Calculus 1

Chapter 5. Integrals 5.3. The Definite Integral—Examples and Proofs

Table of contents

- [Exercise 5.3.6](#page-2-0)
- [Example 5.3.1. A Non-Integrable Function](#page-4-0)
- [Theorem 5.2. Rules Satisfied by Definite Integrals](#page-9-0)
- [Exercise 5.3.10](#page-19-0)
- [Exercise 5.3.63](#page-26-0)
- [Example 5.3.A](#page-29-0)
- [Exercise 5.3.65](#page-34-0)
- [Exercise 5.3.36](#page-41-0)
- [Exercise 5.3.18](#page-43-0)
- 10 [Exercise 5.3.62](#page-47-0)
	- [Exercise 5.3.76](#page-53-0)
- 12 [Exercise 5.3.88](#page-57-0)

Exercise 5.3.6. Express the limit $\lim_{\|P\|\to 0}$ $\sum_{n=1}^{n}$ $k=1$ $\sqrt{4-c_k^2}\,\Delta x_k$, where P is a partition of $[0, 1]$, as a definite integral.

Solution. With $P = \{x_0, x_1, ..., x_n\}$ a partition of $[a, b] = [0, 1]$, **Solution.** With $P = \{x_0, x_1, ..., x_n\}$ a partition of $[a, b] = [0, 1]$,
 $c_k \in [x_{k-1}, x_k]$, $\Delta x_k = x_k - x_{k-1}$, and $f(x) = \sqrt{4 - x^2}$ we have that

$$
\lim_{\|P\| \to 0} \sum_{k=1}^n \sqrt{4 - c_k^2} \, \Delta x_k = \int_a^b f(x) \, dx = \left[\int_0^1 \sqrt{4 - x^2} \, dx \right]. \quad \Box
$$

Exercise 5.3.6. Express the limit $\lim_{\|P\|\to 0}$ $\sum_{n=1}^{n}$ $k=1$ $\sqrt{4-c_k^2}\,\Delta x_k$, where P is a partition of $[0, 1]$, as a definite integral.

Solution. With $P = \{x_0, x_1, ..., x_n\}$ a partition of $[a, b] = [0, 1]$, **Solution.** With $P = \{x_0, x_1, ..., x_n\}$ a partition of $[a, b] = [0, 1]$,
 $c_k \in [x_{k-1}, x_k]$, $\Delta x_k = x_k - x_{k-1}$, and $f(x) = \sqrt{4 - x^2}$ we have that

$$
\lim_{\|P\| \to 0} \sum_{k=1}^n \sqrt{4-c_k^2} \,\Delta x_k = \int_a^b f(x) \, dx = \boxed{\int_0^1 \sqrt{4-x^2} \, dx}.
$$

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } y \text{ is irrational} \end{cases}$ 0, if x is irrational is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on $[0,1]$ then by the definition of definite integral, $\,\int^1$ 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{\infty}$ $k=1$ $f(c_k)$ Δx_k for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and irrational numbers.

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } y \text{ is irrational} \end{cases}$ 0, if x is irrational is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on $[0, 1]$ then by the definition of definite integral, \int^1 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{n}$ $_{k=1}$ $f(c_k)\Delta x_k$ for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and **irrational numbers.** So we can choose each c_k to be rational in which case each $f(c_k) = 1$ and \int^1 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{\infty}$ $k=1$ $f(c_k) \Delta x_k =$ lim
∥*P*∥→0 $\sum_{n=1}^{\infty}$ $k=1$ $(1) \Delta x_k = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{\infty}$ $k=1$ $\Delta x_k = \lim\limits_{\parallel P \parallel \to 0} 1 = 1$ since the sum of the length of the subintervals is the length of [0, 1] (namely 1).

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } y \text{ is irrational} \end{cases}$ 0, if x is irrational is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of definite integral, \int^1 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{n}$ $_{k=1}$ $f(c_k)\Delta x_k$ for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and irrational numbers. So we can choose each c_k to be rational in which case each $f(\mathit{c}_k)=1$ and \int^1 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{n}$ $_{k=1}$ $f(c_k)\Delta x_k =$ $\lim\limits_{\parallel P\parallel\rightarrow 0}$ $\sum_{n=1}^{n}$ $k=1$ (1) $\Delta x_k = \lim\limits_{\|P\| \rightarrow 0}$ $\sum_{n=1}^{n}$ $k=1$ $\Delta x_k = \lim\limits_{\parallel P \parallel \to 0} 1 = 1$ since the sum of the length of the subintervals is the length of [0, 1] (namely 1).

