Calculus 1

Chapter 4. Applications of Derivatives 4.8. Antiderivatives—Examples and Proofs

Table of contents

- [Example 4.8.2](#page-2-0)
- Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and $4.8.20(c)$
- [Exercises 4.8.32](#page-12-0)
- [Exercises 4.8.46](#page-14-0)
- [Exercises 4.8.52](#page-16-0)
- [Exercises 4.8.54](#page-18-0)
- [Exercises 4.8.66](#page-20-0)
- 8 [Exercises 4.8.76](#page-23-0)
- [Exercises 4.8.94](#page-26-0)
- 10 [Exercises 4.8.102](#page-30-0)
- 11 [Exercises 4.8.108](#page-34-0)
- 12 [Exercises 4.8.120](#page-40-0)
- 13 [Exercises 4.8.124. Liftoff from Earth](#page-45-0)

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies $F(1) = -1.$

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k.

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies $F(1) = -1.$

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k. Figure 4.55 gives the graphs of such functions for various values of k. Since we require $F(1) = -1$, then we seek a value of k such that the graph of $y = F(x)$ contains the point $(1, -1)$ (as indicated in the figure in red).

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies $F(1) = -1.$

Solution. By observation, an antiderivative of $y = x^3 + C$ $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k . Figure 4.55 $(1, -1)$ gives the graphs of such functions for various values of k. Since we require $F(1) = -1$, then we seek a value of k such that the graph of $y = F(x)$ contains the point $(1, -1)$ (as indicated in the figure in red). The condition $F(1) = -1$ implies $F(1) = (1)^3 + k = -1$ so that $1+k=-1$ and hence $k=-2.$ Therefore we have $\left| F(x)=x^{3}-2\right|$. \Box

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies $F(1) = -1.$

Solution. By observation, an antiderivative of $y = x^3 + C$ $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k . Figure 4.55 $(1, -1)$ gives the graphs of such functions for various values of k. Since we require $F(1) = -1$, then we seek a value of k such that the graph of $y = F(x)$ contains the point $(1, -1)$ (as indicated in the figure in red). The condition $F(1) = -1$ implies $F(1) = (1)^3 + k = -1$ so that $1+k=-1$ and hence $k=-2.$ Therefore we have $\left| {F(x) = {x^3} - 2} \right|$. \Box

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and $4.8.20(c)$

Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and $4.8.20(c)$. Find an antiderivative for each function. Check you answers by differentiation: Exercises 4.8.2(b) x^2 , Exercises 4.8.10(a) $\frac{1}{2}x^{-1/2}$, Exercises 4.8.14(b) $\frac{\pi}{2}$ cos $\frac{\pi x}{2}$, Exercises 4.8.18(b) 4 sec 3x tan 3x, Exercises 4.8.20(c) $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve $\frac{x^3}{2}$, but $\frac{d}{dx}$ $\left[x^3\right]$ = 3 x^2 so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right]$ 3 $= \frac{3x^2}{2}$ $\frac{x}{3} = x^2$, so our answer is correct. \Box

Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and $4.8.20(c)$

Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and $4.8.20(c)$. Find an antiderivative for each function. Check you answers by differentiation: Exercises 4.8.2(b) x^2 , Exercises 4.8.10(a) $\frac{1}{2}x^{-1/2}$, Exercises 4.8.14(b) $\frac{\pi}{2}$ cos $\frac{\pi x}{2}$, Exercises 4.8.18(b) 4 sec 3x tan 3x, Exercises 4.8.20(c) $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve $\frac{x^3}{a^2}$, but $\frac{d}{dx}$ $\left[x^3\right]$ = 3 x^2 so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right]$ 3 $= \frac{3x^2}{2}$ $\frac{x}{3} = x^2$, so our answer is correct. \Box **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$. An antiderivative of $x^{-1/2}$ must involve $x^{-1/2+1} = x^{1/2}$, and $\frac{d}{dx}[x^{1/2}] = \frac{1}{2}x^{-1/2}$. So we have $|F(x) = x^{1/2}|$. □

