Calculus 1

Chapter 4. Applications of Derivatives 4.8. Antiderivatives—Examples and Proofs

Table of contents

- Example 4.8.2
- Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c)
- 3 Exercises 4.8.32
- 4 Exercises 4.8.46
- Exercises 4.8.52
- 6 Exercises 4.8.54
- 7 Exercises 4.8.66
- 8 Exercises 4.8.76
- 9 Exercises 4.8.94
- Exercises 4.8.102
- Exercises 4.8.108
- 12 Exercises 4.8.120
 - Exercises 4.8.124. Liftoff from Earth

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies F(1) = -1.

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C$. So $F(x) = x^3 + k$ for some constant k.

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies F(1) = -1.

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C$. So $F(x) = x^3 + k$ for some constant k. Figure 4.55 gives the graphs of such functions for various values of k. Since we require F(1) = -1, then we seek a value of k such that the graph of y = F(x) contains the point (1, -1) (as indicated in the figure in red).

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies F(1) = -1.

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k. Figure 4.55 (1, -1)gives the graphs of such functions for various values of k. Since we require F(1) = -1, then we seek a value of k such that the graph of y = F(x)contains the point (1, -1) (as indicated in the figure in red). The condition F(1) = -1 implies $F(1) = (1)^3 + k = -1$ so that 1 + k = -1 and hence k = -2. Therefore we have $|F(x) = x^3 - 2|$. \Box

Calculus 1

Example 4.8.2. Find an antiderivative F of $f(x) = 3x^2$ that satisfies F(1) = -1.

Solution. By observation, an antiderivative of $f(x) = 3x^2$ is $F(x) = x^3$. So by Theorem 4.8, the set of all antiderivatives is $\int f(x) dx = \int x^3 dx = F(x) + C = x^3 + C.$ So $F(x) = x^3 + k$ for some constant k. Figure 4.55 (1, -1)gives the graphs of such functions for various values of k. Since we require F(1) = -1, then we seek a value of k such that the graph of y = F(x)contains the point (1, -1) (as indicated in the figure in red). The condition F(1) = -1 implies $F(1) = (1)^3 + k = -1$ so that 1 + k = -1 and hence k = -2. Therefore we have $|F(x) = x^3 - 2|$. \Box

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c)

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c). Find an antiderivative for each function. Check you answers by differentiation: **Exercises 4.8.2(b)** x^2 , **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$, **Exercises 4.8.14(b)** $\frac{\pi}{2}\cos\frac{\pi x}{2}$, **Exercises 4.8.18(b)** $4 \sec 3x \tan 3x$, **Exercises 4.8.20(c)** $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve x^3 , but $\frac{d}{dx}[x^3] = 3x^2$ so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right] = \frac{3x^2}{3} = x^2$, so our answer is correct. \Box Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c)

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c). Find an antiderivative for each function. Check you answers by differentiation: **Exercises 4.8.2(b)** x^2 , **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$, **Exercises 4.8.14(b)** $\frac{\pi}{2}\cos\frac{\pi x}{2}$, **Exercises 4.8.18(b)** $4 \sec 3x \tan 3x$, **Exercises 4.8.20(c)** $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve x^3 , but $\frac{d}{dx}[x^3] = 3x^2$ so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right] = \frac{3x^2}{3} = x^2$, so our answer is correct. \Box **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$. An antiderivative of $x^{-1/2}$ must involve $x^{-1/2+1} = x^{1/2}$, and $\frac{d}{dx}[x^{1/2}] = \frac{1}{2}x^{-1/2}$. So we have $F(x) = x^{1/2}$. \Box Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c)

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c). Find an antiderivative for each function. Check you answers by differentiation: **Exercises 4.8.2(b)** x^2 , **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$, **Exercises 4.8.14(b)** $\frac{\pi}{2}\cos\frac{\pi x}{2}$, **Exercises 4.8.18(b)** $4 \sec 3x \tan 3x$, **Exercises 4.8.20(c)** $e^{-x/5}$.