Example 5.3.1 (continued)

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } y \text{ is irrational} \end{cases}$ 0, if x is irrational is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each c_k to be irrational in which case each $f(\mathit{c}_k)=0$ and \int^{1} 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{n}$ $k=1$ $f(c_k)\Delta x_k =$ $\lim\limits_{\parallel P\parallel\rightarrow 0}$ $\sum_{k=1}^{n} (0) \Delta x_k = \lim_{\|P\| \to 0}$ $k=1$
 $\int_{-L}^{1} f(x) dx = 1$ $\sum_{k=1}^{n} 0 = \lim_{\|P\| \to 0} 0 = 0.$ But we cannot have both 0 $f(x) dx = 1$ and \int_1^1 0 $f(x)\,dx=0$, so f is not Riemann integrable over $\overline{0}$ 11 $\overline{1}$

Example 5.3.1 (continued)

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } y \text{ is irrational} \end{cases}$ 0, if x is irrational is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each c_k to be irrational in which case each $f(\mathit{c}_k)=0$ and \int^{1} 0 $f(x) dx = \lim_{\|P\| \to 0}$ $\sum_{n=1}^{n}$ $k=1$ $f(c_k)\Delta x_k =$ $\lim\limits_{\parallel P\parallel\rightarrow 0}$ $\sum_{k=1}^{n} (0) \Delta x_k = \lim_{\|P\| \to 0}$ $k=1$
 $\int_{-1}^{1} f(x) dx = 1$ and $\int_{-1}^{1} f(x) dx$ $\sum_{i=1}^{n} 0 = \lim_{\|P\| \to 0} 0 = 0$. But we cannot have both 0 $f(x)$ $dx = 1$ and \int_1^1 0 $f(x)\,dx=0$, so f is not Riemann integrable over $[0, 1]$. \Box

Theorem 5.2

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

3. Constant Multiple:
$$
\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx
$$

4. Sum and Difference:
\n
$$
\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx
$$

6. Max-Min Inequality: If max f and min f are the maximum and minimum values of f on $[a, b]$, then

$$
\min f \cdot (b-a) \leq \int_a^b f(x) \, dx \leq \max f \cdot (b-a).
$$

7. *Domination*: $f(x) \geq g(x)$ on $[a,b] \Rightarrow \int^b$ a $f(x) dx \geq \int^b$ a $g(x) dx$.

Theorem 5.2 (continued 1)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

3. Constant Multiple:
$$
\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx
$$
.
\n**Proof.** Let *P* be a partition of [*a*, *b*] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$ be an associated Riemann sum. Then $\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k$ and

$$
\int_{a}^{b} cf(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} cf(c_k) \Delta x_k
$$

=
$$
\lim_{\|P\| \to 0} c \sum_{k=1}^{n} f(c_k) \Delta x_k
$$
 since multiplication
distributions over addition

 \bullet

Theorem 5.2 (continued 2)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

3. Constant Multiple:
$$
\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx.
$$

Proof (continued). ...

$$
\int_{a}^{b} cf(x) dx = \lim_{\|P\| \to 0} c \sum_{k=1}^{n} f(c_k) \Delta x_k
$$

=
$$
c \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k
$$
 by the Constant Multiple Rule,
Theorem 2.1(3)
=
$$
c \int_{a}^{b} f(x) dx,
$$

as claimed.

Theorem 5.2 (continued 3)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

4. Sum and Difference:
\n
$$
\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.
$$
\nProof (continued). Let *P* be a partition of [a, b] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$

and
$$
\sum_{k=1}^{n} g(c_k) \Delta x_k
$$
 be associated Riemann sums. Then by definition
\n
$$
\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k
$$
 and
\n
$$
\int_{a}^{b} g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} g(c_k) \Delta x_k
$$
, so
\n
$$
\int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k \pm \lim_{\|P\| \to 0} \sum_{k=1}^{n} g(c_k) \Delta x_k
$$

Theorem 5.2 (continued 4)

Proof (continued). ...

$$
\int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k} \pm \lim_{\|P\| \to 0} \sum_{k=1}^{n} g(c_{k}) \Delta x_{k}
$$