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and $4.8.20(c)$

Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and $4.8.20(c)$. Find an antiderivative for each function. Check you answers by differentiation: Exercises 4.8.2(b) x^2 , Exercises 4.8.10(a) $\frac{1}{2}x^{-1/2}$, Exercises 4.8.14(b) $\frac{\pi}{2}$ cos $\frac{\pi x}{2}$, Exercises 4.8.18(b) 4 sec 3x tan 3x, Exercises 4.8.20(c) $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve $\frac{x^3}{a^2}$, but $\frac{d}{dx}$ $\left[x^3\right]$ = 3 x^2 so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right]$ 3 $= \frac{3x^2}{2}$ $\frac{x}{3} = x^2$, so our answer is correct. \Box **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$. An antiderivative of $x^{-1/2}$ must involve $x^{-1/2+1} = x^{1/2}$, and $\frac{d}{dx}[x^{1/2}] = \frac{1}{2}x^{-1/2}$. So we have $|F(x) = x^{1/2}|$. □

Exercises $4.8.2(b)$, $4.8.10(a)$, $4.8.14(b)$, $4.8.18(b)$, and 4.8.20(c) (continued 1)

Solutions (continued). Exercises 4.8.14(b) $\frac{\pi}{2}$ cos $\frac{\pi x}{2}$. An antiderivative of cos x is sin x, so we try sin $\frac{\pi x}{2}$. We have $\frac{d}{dx} [\sin \frac{\pi x}{2}] = \cos (\frac{\pi x}{2})$ $\frac{\pi x}{2}$) $\left[\frac{\pi}{2}\right]$ $\frac{\pi}{2}$. So we have $\left|F(x)=\sin \frac{\pi x}{2}\right|$. \Box

Exercises 4.8.18(b) 4 sec 3x tan 3x. An antiderivative of sec x tan x is sec x, so we try sec 3x. We have

 $\frac{d}{dx}$ [sec 3x] = (sec 3x tan 3x)[3] = 3 sec 3x tan 3x. We need to divide out

the 3 and introduce a factor of 4, so we try $\left| F(x) = \frac{4}{3} \sec 3x \right|$. We check by differentiating:

$$
\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{4}{3}\sec 3x\right] = \frac{4}{3}(\sec 3x \tan 3x)[3] = 4 \sec 3x \tan 3x, \text{ so our answer is correct.} \square
$$

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c) (continued 1)

Solutions (continued). Exercises 4.8.14(b) $\frac{\pi}{2}$ cos $\frac{\pi x}{2}$. An antiderivative of cos x is sin x, so we try sin $\frac{\pi x}{2}$. We have $\frac{d}{dx} [\sin \frac{\pi x}{2}] = \cos (\frac{\pi x}{2})$ $\frac{\pi x}{2}$) $\left[\frac{\pi}{2}\right]$ $\frac{\pi}{2}$. So we have $\left|F(x)=\sin \frac{\pi x}{2}\right|$. \Box

Exercises 4.8.18(b) 4 sec $3x$ tan $3x$. An antiderivative of sec x tan x is sec x, so we try sec $3x$. We have $\frac{d}{dx}$ [sec 3x] = \sim (sec 3x tan 3x)[3] $=$ 3 sec 3x tan 3x. We need to divide out the 3 and introduce a factor of 4, so we try $\left| F(x) = \frac{4}{3} \sec 3x \right|$. We check by differentiating:

$$
\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{4}{3}\sec 3x\right] = \frac{4}{3}(\sec 3x \tan 3x)\hat{[}3] = 4 \sec 3x \tan 3x, \text{ so our answer is correct.} \square
$$

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c) (continued 2)