Solutions. Exercises 4.8.2(b) x^2 . An antiderivative of x^2 must involve x^3 , but $\frac{d}{dx}[x^3] = 3x^2$ so we need to divide x^3 by 3 and we try $F(x) = x^3/3$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{x^3}{3}\right] = \frac{3x^2}{3} = x^2$, so our answer is correct. \Box **Exercises 4.8.10(a)** $\frac{1}{2}x^{-1/2}$. An antiderivative of $x^{-1/2}$ must involve $x^{-1/2+1} = x^{1/2}$, and $\frac{d}{dx}[x^{1/2}] = \frac{1}{2}x^{-1/2}$. So we have $F(x) = x^{1/2}$. \Box

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c) (continued 1)

Solutions (continued). Exercises 4.8.14(b) $\frac{\pi}{2} \cos \frac{\pi x}{2}$. An antiderivative of $\cos x$ is $\sin x$, so we try $\sin \frac{\pi x}{2}$. We have $\frac{d}{dx} \left[\sin \frac{\pi x}{2}\right] = \cos \left(\frac{\pi x}{2}\right) \left[\frac{\pi}{2}\right]$. So we have $F(x) = \sin \frac{\pi x}{2}$. \Box

Exercises 4.8.18(b) $4 \sec 3x \tan 3x$. An antiderivative of $\sec x \tan x$ is $\sec x$, so we try $\sec 3x$. We have

 $\frac{d}{dx}$ [sec 3x] = (sec 3x tan 3x)[3] = 3 sec 3x tan 3x. We need to divide out

the 3 and introduce a factor of 4, so we try $F(x) = \frac{4}{3} \sec 3x$. We check

$$\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{4}{3}\sec 3x\right] = \frac{4}{3}(\sec 3x \tan 3x)[3] = 4\sec 3x \tan 3x$$
, so our answer is correct. \Box

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c) (continued 1)

Solutions (continued). Exercises 4.8.14(b) $\frac{\pi}{2} \cos \frac{\pi x}{2}$. An antiderivative of $\cos x$ is $\sin x$, so we try $\sin \frac{\pi x}{2}$. We have $\frac{d}{dx} \left[\sin \frac{\pi x}{2}\right] = \cos \left(\frac{\pi x}{2}\right) \left[\frac{\pi}{2}\right]$. So

we have $F(x) = \sin \frac{\pi x}{2}$. \Box

Exercises 4.8.18(b) $4 \sec 3x \tan 3x$. An antiderivative of $\sec x \tan x$ is $\sec x$, so we try $\sec 3x$. We have

 $\frac{d}{dx}[\sec 3x] = (\sec 3x \tan 3x)[3] = 3 \sec 3x \tan 3x$. We need to divide out

the 3 and introduce a factor of 4, so we try $F(x) = \frac{4}{3} \sec 3x$. We check by differentiating:

$$\frac{d}{dx}[F(x)] = \frac{d}{dx}\left[\frac{4}{3}\sec 3x\right] = \frac{4}{3}(\sec 3x \tan 3x)[3] = 4\sec 3x \tan 3x$$
, so our answer is correct. \Box

Exercises 4.8.2(b), 4.8.10(a), 4.8.14(b), 4.8.18(b), and 4.8.20(c) (continued 2)

Solutions (continued). Exercises 4.8.20(c) $e^{-x/5}$. An antiderivative of e^x is e^x , so we try $e^{-x/5}$. We have $\frac{d}{dx} \left[e^{-x/5} \right] = e^{-x/5} \left[\frac{-1}{5} \right] = \frac{-e^{-x/5}}{5}$, so we need to divide $e^{-x/5}$ by -1/5 (i.e., multiply by -5) and we try $F(x) = -5e^{-x/5}$. We check by differentiating: $\frac{d}{dx}[F(x)] = \frac{d}{dx} \left[-5e^{-x/5} \right] = \left(-5e^{-x/5} \right)^{\sim} \left[\frac{-1}{5} \right] = e^{-x/5}$, so our answer is correct. \Box

Exercises 4.8.32. Find the indefinite integral: $\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx.$

Solution. We have:

$$\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx = \int \frac{1}{5} dx - \int \frac{2}{x^3} dx + \int 2x \, dx$$

by the Sum or Difference Rules of Note 4.8.A
$$= \frac{1}{5} \int 1 \, dx - 2 \int x^{-3} \, dx + 2 \int x \, dx$$

by the Constant Multiple Rule of Note 4.8.A
$$= \frac{1}{5}x - 2\left(\frac{x^{-3+1}}{-3+1}\right) + 2\left(\frac{x^2}{2}\right) + C$$

by Table 4.2(1) with $n = 0, n = -3, \& n = 1$
$$= \frac{1}{5}x + x^{-2} + x^2 + C = \boxed{\frac{1}{5}x + \frac{1}{x^2} + x^2 + C}$$