\n
$$
= \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} f(c_{k}) \Delta x_{k} \pm \sum_{k=1}^{n} g(c_{k}) \Delta x_{k} \right)
$$

\nby the Sum and Difference Rules, Theorem 2.1(1 and 2)
\n
$$
= \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} (f(c_{k}) \Delta x_{k} \pm g(c_{k}) \Delta x_{k}) \right)
$$

\nby commutivity and addition and subtraction
\n
$$
= \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} (f(c_{k}) \pm g(c_{k})) \Delta x_{k} \right)
$$
since multiplication

distributes over addition

Theorem 5.2 (continued 5)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

4. Sum and Difference:
\n
$$
\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.
$$

Proof (continued). ...

$$
\int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx = \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} (f(c_{k}) \pm g(c_{k})) \Delta x_{k} \right)
$$

=
$$
\int_{a}^{b} (f(x) \pm g(x)) dx,
$$

since
$$
\int_a^b (f(x) \pm g(x)) dx = \lim_{\|P\| \to 0} \left(\sum_{k=1}^n (f(c_k) \pm g(c_k)) \Delta x_k \right)
$$
, by definition.

Theorem 5.2 (continued 6)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

> 6. Max-Min Inequality: If max f and min f are the maximum and minimum values of f on $[a, b]$, then

$$
\min f \cdot (b-a) \leq \int_a^b f(x) \, dx \leq \max f \cdot (b-a).
$$

 $k=1$

Proof (continued). Let P be a partition of [a, b] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$ $k=1$

be an associated Riemann sum. Then by definition $\int_a^b f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k$. Notice that min $f \leq f(c_k) \leq \max f$ for all $c_k \in [a, b]$ and $\sum_{k=1}^{n} \Delta x_k = (b - a)$.

Theorem 5.2 (continued 7)

Proof (continued). So we have

$$
\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k \ge \lim_{\|P\| \to 0} \sum_{k=1}^{n} \min f \Delta x_k
$$

\n
$$
= \lim_{\|P\| \to 0} \min f \sum_{k=1}^{n} \Delta x_k \text{ since multiplication}
$$

\ndistributions over addition
\n
$$
= \min f \lim_{\|P\| \to 0} \sum_{k=1}^{n} \Delta x_k \text{ by the Constant Multiple Rule,}
$$

\nTheorem 2.1(3)
\n
$$
= \min f \lim_{\|P\| \to 0} (b - a) \text{ since } \sum_{k=1}^{n} \Delta x_k = b - a
$$

\n
$$
= \min f \cdot (b - a),
$$

as claimed.

Theorem 5.2 (continued 8)

Proof (continued). Similarly,

$$
\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k} \le \lim_{\|P\| \to 0} \sum_{k=1}^{n} \max f \Delta x_{k}
$$

\n
$$
= \lim_{\|P\| \to 0} \max f \sum_{k=1}^{n} \Delta x_{k} \text{ since multiplication}
$$

\ndistributions over addition
\n
$$
= \max f \lim_{\|P\| \to 0} \sum_{k=1}^{n} \Delta x_{k} \text{ by the Constant Multiple Rule,}
$$

\nTheorem 2.1(3)
\n
$$
= \max f \lim_{\|P\| \to 0} (b - a) \text{ since } \sum_{k=1}^{n} \Delta x_{k} = b - a
$$

\n
$$
= \max f \cdot (b - a),
$$

as claimed.

Theorem 5.2 (continued 9)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval $[a, b]$. Then:

7. *Domaination:*
$$
f(x) \ge g(x)
$$
 on $[a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Proof (continued). Let P be a partition of [a, b] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$ $k=1$

and $\displaystyle{\sum^n_{-\!\!1} g(c_k) \,\Delta x_k}$ be associated Riemann sums. Then by definition $k=1$ $\int_a^b f(x)\,dx = \lim_{\|P\|\to 0} \sum_{k=1}^n f(c_k) \,\Delta x_k$ and $\int_a^b g(x)\,dx=\lim_{\|P\|\to 0}\sum_{k=1}^n g(c_k)\,\Delta x_k.$ Since $f(x)\geq g(x)$ on $[a,b]$ then $f(c_k) > g(c_k)$ for all $c_k \in [a, b]$, and so

$$
\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k \ge \lim_{\|P\| \to 0} \sum_{k=1}^{n} g(c_k) \Delta x_k = \int_{a}^{b} g(x) dx. \ \Box
$$

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(a\right)\ \int^{9}$ 1 $-2f(x) dx$, **(b)** \int_{0}^{9} 7 $(f(x) - h(x)) dx$, (c) \int^9 7 $(2f(x) - 3h(x)) dx$, **(d)** \int_0^1 9 $f(x) dx$, (e) \int_0^7 1 $f(x)$ dx, and (f) \int^7 9 $(h(x) - f(x)) dx$.