Solutions (continued). Exercises 4.8.20(c) $e^{-\varkappa/5}$. An antiderivative of e^{λ} is e^{λ} , so we try $e^{-\lambda/5}$. We have $\frac{d}{d\lambda}$ $\left[e^{-\lambda/5}\right] =$ \sim $e^{-x/5}$ $\left[\frac{-1}{5} \right]$ $\left[\frac{-1}{5}\right] = \frac{-e^{-x/5}}{5}$ $\frac{1}{5}$, so we need to divide $e^{-\varkappa/5}$ by $-1/5$ (i.e., multiply by $-5)$ and we try $F(x) = -5e^{-x/5}$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}$ $\left[-5e^{-x/5}\right]=$ \sim $\left(-5e^{-x/5}\right)\left[-\frac{1}{5}\right]$ 5 $\Big] = e^{-\varkappa/5}$, so our answer is correct. \square

Exercises 4.8.32. Find the indefinite integral: $\int \left(\frac{1}{5} \right)$ $\frac{1}{5} - \frac{2}{x^3}$ $\frac{2}{x^3}+2x\bigg) dx.$

$$
\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx = \int \frac{1}{5} dx - \int \frac{2}{x^3} dx + \int 2x dx
$$

\nby the Sum or Difference Rules of Note 4.8.A
\n
$$
= \frac{1}{5} \int 1 dx - 2 \int x^{-3} dx + 2 \int x dx
$$

\nby the Constant Multiple Rule of Note 4.8.A
\n
$$
= \frac{1}{5}x - 2\left(\frac{x^{-3+1}}{-3+1}\right) + 2\left(\frac{x^2}{2}\right) + C
$$

\nby Table 4.2(1) with $n = 0$, $n = -3$, & $n = 1$
\n
$$
= \frac{1}{5}x + x^{-2} + x^2 + C = \boxed{\frac{1}{5}x + \frac{1}{x^2} + x^2 + C}
$$

Exercises 4.8.32. Find the indefinite integral: $\int \left(\frac{1}{5} \right)$ $\frac{1}{5} - \frac{2}{x^3}$ $\frac{2}{x^3}+2x\bigg) dx.$

$$
\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx = \int \frac{1}{5} dx - \int \frac{2}{x^3} dx + \int 2x dx
$$

\nby the Sum or Difference Rules of Note 4.8.A
\n
$$
= \frac{1}{5} \int 1 dx - 2 \int x^{-3} dx + 2 \int x dx
$$

\nby the Constant Multiple Rule of Note 4.8.A
\n
$$
= \frac{1}{5}x - 2\left(\frac{x^{-3+1}}{-3+1}\right) + 2\left(\frac{x^2}{2}\right) + C
$$

\nby Table 4.2(1) with $n = 0$, $n = -3$, & $n = 1$
\n
$$
= \frac{1}{5}x + x^{-2} + x^2 + C = \boxed{\frac{1}{5}x + \frac{1}{x^2} + x^2 + C}
$$

Exercises 4.8.46. Find the indefinite integral: \int 3 cos 5 θ d θ .

$$
\int 3\cos 5\theta \, d\theta = 3\int \cos 5\theta \, d\theta = 3\left(\frac{\sin 5\theta}{5}\right) + C
$$

by Table 4.2(3) with $k = 5$

$$
= \left[\frac{3}{5}\sin 5\theta + C\right]. \quad \Box
$$

Exercises 4.8.46. Find the indefinite integral:
$$
\int 3 \cos 5\theta \, d\theta
$$
.

$$
\int 3\cos 5\theta \, d\theta = 3\int \cos 5\theta \, d\theta = 3\left(\frac{\sin 5\theta}{5}\right) + C
$$

by Table 4.2(3) with $k = 5$

$$
= \left[\frac{3}{5}\sin 5\theta + C\right]. \ \ \Box
$$

Exercises 4.8.52. Find the indefinite integral: $\int (2e^{x} - 3e^{-2x}) dx$.

