Calculus 1

Chapter 5. Integrals 5.3. The Definite Integral—Examples and Proofs

Calculus 1

Table of contents

- Exercise 5.3.6
- 2 Example 5.3.1. A Non-Integrable Function
- Theorem 5.2. Rules Satisfied by Definite Integrals
 - 4 Exercise 5.3.10
 - 5 Exercise 5.3.63
- 6 Example 5.3.A
 - Exercise 5.3.65
- 8 Exercise 5.3.36
- 9 Exercise 5.3.18
- 10 Exercise 5.3.62
- 11 Exercise 5.3.76
- 2 Exercise 5.3.88

Exercise 5.3.6. Express the limit $\lim_{\|P\|\to 0} \sum_{k=1}^{n} \sqrt{4 - c_k^2} \Delta x_k$, where *P* is a partition of [0, 1], as a definite integral.

Solution. With $P = \{x_0, x_1, ..., x_n\}$ a partition of [a, b] = [0, 1], $c_k \in [x_{k-1}, x_k]$, $\Delta x_k = x_k - x_{k-1}$, and $f(x) = \sqrt{4 - x^2}$ we have that

$$\lim_{\|P\|\to 0} \sum_{k=1}^n \sqrt{4 - c_k^2} \, \Delta x_k = \int_a^b f(x) \, dx = \int_0^1 \sqrt{4 - x^2} \, dx \, . \quad \Box$$

Exercise 5.3.6. Express the limit $\lim_{\|P\|\to 0} \sum_{k=1}^{n} \sqrt{4 - c_k^2} \Delta x_k$, where *P* is a partition of [0, 1], as a definite integral.

Solution. With $P = \{x_0, x_1, \dots, x_n\}$ a partition of [a, b] = [0, 1], $c_k \in [x_{k-1}, x_k]$, $\Delta x_k = x_k - x_{k-1}$, and $f(x) = \sqrt{4 - x^2}$ we have that

$$\lim_{\|P\|\to 0} \sum_{k=1}^n \sqrt{4 - c_k^2} \, \Delta x_k = \int_a^b f(x) \, dx = \boxed{\int_0^1 \sqrt{4 - x^2} \, dx}.$$

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ is not Riemann integrable over the interval [0, 1].

Solution. If *f* is Riemann integrable on [0, 1] then by the definition of definite integral, $\int_0^1 f(x) dx = \lim_{\|P\|\to 0} \sum_{k=1}^n f(c_k) \Delta x_k$ for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and irrational numbers.

Calculus 1

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of definite integral, $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k$ for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and irrational numbers. So we can choose each c_k to be rational in which case each $f(c_k) = 1$ and $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k =$ $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (1) \Delta x_k = \lim_{\|P\|\to 0} \sum_{k=1}^{n} \Delta x_k = \lim_{\|P\|\to 0} 1 = 1 \text{ since the sum of the}$ length of the subintervals is the length of [0, 1] (namelv 1).

Example 5.3.1

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of definite integral, $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k$ for any choice of $c_k \in [x_{k-1}, x_k]$. Now in any interval $[x_{k-1}, x_k]$ there are both rational and irrational numbers. So we can choose each c_k to be rational in which case each $f(c_k) = 1$ and $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k =$ $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (1) \Delta x_{k} = \lim_{\|P\|\to 0} \sum_{k=1}^{n} \Delta x_{k} = \lim_{\|P\|\to 0} 1 = 1 \text{ since the sum of the}$ length of the subintervals is the length of [0, 1] (namely 1).

Example 5.3.1 (continued)

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each c_k to be irrational in which case each $f(c_k) = 0$ and $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k =$ $\lim_{\|P\| \to 0} \sum_{k=1}^n (0) \Delta x_k = \lim_{\|P\| \to 0} \sum_{k=1}^n 0 = \lim_{\|P\| \to 0} 0 = 0.$ But we cannot have both $\int_0^1 f(x) dx = 1$ and $\int_0^1 f(x) dx = 0$, so f is not Riemann integrable over [0, 1]. \Box

Example 5.3.1 (continued)

Example 5.3.1. Show that the function $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each c_k to be irrational in which case each $f(c_k) = 0$ and $\int_0^1 f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k =$ $\lim_{\|P\| \to 0} \sum_{k=1}^n (0) \Delta x_k = \lim_{\|P\| \to 0} \sum_{k=1}^n 0 = \lim_{\|P\| \to 0} 0 = 0.$ But we cannot have both $\int_0^1 f(x) dx = 1$ and $\int_0^1 f(x) dx = 0$, so f is not Riemann integrable over [0, 1]. \Box