Solution. (a) We have

 \int^9 1 $-2f(x) dx = -2 \int_{0}^{9}$ 1 $f(x)$ dx by Constant Multiple Rule, Thm 5.2(3) $= -2(-1) = 2$ since $\int_{0}^{9} f(x) dx = -1$. \Box 1

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(a\right)\ \int^{9}$ 1 $-2f(x) dx$, **(b)** \int_{0}^{9} 7 $(f(x) - h(x)) dx$, (c) \int^9 7 $(2f(x) - 3h(x)) dx$, **(d)** \int_0^1 9 $f(x) dx$, (e) \int_0^7 1 $f(x)$ dx, and (f) \int^7 9 $(h(x) - f(x)) dx$.

Solution. (a) We have

 \int_0^9 1 $-2f(x) dx = -2 \int_0^9$ 1 $f(x)$ dx by Constant Multiple Rule, Thm 5.2(3) $= -2(-1) = 2$ since \int_0^9 1 $f(x) dx = -1.$

Exercise 5.3.10 (continued 1)

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(\mathbf{b}\right)\ \int^{9}$ 7 $(f(x) - h(x)) dx$.

Solution (continued). (b) We have

$$
\int_{7}^{9} (f(x) - h(x)) dx = \int_{7}^{9} f(x) dx - \int_{7}^{9} h(x) dx
$$

by the Difference Rule, Theorem 5.2(4)

$$
= (5) - (4) = 1 \text{ since } \int_{7}^{9} f(x) dx = 5
$$

and
$$
\int_{7}^{9} h(x) dx = 4. \quad \Box
$$

Exercise 5.3.10 (continued 2)

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(\mathbf{c}\right)\ \int^{9}$ 7 $(2f(x) - 3h(x)) dx$.

Solution (continued). (c) We have \int^9 7 $(2f(x) - 3h(x)) dx =$

$$
= \int_{7}^{9} 2f(x) dx + \int_{7}^{9} -3h(x) dx
$$
 by the Sum Rule, Theorem 5.2(4)
\n
$$
= 2 \int_{7}^{9} f(x) dx - 3 \int_{7}^{9} h(x) dx
$$
 by Constant Mult. Theorem 5.2(3)
\n
$$
= 2(5) - 3(4) = -2
$$
 since $\int_{7}^{9} f(x) dx = 5$ and $\int_{7}^{9} h(x) dx = 4$.

Exercise 5.3.10 (continued 3)

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(\mathsf{d}\right) \,\int^{1}$ 9 $f(x)$ dx.

Solution (continued). (d) We have

 \int_0^1 9 $f(x) dx = -\int_0^9$ 1 $f(x)$ dx by the Order of Integration, Theorem 5.2(1) $=$ $-(-1) = 1$ since \int^9 1 $f(x) dx = -1.$

Exercise 5.3.10 (continued 4)

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find (e) \int^7 1 $f(x)$ dx.

Solution (continued). (e) By Additivity (Theorem 5.2(5)) we have \int ⁷ 1 $f(x) dx + \int_0^9$ 7 $f(x) dx = \int_0^9$ 1 $f(x)$ dx, then \int_0^7 1 $f(x) dx = \int_0^9$ 1 $f(x) dx - \int_0^9$ 7 $f(x)$ dx. So \int_0^7 1 $f(x) dx = (-1) - (5) = -6$, since \int_0^9 1 $f(x) dx = -1$ and \int_0^9 7 $f(x) dx = 5.$

Exercise 5.3.10 (continued 5)

Exercise 5.3.10. Suppose that f is h are integrable and that \int_0^9 1 $f(x) dx = -1, \int_0^9$ 7 $f(x)$ $dx = 5$, and \int^9 7 $h(x) dx = 4$. Use the rules in Theorem 5.2 to find $\left(\mathbf{f}\right) \int_{0}^{7}$ 9 $(h(x) - f(x)) dx$.