$$
\int (2e^{x} - 3e^{-2x}) dx = \int 2e^{x} dx - \int 3e^{-2x} dx
$$

by the Sum or Difference Rules of Note 4.8.A

$$
= 2 \int e^{x} dx - 3 \int e^{-2x} dx
$$

by the Constant Multiple Rule of Note 4.8.A

$$
= 2(e^{x}) - 3 \left(\frac{e^{-2x}}{-2}\right) + C
$$

by Table 4.2(8) with $k = 1$ and $k = -2$

$$
= 2e^{x} + \frac{3}{2}e^{-2x} + C.
$$

Exercises 4.8.52. Find the indefinite integral: $\int (2e^{x} - 3e^{-2x}) dx$.

$$
\int (2e^{x} - 3e^{-2x}) dx = \int 2e^{x} dx - \int 3e^{-2x} dx
$$

by the Sum or Difference Rules of Note 4.8.A

$$
= 2 \int e^{x} dx - 3 \int e^{-2x} dx
$$

by the Constant Multiple Rule of Note 4.8.A

$$
= 2(e^{x}) - 3 \left(\frac{e^{-2x}}{-2}\right) + C
$$

by Table 4.2(8) with $k = 1$ and $k = -2$

$$
= 2e^{x} + \frac{3}{2}e^{-2x} + C.
$$

Exercises 4.8.54. Find the indefinite integral:
$$
\int (1.3)^x dx
$$
.

$$
\int (1.3)^{x} dx = \left(\frac{1}{\ln 1.3}\right) (1.3)^{x} + C
$$

by Table 4.2(13) with $k = 1$ and $a = 1.3$

$$
= \left[\frac{(1.3)^{x}}{\ln 1.3} + C\right]. \square
$$

Exercises 4.8.54. Find the indefinite integral:
$$
\int (1.3)^x dx
$$
.

$$
\int (1.3)^{x} dx = \left(\frac{1}{\ln 1.3}\right) (1.3)^{x} + C
$$

by Table 4.2(13) with $k = 1$ and $a = 1.3$

$$
= \left[\frac{(1.3)^{x}}{\ln 1.3} + C\right] \square
$$

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate tan² θ , but we do know how to antidifferentiate sec² θ , since $\frac{d}{d\theta}[\tan \theta] = \sec^2 \theta$.

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate tan² θ , but we do know how to antidifferentiate sec² θ , since $\frac{d}{d\theta}[\tan \theta] = \sec^2 \theta$. We have

$$
\int (2 + \tan^2 \theta) d\theta = \int (2 + (\sec^2 \theta - 1)) d\theta = \int (1 + \sec^2 \theta) d\theta
$$

$$
= \int 1 d\theta + \int \sec^2 \theta d\theta
$$
by the Sum or Difference Rules of Note 4.8.A
$$
= \frac{\theta + \tan \theta + C}{\theta + \tan \theta + C} \text{ by Table 4.2(1 and 4)}
$$
with $n = 0$ and $k = 1$. \Box

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate tan² θ , but we do know how to antidifferentiate sec² θ , since $\frac{d}{d\theta}[\tan \theta] = \sec^2 \theta$. We have

$$
\int (2 + \tan^2 \theta) d\theta = \int (2 + (\sec^2 \theta - 1)) d\theta = \int (1 + \sec^2 \theta) d\theta
$$

$$
= \int 1 d\theta + \int \sec^2 \theta d\theta
$$
by the Sum or Difference Rules of Note 4.8.A
$$
= \frac{\theta + \tan \theta + C}{\theta + \tan \theta + C} \text{ by Table 4.2(1 and 4)}
$$
with $n = 0$ and $k = 1$. \Box

Exercises 4.8.76

Exercises 4.8.76. Verify the formula by differentiation: \int 1 $\frac{1}{(x+1)^2} dx = \frac{x}{x+1}$ $\frac{1}{x+1} + C.$

Solution. Recall that an indefinite integral is a set of functions. So for $F(x) \in \int \frac{1}{(x+1)^2}$ $\frac{1}{(x+1)^2} dx = \frac{x}{x+1}$ $\frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k.

