We have $f(x) = cos(3x) - x$ then $f'(x) = -3 sin(3x) - 1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values \dots

Exercise 4.7.20. Intersecting Curves.

(a) Does cos 3x ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution (continued). We consider $f(x) = \cos(3x) - x$ so that the equation $\cos 3x = x$ is equivalent to the equation $f(x) = 0$.

(a) We have $f(0) = cos(3(0)) - (0) = 1 > 0$ and $f(\pi/3) = \cos(3(\pi/3)) - (\pi/3) = -1 - \pi/3 < 0$. Since $f(x) = \cos(3x) - x$ is continuous, $f(0) > 0$, and $f(\pi/3) < 0$ then by the Intermediate Value Theorem (Theorem 2.11), YES , there exists $r \in [0, \pi/3]$ such that $f(r) = 0.$

(b) Based on the graph, we start with $x_0 = \pi/6$. We have $f(x) = cos(3x) - x$ then $f'(x) = -3 sin(3x) - 1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values \dots

Solution (continued).

Notice that $f(x_2) \approx f(x_3) = f(0.39004) \approx 0.000001$ and to five decimal places x_2 and x_3 are the same. So we approximate the solution of $\cos 3x = x$ for $x \in [0, \pi/3]$ as 0.39004.

Solution (continued).

Notice that $f(x_2) \approx f(x_3) = f(0.39004) \approx 0.000001$ and to five decimal places x_2 and x_3 are the same. So we approximate the solution of $\cos 3x = x$ for $x \in [0, \pi/3]$ as 0.39004.

In fact, a computer algebra system, such as [Wolfram Alpha,](https://www.wolframalpha.com/) gives the solution to nine decimal places as 0.390040317 (so our x_2 is, in fact, accurate to four decimal places). The other two solutions to the equation are approximately −0.979367 and −0.887726.

Solution (continued).

Notice that $f(x_2) \approx f(x_3) = f(0.39004) \approx 0.000001$ and to five decimal places x_2 and x_3 are the same. So we approximate the solution of $\cos 3x = x$ for $x \in [0, \pi/3]$ as 0.39004.

In fact, a computer algebra system, such as [Wolfram Alpha,](https://www.wolframalpha.com/) gives the solution to nine decimal places as 0.390040317 (so our x_2 is, in fact, accurate to four decimal places). The other two solutions to the equation are approximately −0.979367 and −0.887726.