Exercises 4.8.32. Find the indefinite integral: $\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx.$

Solution. We have:

$$\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx = \int \frac{1}{5} dx - \int \frac{2}{x^3} dx + \int 2x \, dx$$

by the Sum or Difference Rules of Note 4.8.A
$$= \frac{1}{5} \int 1 \, dx - 2 \int x^{-3} \, dx + 2 \int x \, dx$$

by the Constant Multiple Rule of Note 4.8.A
$$= \frac{1}{5}x - 2\left(\frac{x^{-3+1}}{-3+1}\right) + 2\left(\frac{x^2}{2}\right) + C$$

by Table 4.2(1) with $n = 0, n = -3, \& n = 1$
$$= \frac{1}{5}x + x^{-2} + x^2 + C = \boxed{\frac{1}{5}x + \frac{1}{x^2} + x^2 + C}$$

Exercises 4.8.46. Find the indefinite integral: $\int 3\cos 5\theta \, d\theta$.

Solution. We have :

$$\int 3\cos 5\theta \, d\theta = 3 \int \cos 5\theta \, d\theta = 3 \left(\frac{\sin 5\theta}{5}\right) + C$$

by Table 4.2(3) with $k = 5$
$$= \frac{3}{5}\sin 5\theta + C$$
. \Box

Exercises 4.8.46. Find the indefinite integral:
$$\int 3\cos 5\theta \, d\theta$$
.

Solution. We have :

$$\int 3\cos 5\theta \, d\theta = 3 \int \cos 5\theta \, d\theta = 3 \left(\frac{\sin 5\theta}{5}\right) + C$$

by Table 4.2(3) with $k = 5$
$$= \frac{3}{5}\sin 5\theta + C$$
. \Box

Exercises 4.8.52. Find the indefinite integral: $\int (2e^x - 3e^{-2x}) dx$.

Solution. We have :

$$\int (2e^{x} - 3e^{-2x}) dx = \int 2e^{x} dx - \int 3e^{-2x} dx$$

by the Sum or Difference Rules of Note 4.8.A
$$= 2 \int e^{x} dx - 3 \int e^{-2x} dx$$

by the Constant Multiple Rule of Note 4.8.A
$$= 2(e^{x}) - 3\left(\frac{e^{-2x}}{-2}\right) + C$$

by Table 4.2(8) with $k = 1$ and $k = -2$
$$= 2e^{x} + \frac{3}{2}e^{-2x} + C$$
. \Box

Calculus 1

Exercises 4.8.52. Find the indefinite integral: $\int (2e^x - 3e^{-2x}) dx$.

Solution. We have :

$$\int (2e^{x} - 3e^{-2x}) dx = \int 2e^{x} dx - \int 3e^{-2x} dx$$

by the Sum or Difference Rules of Note 4.8.A
$$= 2 \int e^{x} dx - 3 \int e^{-2x} dx$$

by the Constant Multiple Rule of Note 4.8.A
$$= 2(e^{x}) - 3\left(\frac{e^{-2x}}{-2}\right) + C$$

by Table 4.2(8) with $k = 1$ and $k = -2$
$$= \boxed{2e^{x} + \frac{3}{2}e^{-2x} + C}. \Box$$

Calculus 1

Exercises 4.8.54. Find the indefinite integral:
$$\int (1.3)^x dx$$
.

Solution. We have :

$$\int (1.3)^{x} dx = \left(\frac{1}{\ln 1.3}\right) (1.3)^{x} + C$$

by Table 4.2(13) with $k = 1$ and $a = 1.3$
$$= \left[\frac{(1.3)^{x}}{\ln 1.3} + C\right]. \square$$

Exercises 4.8.54. Find the indefinite integral:
$$\int (1.3)^x dx$$
.

Solution. We have :

$$\int (1.3)^{x} dx = \left(\frac{1}{\ln 1.3}\right) (1.3)^{x} + C$$

by Table 4.2(13) with $k = 1$ and $a = 1.3$
$$= \boxed{\frac{(1.3)^{x}}{\ln 1.3} + C}. \Box$$

Calculus 1

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate $\tan^2 \theta$, but we do know how to antidifferentiate $\sec^2 \theta$, since $\frac{d}{d\theta} [\tan \theta] = \sec^2 \theta$.