Exercises 4.8.76. Verify the formula by differentiation:

$$
\int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C.
$$

Solution. Recall that an indefinite integral is a set of functions. So for $F(x) \in \int \frac{1}{\sqrt{x}}$ $\frac{1}{(x+1)^2} dx = \frac{x}{x+1}$ $\frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k Now

$$
F'(x) = \frac{[1](x+1) - (x)[1]}{(x+1)^2} + 0 = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2}.
$$

So
$$
F(x) = \frac{x}{x+1} + k
$$
 is an antiderivative of $\frac{1}{(x+1)^2}$. By Theorem 4.8,
the indefinite integral of $\frac{1}{(x+1)^2}$ is $F(x) + C = \frac{x}{x+1} + C$ (we have
absorbed *k* in the "arbitrary constant" *C*), as claimed. \Box

Exercises 4.8.76. Verify the formula by differentiation:

$$
\int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C.
$$

Solution. Recall that an indefinite integral is a set of functions. So for $F(x) \in \int \frac{1}{\sqrt{x}}$ $\frac{1}{(x+1)^2} dx = \frac{x}{x+1}$ $\frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k. Now

$$
F'(x) = \frac{[1](x+1) - (x)[1]}{(x+1)^2} + 0 = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2}.
$$

So $F(x) = \frac{x}{x+1} + k$ is an antiderivative of $\frac{1}{(x+1)^2}$. By Theorem 4.8, the indefinite integral of $\displaystyle{\frac{1}{(x+1)^2}}$ is $\displaystyle{F(x)+C=\frac{x}{x+2}}$ $\frac{1}{x+1}+C$ (we have absorbed k in the "arbitrary constant" C), as claimed. \square

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, $y(-1) = 0.$

Solution. Let $y = f(x)$ where $\frac{dy}{dx} = \frac{df}{dx} = 9x^2 - 4x + 5$, so f is an antiderivative of 9x² $-$ 4x $+$ 5; that is, $f(x) \in \int 9x^2 - 4x + 5$ dx. Now

$$
\int 9x^2 - 4x + 5 dx = 9 \int x^2 dx - 4 \int x dx + 5 \int 1 dx
$$

$$
=9\left(\frac{x^3}{3}\right)-4\left(\frac{x^2}{2}\right)+5(x)+C=3x^3-2x^2+5x+C.
$$

So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k.

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, $y(-1) = 0.$

Solution. Let $y = f(x)$ where $\frac{dy}{dx} = \frac{df}{dx} = 9x^2 - 4x + 5$, so f is an antiderivative of 9 x^2-4x+5 ; that is, $f(x)\in \int 9x^2-4x+5\,dx$. Now

$$
\int 9x^2 - 4x + 5 \, dx = 9 \int x^2 \, dx - 4 \int x \, dx + 5 \int 1 \, dx
$$

$$
=9\left(\frac{x^3}{3}\right)-4\left(\frac{x^2}{2}\right)+5(x)+C=3x^3-2x^2+5x+C.
$$

So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k.

Exercises 4.8.94 (continuous)

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, $y(-1) = 0.$

Solution (continuous. So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k. We use the initial condition $y(-1) = f(-1) = 0$ to find k. We set $f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) + k = 0$ which requires $-10 + k = 0$ or $k = 10$. So $f(x) = 3x^3 - 2x^2 + 5x + (10) = |3x^3 - 2x^2 + 5x + 10|$. \Box

Exercises 4.8.94 (continuous)

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, $y(-1) = 0.$

Solution (continuous. So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k. We use the initial condition $y(-1) = f(-1) = 0$ to find k. We set $f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) + k = 0$ which requires $-10 + k = 0$ or $k=10$. So $f(x)=3x^3-2x^2+5x+(10)=\left|3x^3-2x^2+5x+10\right|$. \Box

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution. With $\frac{dv}{dt} = 8t + \csc^2 t$, we have that $v(t)$ is an antiderivative of $8t+\csc^2 t$; that is, $v(t)\in \int 8t+\csc^2 t\,dt.$ Now

$$
\int 8t + \csc^2 t \, dt = 8 \int t \, dt + \int \csc^2 t \, dt
$$

$$
= 8\left(\frac{t^2}{2}\right) + (-\cot t) + C = 4t^2 - \cot t + C
$$

by Table 4.2(1 and 5) with $n=1$ and $k=1$. So $v(t)=4t^2-\cot t+k$ for some constant k.