Solution (continued). (f) We have \int^7 9 $(h(x) - f(x)) dx =$

$$
= \int_9^7 h(x) dx - \int_9^7 f(x) dx
$$
 by the Difference Rule, Theorem 5.2(4)
\n
$$
= -\int_7^9 h(x) dx + \int_7^9 f(x) dx
$$
 by Order of Integration, Theorem 5.2(1)
\n
$$
= -(4) + (5) = \boxed{1}
$$
 since $\int_7^9 f(x) dx = 5$ and $\int_7^9 h(x) dx = 4$. \Box

Exercise 5.3.63. Let c be a constant. Prove that \int^b a $c dx = c(b-a).$

Proof. Let $f(x) = c$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see Note 5.3.A).

Exercise 5.3.63. Let c be a constant. Prove that \int^b a $c dx = c(b-a).$

Proof. Let $f(x) = c$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see **Note 5.3.A).** Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_{a}^{b} c \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} c \left(\frac{b-a}{n} \right)
$$

$$
= \lim_{n \to \infty} \left(n c \frac{b-a}{n} \right) \text{ by Theorem 5.2.A(4)}
$$

$$
= \lim_{n \to \infty} c(b-a) = c(b-a). \quad \Box
$$

Exercise 5.3.63. Let c be a constant. Prove that \int^b a $c dx = c(b-a).$

Proof. Let $f(x) = c$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_{a}^{b} c \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} c \left(\frac{b-a}{n} \right)
$$

$$
= \lim_{n \to \infty} \left(n c \frac{b-a}{n} \right) \text{ by Theorem 5.2.A(4)}
$$

$$
= \lim_{n \to \infty} c(b-a) = c(b-a). \quad \Box
$$

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x dx = \frac{b^2}{2}$ $rac{b^2}{2} - \frac{a^2}{2}$ $\frac{1}{2}$.

Proof. Let $f(x) = x$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on $[a, b]$. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b - a)/n$ (see Note 5.3.A).

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x dx = \frac{b^2}{2}$ $rac{b^2}{2} - \frac{a^2}{2}$ $\frac{1}{2}$.

Proof. Let $f(x) = x$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on $[a, b]$. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b - a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_{a}^{b} x dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \left(\frac{b-a}{n} \right)
$$

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x dx = \frac{b^2}{2}$ $rac{b^2}{2} - \frac{a^2}{2}$ $\frac{1}{2}$.

Proof. Let $f(x) = x$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on $[a, b]$. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b - a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_a^b x \, dx = \lim_{n \to \infty} \sum_{k=1}^n f(c_k) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^n c_k \left(\frac{b-a}{n} \right)
$$

Example 5.3.A (continued 1)

$$
\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right) \left(\frac{b-a}{n} \right)
$$

$$
= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left(\sum_{k=1}^{n} a + \frac{b-a}{n} \sum_{k=1}^{n} k \right)
$$

$$
= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na) + \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) \right)
$$

$$
= \lim_{n \to \infty} \left(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \right)
$$

$$
= \lim_{n \to \infty} \left((b-a)a + \left(\frac{b-a}{n} \right)^2 \left(\frac{n(n+1)}{2} \right) \right)
$$

Example 5.3.A (continued 2)

Proof (continued).
\n
$$
\int_{a}^{b} x dx = \lim_{n \to \infty} \left((b - a)a + \left(\frac{b - a}{n} \right)^{2} \left(\frac{n(n + 1)}{2} \right) \right)
$$
\n
$$
= (b - a)a + (b - a)^{2} \lim_{n \to \infty} \frac{n(n + 1)}{2n^{2}}
$$
\n
$$
= (b - a)a + (b - a)^{2} \lim_{n \to \infty} \frac{n^{2} + n}{2n^{2}} \left(\frac{1/n^{2}}{1/n^{2}} \right)
$$
\n
$$
= (b - a)a + (b - a)^{2} \lim_{n \to \infty} \frac{1 + 1/n}{2}
$$
\n
$$
= (b - a)a + (b - a)^{2} \frac{1 + \lim_{n \to \infty} 1/n}{2}
$$
\n
$$
= (b - a)a + (b - a)^{2} \frac{1 + (0)}{2} = ab - a^{2} + \frac{b^{2} - 2ab + a^{2}}{2}
$$
\n
$$
= \frac{b^{2}}{2} - \frac{a^{2}}{2}. \quad \Box
$$

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x^2 dx = \frac{b^3}{3}$ $rac{b^3}{3} - \frac{a^3}{3}$ $\frac{1}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on $[a, b]$. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b - a)/n$ (see Note 5.3.A).