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate $\tan^2 \theta$, but we do know how to antidifferentiate $\sec^2 \theta$, since $\frac{d}{d\theta} [\tan \theta] = \sec^2 \theta$. We have

$$\int (2 + \tan^2 \theta) \, d\theta = \int (2 + (\sec^2 \theta - 1)) \, d\theta = \int (1 + \sec^2 \theta) \, d\theta$$
$$= \int 1 \, d\theta + \int \sec^2 \theta \, d\theta$$
by the Sum or Difference Rules of Note 4.8.A
$$= \boxed{\theta + \tan \theta + C}$$
by Table 4.2(1 and 4)with $n = 0$ and $k = 1$.

Exercises 4.8.66. Find the indefinite integral: $\int (2 + \tan^2 \theta) d\theta$. HINT: $1 + \tan^2 \theta = \sec^2 \theta$.

Solution. Notice that we don't (yet) know how to antidifferentiate $\tan^2 \theta$, but we do know how to antidifferentiate $\sec^2 \theta$, since $\frac{d}{d\theta} [\tan \theta] = \sec^2 \theta$. We have

$$\int (2 + \tan^2 \theta) \, d\theta = \int (2 + (\sec^2 \theta - 1)) \, d\theta = \int (1 + \sec^2 \theta) \, d\theta$$
$$= \int 1 \, d\theta + \int \sec^2 \theta \, d\theta$$
by the Sum or Difference Rules of Note 4.8.A
$$= \boxed{\theta + \tan \theta + C}$$
by Table 4.2(1 and 4)with $n = 0$ and $k = 1$. \Box

Exercises 4.8.76

Exercises 4.8.76. Verify the formula by differentiation: $\int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C.$

Solution. Recall that an indefinite integral is a *set* of functions. So for $F(x) \in \int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k.

Calculus 1

Exercises 4.8.76. Verify the formula by differentiation:

$$\int \frac{1}{(x+1)^2} \, dx = \frac{x}{x+1} + C.$$

Solution. Recall that an indefinite integral is a *set* of functions. So for $F(x) \in \int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k. Now

$$F'(x) = \frac{[1](x+1) - (x)[1]}{(x+1)^2} + 0 = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2}.$$

So $F(x) = \frac{x}{x+1} + k$ is an antiderivative of $\frac{1}{(x+1)^2}$. By Theorem 4.8, the indefinite integral of $\frac{1}{(x+1)^2}$ is $F(x) + C = \frac{x}{x+1} + C$ (we have absorbed k in the "arbitrary constant" C), as claimed. \Box

Exercises 4.8.76. Verify the formula by differentiation:

$$\int \frac{1}{(x+1)^2} \, dx = \frac{x}{x+1} + C.$$

Solution. Recall that an indefinite integral is a *set* of functions. So for $F(x) \in \int \frac{1}{(x+1)^2} dx = \frac{x}{x+1} + C$ we have that $F(x) = \frac{x}{x+1} + k$ for some k. Now

$$F'(x) = \frac{[1](x+1) - (x)[1]}{(x+1)^2} + 0 = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2}.$$

So $F(x) = \frac{x}{x+1} + k$ is an antiderivative of $\frac{1}{(x+1)^2}$. By Theorem 4.8, the indefinite integral of $\frac{1}{(x+1)^2}$ is $F(x) + C = \frac{x}{x+1} + C$ (we have absorbed k in the "arbitrary constant" C), as claimed. \Box

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, y(-1) = 0.

Solution. Let y = f(x) where $\frac{dy}{dx} = \frac{df}{dx} = 9x^2 - 4x + 5$, so f is an antiderivative of $9x^2 - 4x + 5$; that is, $f(x) \in \int 9x^2 - 4x + 5 \, dx$. Now

$$\int 9x^2 - 4x + 5 \, dx = 9 \int x^2 \, dx - 4 \int x \, dx + 5 \int 1 \, dx$$

$$= 9\left(\frac{x^3}{3}\right) - 4\left(\frac{x^2}{2}\right) + 5(x) + C = 3x^3 - 2x^2 + 5x + C.$$

So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k.

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, y(-1) = 0.