Theorem 5.2

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

3. Constant Multiple:
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

4. Sum and Difference:

$$\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$$

6. *Max-Min Inequality*: If max f and min f are the maximum and minimum values of f on [a, b], then

$$\min f \cdot (b-a) \leq \int_a^b f(x) \, dx \leq \max f \cdot (b-a).$$

7. Domination: $f(x) \ge g(x)$ on $[a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Theorem 5.2 (continued 1)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

3. Constant Multiple:
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
.
Proof. Let P be a partition of $[a, b]$ and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$ be an
associated Riemann sum. Then $\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k$ and
 $\int_{a}^{b} cf(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} cf(c_k) \Delta x_k$
 $= \lim_{\|P\| \to 0} c \sum_{k=1}^{n} f(c_k) \Delta x_k$ since multiplication
distributes over addition

Theorem 5.2 (continued 2)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

3. Constant Multiple:
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
.

Proof (continued). ...

$$\int_{a}^{b} cf(x) dx = \lim_{\|P\| \to 0} c \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}$$

= $c \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}$ by the Constant Multiple Rule,
Theorem 2.1(3)
= $c \int_{a}^{b} f(x) dx$,

as claimed.

Theorem 5.2 (continued 3)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

4. Sum and Difference:

$$\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx.$$
Proof (continued). Let *P* be a partition of [*a*, *b*] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$

and $\sum_{k=1}^{b} g(c_k) \Delta x_k$ be associated Riemann sums. Then by definition $\int_a^b f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k$ and $\int_a^b g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n g(c_k) \Delta x_k$, so $\int_a^b f(x) dx \pm \int_a^b g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k \pm \lim_{\|P\| \to 0} \sum_{k=1}^n g(c_k) \Delta x_k$

Calculus 1

Theorem 5.2 (continued 4)

Proof (continued). ...

$$\int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \, \Delta x_k \pm \lim_{\|P\| \to 0} \sum_{k=1}^{n} g(c_k) \, \Delta x_k$$

$$= \lim_{\|P\|\to 0} \left(\sum_{k=1}^n f(c_k) \Delta x_k \pm \sum_{k=1}^n g(c_k) \Delta x_k \right)$$

by the Sum and Difference Rules, Theorem 2.1(1 and 2)

$$= \lim_{\|P\|\to 0} \left(\sum_{k=1}^n \left(f(c_k) \, \Delta x_k \pm g(c_k) \, \Delta x_k \right) \right)$$

by commutivity and addition and subtraction

$$= \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} \left(f(c_k) \pm g(c_k) \right) \Delta x_k \right) \text{ since multiplication}$$

distributes over addition

Theorem 5.2 (continued 5)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

4. Sum and Difference:

$$\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx.$$

Proof (continued). ...

$$\int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx = \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} (f(c_k) \pm g(c_k)) \Delta x_k \right)$$
$$= \int_{a}^{b} (f(x) \pm g(x)) dx,$$

since
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \lim_{\|P\| \to 0} \left(\sum_{k=1}^{n} (f(c_k) \pm g(c_k)) \Delta x_k \right)$$
, by definition.

()

Theorem 5.2 (continued 6)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

6. *Max-Min Inequality*: If max f and min f are the maximum and minimum values of f on [a, b], then

min
$$f \cdot (b-a) \leq \int_a^b f(x) dx \leq \max f \cdot (b-a).$$

Proof (continued). Let *P* be a partition of [a, b] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$

be an associated Riemann sum. Then by definition $\int_{a}^{b} f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}.$ Notice that min $f \leq f(c_{k}) \leq \max f$ for all $c_{k} \in [a, b]$ and $\sum_{k=1}^{n} \Delta x_{k} = (b - a).$

Theorem 5.2 (continued 7)

Proof (continued). So we have

$$\begin{aligned} \int_{a}^{b} f(x) \, dx &= \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \, \Delta x_{k} \geq \lim_{\|P\| \to 0} \sum_{k=1}^{n} \min f \, \Delta x_{k} \\ &= \lim_{\|P\| \to 0} \min f \, \sum_{k=1}^{n} \Delta x_{k} \text{ since multiplication} \\ &\text{ distributes over addition} \\ &= \min f \, \lim_{\|P\| \to 0} \sum_{k=1}^{n} \Delta x_{k} \text{ by the Constant Multiple Rule,} \\ &\text{ Theorem 2.1(3)} \\ &= \min f \, \lim_{\|P\| \to 0} (b-a) \text{ since } \sum_{k=1}^{n} \Delta x_{k} = b-a \\ &= \min f \cdot (b-a), \end{aligned}$$

as claimed.