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x^2 dx = \frac{b^3}{3}$ $rac{b^3}{3} - \frac{a^3}{3}$ $\frac{1}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b - a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n}\right)
$$

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for $a < b$: \int^b a $x^2 dx = \frac{b^3}{3}$ $rac{b^3}{3} - \frac{a^3}{3}$ $\frac{1}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \rightarrow 0$. So the value of the Riemann integral is given by

$$
\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n} \right)
$$

Exercise 5.3.65 (continued 1)

$$
\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right)^{2} \left(\frac{b-a}{n} \right)
$$

\n
$$
= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \sum_{k=1}^{n} \left(a^{2} + 2ak \frac{b-a}{n} + k^{2} \left(\frac{b-a}{n} \right)^{2} \right)
$$

\n
$$
= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \sum_{k=1}^{n} k + \left(\frac{b-a}{n} \right)^{2} \sum_{k=1}^{n} k^{2} \right)
$$

\n
$$
= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) + \left(\frac{b-a}{n} \right)^{2} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)
$$

\nsince $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ and $\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$

Exercise 5.3.65 (continued 2)

$$
\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) + \left(\frac{b-a}{n} \right)^{2} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)
$$

=
$$
\lim_{n \to \infty} (b-a) \left(a^{2} + 2a \frac{b-a}{n^{2}} \left(\frac{n(n+1)}{2} \right) + \frac{(b-a)^{2}}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)
$$

=
$$
\lim_{n \to \infty} (b-a) \left(a^{2} + 2a(b-a) \left(\frac{(n^{2} + n)/n^{2}}{2} \right) + (b-a)^{2} \left(\frac{(2n^{3} + 3n^{2} + n)/n^{3}}{6} \right) \right)
$$

Exercise 5.3.65 (continued 3)

$$
\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} (b - a) \left(a^{2} + 2a(b - a) \left(\frac{(n^{2} + n)/n^{2}}{2} \right) + (b - a)^{2} \left(\frac{(2n^{3} + 3n^{2} + n)/n^{3}}{6} \right) \right)
$$

=
$$
\lim_{n \to \infty} (b - a) \left(a^{2} + 2a(b - a) \left(\frac{1 + 1/n}{2} \right) + (b - a)^{2} \left(\frac{2 + 3/n + 1/n^{2}}{6} \right) \right)
$$

=
$$
(b - a) \left(a^{2} + 2a(b - a) \left(\frac{1 + \lim_{n \to \infty} 1/n}{2} \right) + (b - a)^{2} \left(\frac{2 + 3 \lim_{n \to \infty} (1/n) + (\lim_{n \to \infty} 1/n)^{2}}{6} \right) \right)
$$

Exercise 5.3.65 (continued 4)

Proof (continued).

.)

$$
\int_{a}^{b} x^{2} dx = (b-a) \left(a^{2} + 2a(b-a) \left(\frac{1+(0)}{2} \right) + (b-a)^{2} \left(\frac{2+3(0)+(0)^{2}}{6} \right) \right)
$$

= $(b-a) (a^{2} + a(b-a) + (b-a)^{2}(1/3))$
= $(b-a) (a^{2} + ab - a^{2} + b^{2}/3 - 2ab/3 + a^{2}/3)$
= $(b-a) (ab/3 + b^{2}/3 + a^{2}/3)$
= $(ab^{2} + b^{3} + a^{2}b - a^{2}b - ab^{2} - a^{3})/3$
= $\frac{b^{3}}{3} - \frac{a^{3}}{3}$.

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the integral $\int^{\pi/2}$ 0 $\theta^2 d\theta$.

Solution. The integrand is $f(\theta) = \theta^2$, the lower bound of the integral is $a = 0$, and the upper bound of the integral is $b = \pi/2$. So by Equation (4) (Exercise 5.3.65),

$$
\int_0^{\pi/2} \theta^2 d\theta = \frac{b^3}{3} - \frac{a^3}{3} = \frac{(\pi/2)^3}{3} - \frac{0^3}{3} = \frac{\pi^3}{24}.
$$

 \Box

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the integral $\int^{\pi/2}$ 0 $\theta^2 d\theta$.