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7.$

Solution. With $\frac{dv}{dt} = 8t + \csc^2 t$, we have that $v(t)$ is an antiderivative of $8t+\csc^2 t$; that is, $v(t)\in \int 8t+\csc^2 t\,dt$. Now

$$
\int 8t + \csc^2 t \, dt = 8 \int t \, dt + \int \csc^2 t \, dt
$$

$$
= 8\left(\frac{t^2}{2}\right) + (-\cot t) + C = 4t^2 - \cot t + C
$$

by Table 4.2(1 and 5) with $n=1$ and $k=1$. So $v(t)=4t^2-\cot t+k$ for some constant k.

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution (continued). So $v(t) = 4t^2 - \cot t + k$ for some constant k. We use the initial condition $v(\pi/2) = -7$ to find k. We set $v(\pi/2) = 4(\pi/2)^2 - \cot(\pi/2) + k = -7$ which requires $\pi^2 + k = -7$ or $k = -7 - \pi^2$. So $v(t) = 4t^2 - \cot t - 7 - \pi^2$. \Box

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution (continued). So $v(t) = 4t^2 - \cot t + k$ for some constant k. We use the initial condition $v(\pi/2) = -7$ to find k. We set $v(\pi/2) = 4(\pi/2)^2 - \cot(\pi/2) + k = -7$ which requires $\pi^2 + k = -7$ or $k = -7 - \pi^2$. So $v(t) = 4t^2 - \cot t - 7 - \pi^2$. \Box

Exercises 4.8.108. Solve the "second order" initial value problem: d^2s $\frac{d^2s}{dt^2} = \frac{3t}{8}$ $rac{3t}{8}, \frac{ds}{dt}$ dt $\Big|_{t=4}$ $= 3, s(4) = 4.$

Solution. We look for $s(t)$. We have $\frac{ds}{dt}$ is an antiderivative of $\frac{d^2s}{dt^2}$ $\frac{d}{dt^2}$; that is, $\frac{ds}{dt} \in \int \frac{d^2s}{dt^2}$ $\frac{d}{dt^2}$ dt. Now

$$
\int \frac{3t}{8} dt = \frac{3}{8} \int t dt = \frac{3}{8} \left(\frac{t^2}{2} \right) + C = \frac{3}{16} t^2 + C.
$$

So $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}t^2 + k_1$ for some constant k_1 . We use the initial condition ds dt $\Big|_{t=4}$ $= 3$ to find k_1 .

Exercises 4.8.108. Solve the "second order" initial value problem: d^2s $\frac{d^2s}{dt^2} = \frac{3t}{8}$ $rac{3t}{8}, \frac{ds}{dt}$ dt $\Big|_{t=4}$ $= 3, s(4) = 4.$

Solution. We look for $s(t)$. We have $\frac{ds}{dt}$ is an antiderivative of $\frac{d^2s}{dt^2}$ $\frac{d}{dt^2}$; that

is,
$$
\frac{ds}{dt} \in \int \frac{d^2s}{dt^2} dt
$$
. Now
\n
$$
\int \frac{3t}{8} dt = \frac{3}{8} \int t dt = \frac{3}{8} (\frac{t^2}{2}) + C = \frac{3}{16} t^2 + C.
$$
\nSo $\frac{ds}{dt} = \frac{3}{16} t^2 + k_1$ for some constant k_1 . We use the initial condition $\frac{ds}{dt}\Big|_{t=4} = 3$ to find k_1 .

Solution (continued). We use the initial condition $\frac{ds}{dt}$ $\Big|_{t=4} = 3$ to find **k**₁. We have $\frac{ds}{dt}\Big|_{t=4} = \frac{3}{16}(4)^2 + k_1 = 3$ which requires 3 + $\Big|_{t=4}$ $=\frac{3}{16}$ $\frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $k_1 = 0$. So $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}t^2$.