Solution. Let y = f(x) where $\frac{dy}{dx} = \frac{df}{dx} = 9x^2 - 4x + 5$, so f is an antiderivative of $9x^2 - 4x + 5$; that is, $f(x) \in \int 9x^2 - 4x + 5 \, dx$. Now

$$\int 9x^2 - 4x + 5 \, dx = 9 \int x^2 \, dx - 4 \int x \, dx + 5 \int 1 \, dx$$

$$=9\left(\frac{x^{3}}{3}\right)-4\left(\frac{x^{2}}{2}\right)+5(x)+C=3x^{3}-2x^{2}+5x+C.$$

Calculus 1

So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k.

Exercises 4.8.94 (continuous)

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, y(-1) = 0.

Solution (continuous. So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k. We use the initial condition y(-1) = f(-1) = 0 to find k. We set $f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) + k = 0$ which requires -10 + k = 0 or k = 10. So $f(x) = 3x^3 - 2x^2 + 5x + (10) = 3x^3 - 2x^2 + 5x + 10$.

Exercises 4.8.94 (continuous)

Exercises 4.8.94. Solve the initial value problem: $\frac{dy}{dx} = 9x^2 - 4x + 5$, y(-1) = 0.

Solution (continuous. So $f(x) = 3x^3 - 2x^2 + 5x + k$ for some constant k. We use the initial condition y(-1) = f(-1) = 0 to find k. We set $f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) + k = 0$ which requires -10 + k = 0 or k = 10. So $f(x) = 3x^3 - 2x^2 + 5x + (10) = 3x^3 - 2x^2 + 5x + 10$.

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution. With $\frac{dv}{dt} = 8t + \csc^2 t$, we have that v(t) is an antiderivative of $8t + \csc^2 t$; that is, $v(t) \in \int 8t + \csc^2 t \, dt$. Now

$$\int 8t + \csc^2 t \, dt = 8 \int t \, dt + \int \csc^2 t \, dt$$

$$= 8\left(\frac{t^{2}}{2}\right) + (-\cot t) + C = 4t^{2} - \cot t + C$$

by Table 4.2(1 and 5) with n = 1 and k = 1. So $v(t) = 4t^2 - \cot t + k$ for some constant k.

Calculus 1

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution. With $\frac{dv}{dt} = 8t + \csc^2 t$, we have that v(t) is an antiderivative of $8t + \csc^2 t$; that is, $v(t) \in \int 8t + \csc^2 t \, dt$. Now

$$\int 8t + \csc^2 t \, dt = 8 \int t \, dt + \int \csc^2 t \, dt$$

$$= 8\left(\frac{t^{2}}{2}\right) + (-\cot t) + C = 4t^{2} - \cot t + C$$

by Table 4.2(1 and 5) with n = 1 and k = 1. So $v(t) = 4t^2 - \cot t + k$ for some constant k.

Exercises 4.8.102 (continued)

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution (continued). So $v(t) = 4t^2 - \cot t + k$ for some constant k. We use the initial condition $v(\pi/2) = -7$ to find k. We set $v(\pi/2) = 4(\pi/2)^2 - \cot(\pi/2) + k = -7$ which requires $\pi^2 + k = -7$ or $k = -7 - \pi^2$. So $v(t) = 4t^2 - \cot t - 7 - \pi^2$.

Exercises 4.8.102 (continued)

Exercises 4.8.102. Solve the initial value problem: $\frac{dv}{dt} = 8t + \csc^2 t$, $v(\pi/2) = -7$.

Solution (continued). So $v(t) = 4t^2 - \cot t + k$ for some constant k. We use the initial condition $v(\pi/2) = -7$ to find k. We set $v(\pi/2) = 4(\pi/2)^2 - \cot(\pi/2) + k = -7$ which requires $\pi^2 + k = -7$ or $k = -7 - \pi^2$. So $v(t) = 4t^2 - \cot t - 7 - \pi^2$. \Box

Exercises 4.8.108. Solve the "second order" initial value problem: $\frac{d^2s}{dt^2} = \frac{3t}{8}, \frac{ds}{dt}\Big|_{t=4} = 3, \ s(4) = 4.$

Solution. We look for s(t). We have $\frac{ds}{dt}$ is an antiderivative of $\frac{d^2s}{dt^2}$; that is, $\frac{ds}{dt} \in \int \frac{d^2s}{dt^2} dt$. Now

$$\int \frac{3t}{8} dt = \frac{3}{8} \int t \, dt = \frac{3}{8} \left(\frac{t^2}{2} \right) + C = \frac{3}{16} t^2 + C.$$

So $\frac{ds}{dt} = \frac{3}{16}t^2 + k_1$ for some constant k_1 . We use the initial condition $\frac{ds}{dt}\Big|_{t=4} = 3$ to find k_1 .