Solution. The integrand is $f(\theta)=\theta^2$, the lower bound of the integral is $a = 0$, and the upper bound of the integral is $b = \pi/2$. So by Equation (4) (Exercise 5.3.65),

$$
\int_0^{\pi/2} \theta^2 d\theta = \frac{b^3}{3} - \frac{a^3}{3} = \frac{(\pi/2)^3}{3} - \frac{0^3}{3} = \frac{\pi^3}{24}.
$$

 \Box

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: \int^0 −4 $\sqrt{16-x^2} dx$.

Solution. Notice that with $y =$ $16 - x^2$, we have **Solution:** Notice that with $y = \sqrt{10 - x^2}$, we have
 $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y=\sqrt{16-x^2}$ is the top half (since $y\geq 0)$ of a circle of radius $r = 4$ and center $(0, 0)$:

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: $\int_0^0 \sqrt{16-x^2}\,dx$. −4

Solution. Notice that with $y =$ √ $16 - x^2$, we have **Solution:** Notice that with $y = \sqrt{10 - x^2}$, we have
 $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y=\sqrt{16-x^2}$ is the top half (since $y\geq 0)$ of a circle of radius $r = 4$ and center $(0, 0)$:

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: $\int_0^0 \sqrt{16-x^2}\,dx$. −4

Solution. Notice that with $y =$ √ $16 - x^2$, we have **Solution:** Notice that with $y = \sqrt{10 - x^2}$, we have
 $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y=\sqrt{16-x^2}$ is the top half (since $y\geq 0)$ of a circle of radius $r = 4$ and center $(0, 0)$:

Exercise 5.3.18 (continued)

Solution.

Since $y = f(x) = \sqrt{16 - x^2}$ is non-negative, then (by definition) the definite integral \int^0 −4 $\sqrt{16-x^2}$ dx is the area under the curve $y=\sqrt{16-x^2}$ (and above the x-axis) from $a=-4$ to $b=0.$ That is, the √ integral is $1/4$ of the area of a circle of radius $r = 4$. Therefore, \int_0^0 −4 $\sqrt{16-x^2} dx = \frac{\pi(r)^2}{4}$ 4 $\Big|_{r=4}$ $=\frac{\pi(4)^2}{4}$ $\frac{41}{4} = 4\pi$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.62. Graph the function $h(x) = |x|$ and find the average value over the intervals (a) $[-1, 0]$, (b) $[0, 1]$, and (c) $[-1, 1]$.

Exercise 5.3.76. Show that the value of \int^1 0 √ $x + 8 dx$ lies between 2 √ $2 \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x}}$ 2 √ $x + 8$ and so the only critical point of f is $x = -8$. So continuous function f has no critical points in [0, 1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on $[0, 1]$ occur at the endpoints.

Exercise 5.3.76. Show that the value of \int^1 0 √ $x + 8 dx$ lies between 2 √ $2 \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x}}$ 2 √ $x + 8$ and so the only critical point of f is $x = -8$. So continuous function f has no critical points in [0, 1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on $[0, 1]$ occur at the endpoints. Since intervals, the extremes of 7 on [0, 1] occur at the endpoints. Since
 $f(0) = \sqrt{(0) + 8} = \sqrt{8} = 2\sqrt{2}$ and $f(1) = \sqrt{(1) + 8} = \sqrt{9} = 3$, then the $m(v) = \sqrt{v} + 6 = \sqrt{6} = 2\sqrt{2}$ and $m(v) = \sqrt{1} + 6 = \sqrt{9} = 5$, the minimum of f on $[a, b] = [0, 1]$ is min $f = 2\sqrt{2}$ and the maximum is min $f = 3$.

Exercise 5.3.76. Show that the value of \int^1 0 √ $x + 8 dx$ lies between 2 √ $2 \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x}}$ 2 √ $x + 8$ and so the only critical point of f is $x = -8$. So continuous function f has no critical points in [0, 1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on $[0, 1]$ occur at the endpoints. Since f (0) = $\sqrt{(0)+8} = \sqrt{8} = 2\sqrt{2}$ and $f(1) = \sqrt{(1)+8} = \sqrt{9} = 3$, then the $v(0) = \sqrt{0} + 6 = \sqrt{6} = 2\sqrt{2}$ and $v(1) = \sqrt{1} + 6 = \sqrt{9} = 5$, the minimum of f on $[a, b] = [0, 1]$ is min $f = 2\sqrt{2}$ and the maximum is min $f = 3$.