Solution (continued). We use the initial condition $\frac{ds}{dt}$ $\Big|_{t=4}$ $= 3$ to find k_1 . We have $\frac{ds}{dt}$ $\Big|_{t=4} = \frac{3}{16}$ $k_1 = 0.$ So $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $rac{3}{16}t^2$. Next, $s(t)$ is an antiderivative of $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}t^2$; that is, $s(t) \in \int \frac{ds}{dt} dt = \int \frac{3}{16}$ $\frac{3}{16}t^2 dt$. Now $\int \frac{3}{16}$ $\frac{3}{16}t^2 dt = \frac{3}{16}$ 16 t^3 $\frac{t^3}{3} + C = \frac{t^3}{16}$ $\frac{1}{16} + C$. So $s(t) = \frac{t^3}{16}$ $\frac{1}{16} + k_2$ for some constant k_2 . We use the initial condition

 $s(4) = 4$ to find k_2 .

Solution (continued). We use the initial condition $\frac{ds}{dt}$ $\Big|_{t=4} = 3$ to find k_1 . We have $\left. \frac{ds}{dt} \right|_{t=4} = \frac{3}{16}(4)^2 + k_1 = 3$ which requires 3 + $\Big|_{t=4}$ $=\frac{3}{16}$ $\frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $k_1 = 0$. So $\frac{ds}{dt} = \frac{3}{16}$ $rac{3}{16}t^2$. Next, $s(t)$ is an antiderivative of $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}t^2$; that is, $s(t) \in \int \frac{ds}{dt} dt = \int \frac{3}{16}$ $\frac{3}{16}t^2 dt$. Now $\int \frac{3}{16}$ $\frac{3}{16}t^2 dt = \frac{3}{16}$ 16 t^3 $\frac{t^3}{3} + C = \frac{t^3}{16}$ $\frac{1}{16} + C$. So $s(t) = \frac{t^3}{16}$ $\frac{1}{16} + k_2$ for some constant k_2 . We use the initial condition **s(4) = 4 to find k₂**. We have $s(4) = \frac{(4)^3}{16} + k_2 = 4$ which requires $4 + k_2 = 4$ or $k_2 = 0$. So $s(t) = \frac{t^3}{16}$ $\frac{1}{16}$. \Box

Solution (continued). We use the initial condition $\frac{ds}{dt}$ $\Big|_{t=4} = 3$ to find k_1 . We have $\left. \frac{ds}{dt} \right|_{t=4} = \frac{3}{16}(4)^2 + k_1 = 3$ which requires 3 + $\Big|_{t=4}$ $=\frac{3}{16}$ $\frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $k_1 = 0$. So $\frac{ds}{dt} = \frac{3}{16}$ $rac{3}{16}t^2$. Next, $s(t)$ is an antiderivative of $\frac{ds}{dt} = \frac{3}{16}$ $\frac{3}{16}t^2$; that is, $s(t) \in \int \frac{ds}{dt} dt = \int \frac{3}{16}$ $\frac{3}{16}t^2 dt$. Now $\int \frac{3}{16}$ $\frac{3}{16}t^2 dt = \frac{3}{16}$ 16 t^3 $\frac{t^3}{3} + C = \frac{t^3}{16}$ $\frac{1}{16} + C$. So $s(t) = \frac{t^3}{16}$ $\frac{1}{16} + k_2$ for some constant k_2 . We use the initial condition $s(4) = 4$ to find k_2 . We have $s(4) = \frac{(4)^3}{16} + k_2 = 4$ which requires $4 + k_2 = 4$ or $k_2 = 0$. So $s(t) = \frac{t^3}{16}$ $\frac{1}{16}$. \Box

Exercises 4.8.120. Consider the figure with solution curves of the given differential equation. Find an equation for the curve through the labeled point.