Exercises 4.8.108. Solve the "second order" initial value problem: $\frac{d^2s}{dt^2} = \frac{3t}{8}, \frac{ds}{dt}\Big|_{t=4} = 3, \ s(4) = 4.$

Solution. We look for s(t). We have $\frac{ds}{dt}$ is an antiderivative of $\frac{d^2s}{dt^2}$; that

is,
$$\frac{ds}{dt} \in \int \frac{d^2s}{dt^2} dt$$
. Now

$$\int \frac{3t}{8} dt = \frac{3}{8} \int t \, dt = \frac{3}{8} \left(\frac{t^2}{2} \right) + C = \frac{3}{16} t^2 + C.$$

So $\frac{ds}{dt} = \frac{3}{16}t^2 + k_1$ for some constant k_1 . We use the initial condition $\frac{ds}{dt}\Big|_{t=4} = 3$ to find k_1 .

Solution (continued). We use the initial condition $\frac{ds}{dt}\Big|_{t=4} = 3$ to find k_1 . We have $\frac{ds}{dt}\Big|_{t=4} = \frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $k_1 = 0$. So $\frac{ds}{dt} = \frac{3}{16}t^2$.

Solution (continued). We use the initial condition $\frac{ds}{dt} = 3$ to find $k_{1}. \text{ We have } \left. \frac{ds}{dt} \right|_{t=4} = \frac{3}{16} (4)^{2} + k_{1} = 3 \text{ which requires } 3 + k_{1} = 3 \text{ or}$ $k_{1} = 0. \text{ So } \left. \frac{ds}{dt} = \frac{3}{16} t^{2}. \text{ Next, } s(t) \text{ is an antiderivative of } \frac{ds}{dt} = \frac{3}{16} t^{2}; \text{ that}$ $\text{is, } s(t) \in \int \left. \frac{ds}{dt} \, dt = \int \frac{3}{16} t^{2} \, dt. \text{ Now } \int \frac{3}{16} t^{2} \, dt = \frac{3}{16} \frac{t^{3}}{3} + C = \frac{t^{3}}{16} + C.$ So $s(t) = \frac{t^3}{16} + k_2$ for some constant k_2 . We use the initial condition

s(4) = 4 to find k_2 .

Solution (continued). We use the initial condition $\frac{ds}{dt} = 3$ to find k_1 . We have $\frac{ds}{dt}\Big|_{t=4} = \frac{3}{16}(4)^2 + k_1 = 3$ which requires $3 + k_1 = 3$ or $k_1 = 0$. So $\frac{ds}{dt} = \frac{3}{16}t^2$. Next, s(t) is an antiderivative of $\frac{ds}{dt} = \frac{3}{16}t^2$; that is, $s(t) \in \int \frac{ds}{dt} dt = \int \frac{3}{16}t^2 dt$. Now $\int \frac{3}{16}t^2 dt = \frac{3}{16}\frac{t^3}{3} + C = \frac{t^3}{16} + C$. So $s(t) = \frac{t^3}{16} + k_2$ for some constant k_2 . We use the initial condition s(4) = 4 to find k_2 . We have $s(4) = \frac{(4)^3}{16} + k_2 = 4$ which requires $4 + k_2 = 4$ or $k_2 = 0$. So $s(t) = \frac{t^3}{16}$.

Solution (continued). We use the initial condition $\frac{ds}{dt} = 3$ to find $k_{1}. \text{ We have } \left. \frac{ds}{dt} \right|_{t=4} = \frac{3}{16} (4)^{2} + k_{1} = 3 \text{ which requires } 3 + k_{1} = 3 \text{ or}$ $k_{1} = 0. \text{ So } \left. \frac{ds}{dt} = \frac{3}{16} t^{2}. \text{ Next, } s(t) \text{ is an antiderivative of } \frac{ds}{dt} = \frac{3}{16} t^{2}; \text{ that}$ $\text{is, } s(t) \in \int_{-2}^{-2} \frac{ds}{dt} \, dt = \int_{-2}^{-3} \frac{3}{16} t^{2} \, dt. \text{ Now } \int_{-2}^{-3} \frac{3}{16} t^{2} \, dt = \frac{3}{16} \frac{t^{3}}{3} + C = \frac{t^{3}}{16} + C.$ So $s(t) = \frac{t^3}{16} + k_2$ for some constant k_2 . We use the initial condition s(4) = 4 to find k_2 . We have $s(4) = \frac{(4)^3}{16} + k_2 = 4$ which requires $4 + k_2 = 4$ or $k_2 = 0$. So $s(t) = \frac{t^3}{16}$.