Exercise 5.3.76 (continued)

Exercise 5.3.76. Show that the value of \int^1 0 √ $x + 8 dx$ lies between 2 √ $2 \approx 2.8$ and 3.

Solution (continued). By Theorem 5.2(6), the Max-Min Inequality, we have

$$
\min f \cdot (b - a) = (2\sqrt{2})((1) - (0)) \le \int_{a}^{b} f(x) dx
$$

$$
= \int_{0}^{1} \sqrt{x + 8} dx \le \max f \cdot (b - a) = (3)((1) - (0),
$$
of $2\sqrt{2} \le \int_{0}^{1} \sqrt{x + 8} dx \le 3$, as claimed. \square

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then return over the same 150 miles at the rate of 50 miles/hour, what is your average speed for the trip? Give reasons for your answer.

Solution. We define function $f(t)$ as your speed as a function of time t, where t is measured in hours and f is measured in miles/hour. So we have f defined piecewise as $f(t) = 30$ miles/hour for t between 0 hours and 5 hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and $f(t) = 50$ miles/hour for t between 5 hours and 8 hours (since it takes 3 hours to travel 150 miles at 50 miles/hour): $f(t) = \begin{cases} 30, & 0 \leq t < 5 \\ 50, & 5 < t < 8 \end{cases}$ 50, $5 \le t \le 8$

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then return over the same 150 miles at the rate of 50 miles/hour, what is your average speed for the trip? Give reasons for your answer.

Solution. We define function $f(t)$ as your speed as a function of time t, where t is measured in hours and f is measured in miles/hour. So we have f defined piecewise as $f(t) = 30$ miles/hour for t between 0 hours and 5 hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and $f(t) = 50$ miles/hour for t between 5 hours and 8 hours (since it takes 3 hours to travel 150 miles at 50 miles/hour): $f(t) = \begin{cases} 30, & 0 \leq t < 5 \\ 50, & 5 < t < 8 \end{cases}$ 50, 5 $\leq t \leq 8$

Exercise 5.3.88 (continued)

 \Box

Solution (continued). $\ldots f(t) = \begin{cases} 30, & 0 \leq t < 5 \\ 50, & 5 < t < 8 \end{cases}$ 50, $5 \le t \le 8$ So, by definition, the average speed (i.e., the average of f over $[0, 8]$) is

$$
av(f) = \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{(8) - (0)} \int_{0}^{8} f(t) dt
$$

\n
$$
= \frac{1}{8} \left(\int_{0}^{5} f(t) dt + \int_{5}^{8} f(t) dt \right) by Theorem 5.2(5), Additivity
$$

\n
$$
= \frac{1}{8} \left(\int_{0}^{5} 30 dt + \int_{5}^{8} 50 dt \right)
$$

\n
$$
= \frac{1}{8} ((30)((5) - (0)) + (50)((8) - (5))) by Exercise 5.3.63
$$

\n
$$
= \frac{1}{8} (150 + 150) = \frac{300}{8} = \boxed{\frac{75}{2} \text{ miles/hour.}}
$$

Exercise 5.3.88 (continued)

 \Box

Solution (continued). $\ldots f(t) = \begin{cases} 30, & 0 \leq t < 5 \\ 50, & 5 < t < 8 \end{cases}$ 50, $5 \le t \le 8$ So, by definition, the average speed (i.e., the average of f over $[0, 8]$) is

$$
av(f) = \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{(8) - (0)} \int_{0}^{8} f(t) dt
$$

\n
$$
= \frac{1}{8} \left(\int_{0}^{5} f(t) dt + \int_{5}^{8} f(t) dt \right) by Theorem 5.2(5), Additivity
$$

\n
$$
= \frac{1}{8} \left(\int_{0}^{5} 30 dt + \int_{5}^{8} 50 dt \right)
$$

\n
$$
= \frac{1}{8} ((30)((5) - (0)) + (50)((8) - (5))) by Exercise 5.3.63
$$

\n
$$
= \frac{1}{8} (150 + 150) = \frac{300}{8} = \boxed{\frac{75}{2} \text{ miles/hour.}}
$$