Solution. Let $y = f(x)$ where $\frac{dy}{dx} = \frac{df}{dx} = x - 1$, so f is an antiderivative of $x - 1$; that is, $f(x) \in \int x - 1 dx$.

Exercises 4.8.120. Consider the figure with solution curves of the given differential equation. Find an equation for the curve through the labeled point.

Solution. Let $y = f(x)$ where $\frac{dy}{dx} = \frac{df}{dx} = x - 1$, so f is an antiderivative of $x-1$; that is, $f(x) \in \int x-1 dx$.

Solution (continued). Now

$$
\int x - 1 dx = \int x dx - \int 1 dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.
$$

So
$$
f(x) = \frac{x^2}{2} - x + k
$$
 for some constant k.

Solution (continued). Now

$$
\int x - 1 dx = \int x dx - \int 1 dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.
$$

So $f(x) = \frac{x^2}{2}$ $\frac{1}{2}$ – x + k for some constant k. The fact that the graph of the desired function f passes through the point $(-1, 1)$ gives us the initial condition $f(-1) = 1$. We use this initial condition to find k. We set $f(-1) = \frac{(-1)^2}{2} - (-1) + k = 1$ which requires $3/2 + k = 1$ or $k = -1/2$. So $f(x) = \frac{x^2}{2}$ $\frac{x^2}{2} - x - \frac{1}{2}$ $\frac{1}{2}$. \Box

Solution (continued). Now

$$
\int x - 1 dx = \int x dx - \int 1 dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.
$$

So $f(x) = \frac{x^2}{2}$ $\frac{1}{2} - x + k$ for some constant k. The fact that the graph of the desired function f passes through the point $(-1, 1)$ gives us the initial condition $f(-1) = 1$. We use this initial condition to find k. We set $f(-1) = \frac{(-1)^2}{2} - (-1) + k = 1$ which requires $3/2 + k = 1$ or $k = -1/2$. So $f(x) = \frac{x^2}{2}$ $\frac{x^2}{2} - x - \frac{1}{2}$ $\frac{1}{2}$. \Box

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec 2 . How fast will the rocket be going 1 min later.

Solution. We let $v(t)$ represent the velocity of the rocket in m/sec at time t sec after liftoff. So $v(t)$ is an antiderivative of acceleration $a(t)=20$ m/sec²; that is, $v(t)\in \int 20$ dt. Now $\int 20$ dt $=20$ t + C so $v(t) = 20t + k$ for some constant k . We need an initial value to find k.

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec 2 . How fast will the rocket be going 1 min later.

Solution. We let $v(t)$ represent the velocity of the rocket in m/sec at time t sec after liftoff. So $v(t)$ is an antiderivative of acceleration $a(t)=20$ m/sec²; that is, $v(t)\in \int 20$ dt. Now $\int 20$ dt $=20t+C$ so $v(t) = 20t + k$ for some constant k. We need an initial value to find k. Since the rocket starts stationary on the launch pad, then $v(0) = 0$ m/sec. So we set $v(0) = 20(0) + k = 0$ which requires $k = 0$. Hence $v(t) = 20t$ m/sec is the velocity function. When $t = 1$ min = 60 sec the velocity of the rocket is $v(60) = 20(60) = 1200$ m/sec.

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec 2 . How fast will the rocket be going 1 min later.

Solution. We let $v(t)$ represent the velocity of the rocket in m/sec at time t sec after liftoff. So $v(t)$ is an antiderivative of acceleration $a(t)=20$ m/sec²; that is, $v(t)\in \int 20$ dt. Now $\int 20$ dt $=20t+C$ so $v(t) = 20t + k$ for some constant k. We need an initial value to find k. Since the rocket starts stationary on the launch pad, then $v(0) = 0$ m/sec. So we set $v(0) = 20(0) + k = 0$ which requires $k = 0$. Hence $v(t) = 20t$ m/sec is the velocity function. When $t = 1$ min = 60 sec the velocity of the rocket is $v(60) = 20(60) = | 1200 \text{ m/sec} |$. \Box