Exercises 4.8.120. Consider the figure with solution curves of the given differential equation. Find an equation for the curve through the labeled point.

Solution. Let y = f(x) where $\frac{dy}{dx} = \frac{df}{dx} = x - 1$, so f is an antiderivative of x - 1; that is, $f(x) \in \int x - 1 \, dx$.

Exercises 4.8.120. Consider the figure with solution curves of the given differential equation. Find an equation for the curve through the labeled point.

Solution. Let y = f(x) where $\frac{dy}{dx} = \frac{df}{dx} = x - 1$, so f is an antiderivative of x - 1; that is, $f(x) \in \int x - 1 \, dx$.

Solution (continued). Now

$$\int x - 1 \, dx = \int x \, dx - \int 1 \, dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.$$

So $f(x) = \frac{x^2}{2} - x + k$ for some constant k.

Solution (continued). Now

$$\int x - 1 \, dx = \int x \, dx - \int 1 \, dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.$$

So $f(x) = \frac{x^2}{2} - x + k$ for some constant k. The fact that the graph of the desired function f passes through the point (-1, 1) gives us the initial condition f(-1) = 1. We use this initial condition to find k. We set $f(-1) = \frac{(-1)^2}{2} - (-1) + k = 1$ which requires 3/2 + k = 1 or k = -1/2. So $f(x) = \frac{x^2}{2} - x - \frac{1}{2}$.

Calculus 1

Solution (continued). Now

$$\int x - 1 \, dx = \int x \, dx - \int 1 \, dx = \left(\frac{x^2}{2}\right) - x + C = \frac{x^2}{2} - x + C.$$

So $f(x) = \frac{x^2}{2} - x + k$ for some constant k. The fact that the graph of the desired function f passes through the point (-1, 1) gives us the initial condition f(-1) = 1. We use this initial condition to find k. We set $f(-1) = \frac{(-1)^2}{2} - (-1) + k = 1$ which requires 3/2 + k = 1 or k = -1/2. So $f(x) = \frac{x^2}{2} - x - \frac{1}{2}$. \Box

Calculus 1

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec². How fast will the rocket be going 1 min later.

Solution. We let v(t) represent the velocity of the rocket in m/sec at time t sec after liftoff. So v(t) is an antiderivative of acceleration $a(t) = 20 \text{ m/sec}^2$; that is, $v(t) \in \int 20 dt$. Now $\int 20 dt = 20t + C$ so v(t) = 20t + k for some constant k. We need an initial value to find k.

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec². How fast will the rocket be going 1 min later.

Solution. We let v(t) represent the velocity of the rocket in m/sec at time t sec after liftoff. So v(t) is an antiderivative of acceleration $a(t) = 20 \text{ m/sec}^2$; that is, $v(t) \in \int 20 dt$. Now $\int 20 dt = 20t + C$ so v(t) = 20t + k for some constant k. We need an initial value to find k. Since the rocket starts stationary on the launch pad, then v(0) = 0 m/sec. So we set v(0) = 20(0) + k = 0 which requires k = 0. Hence v(t) = 20t m/sec is the velocity function. When t = 1 min = 60 sec the velocity of the rocket is v(60) = 20(60) = 1200 m/sec.

Exercises 4.8.124. Liftoff from Earth.

A rocket lifts off from the surface of the Earth with a constant acceleration of 20 m/sec². How fast will the rocket be going 1 min later.

Solution. We let v(t) represent the velocity of the rocket in m/sec at time t sec after liftoff. So v(t) is an antiderivative of acceleration $a(t) = 20 \text{ m/sec}^2$; that is, $v(t) \in \int 20 dt$. Now $\int 20 dt = 20t + C$ so v(t) = 20t + k for some constant k. We need an initial value to find k. Since the rocket starts stationary on the launch pad, then v(0) = 0 m/sec. So we set v(0) = 20(0) + k = 0 which requires k = 0. Hence v(t) = 20t m/sec is the velocity function. When t = 1 min = 60 sec the velocity of the rocket is $v(60) = 20(60) = \boxed{1200 \text{ m/sec}}$.