Theorem 5.2 (continued 8)

Proof (continued). Similarly,

$$\begin{split} \int_{a}^{b} f(x) \, dx &= \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(c_{k}) \, \Delta x_{k} \leq \lim_{\|P\| \to 0} \sum_{k=1}^{n} \max f \, \Delta x_{k} \\ &= \lim_{\|P\| \to 0} \max f \, \sum_{k=1}^{n} \Delta x_{k} \text{ since multiplication} \\ &\quad \text{distributes over addition} \\ &= \max f \, \lim_{\|P\| \to 0} \sum_{k=1}^{n} \Delta x_{k} \text{ by the Constant Multiple Rule,} \\ &\quad \text{Theorem 2.1(3)} \\ &= \max f \, \lim_{\|P\| \to 0} (b-a) \text{ since } \sum_{k=1}^{n} \Delta x_{k} = b-a \\ &= \max f \cdot (b-a), \\ \text{as claimed.} \end{split}$$

Calculus 1

October 28, 2020 14 / 38

Theorem 5.2 (continued 9)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g are integrable over the interval [a, b]. Then:

7. Domination:
$$f(x) \ge g(x)$$
 on $[a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Proof (continued). Let P be a partition of [a, b] and let $\sum_{k=1}^{n} f(c_k) \Delta x_k$

and $\sum_{k=1}^{b} g(c_k) \Delta x_k$ be associated Riemann sums. Then by definition $\int_a^b f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k$ and $\int_a^b g(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n g(c_k) \Delta x_k$. Since $f(x) \ge g(x)$ on [a, b] then $f(c_k) \ge g(c_k)$ for all $c_k \in [a, b]$, and so

$$\int_a^b f(x) dx = \lim_{\|P\| \to 0} \sum_{k=1}^n f(c_k) \Delta x_k \ge \lim_{\|P\| \to 0} \sum_{k=1}^n g(c_k) \Delta x_k = \int_a^b g(x) dx. \square$$

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1, \quad \int_{7}^{9} f(x) dx = 5, \text{ and } \int_{7}^{9} h(x) dx = 4. \text{ Use the rules in}$ Theorem 5.2 to find (a) $\int_{1}^{9} -2f(x) dx$, (b) $\int_{7}^{9} (f(x) - h(x)) dx$, (c) $\int_{7}^{9} (2f(x) - 3h(x)) dx$, (d) $\int_{9}^{1} f(x) dx$, (e) $\int_{1}^{7} f(x) dx$, and (f) $\int_{9}^{7} (h(x) - f(x)) dx$.

Solution. (a) We have

 $\int_{1}^{9} -2f(x) \, dx = -2 \int_{1}^{9} f(x) \, dx \text{ by Constant Multiple Rule, Thm 5.2(3)} \\ = -2(-1) = 2 \text{ since } \int_{1}^{9} f(x) \, dx = -1. \quad \Box$

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1, \quad \int_{7}^{9} f(x) dx = 5, \text{ and } \int_{7}^{9} h(x) dx = 4. \text{ Use the rules in}$ Theorem 5.2 to find (a) $\int_{1}^{9} -2f(x) dx$, (b) $\int_{7}^{9} (f(x) - h(x)) dx$, (c) $\int_{7}^{9} (2f(x) - 3h(x)) dx$, (d) $\int_{9}^{1} f(x) dx$, (e) $\int_{1}^{7} f(x) dx$, and (f) $\int_{9}^{7} (h(x) - f(x)) dx$.

Solution. (a) We have

 $\int_{1}^{9} -2f(x) \, dx = -2 \int_{1}^{9} f(x) \, dx \text{ by Constant Multiple Rule, Thm 5.2(3)} \\ = -2(-1) = 2 \text{ since } \int_{1}^{9} f(x) \, dx = -1. \quad \Box$

Exercise 5.3.10 (continued 1)

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$, and $\int_{7}^{9} h(x) dx = 4$. Use the rules in Theorem 5.2 to find **(b)** $\int_{7}^{9} (f(x) - h(x)) dx$.

Solution (continued). (b) We have

$$\int_{7}^{9} (f(x) - h(x)) dx = \int_{7}^{9} f(x) dx - \int_{7}^{9} h(x) dx$$

by the Difference Rule, Theorem 5.2(4)
$$= (5) - (4) = 1 \text{ since } \int_{7}^{9} f(x) dx = 5$$

and $\int_{7}^{9} h(x) dx = 4.$

Exercise 5.3.10 (continued 2)

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$, and $\int_{7}^{9} h(x) dx = 4$. Use the rules in Theorem 5.2 to find (c) $\int_{7}^{9} (2f(x) - 3h(x)) dx$.

Solution (continued). (c) We have $\int_7^9 (2f(x) - 3h(x)) dx =$

 $= \int_{7}^{9} 2f(x) dx + \int_{7}^{9} -3h(x) dx \text{ by the Sum Rule, Theorem 5.2(4)}$ = $2\int_{7}^{9} f(x) dx - 3\int_{7}^{9} h(x) dx \text{ by Constant Mult. Theorem 5.2(3)}$ = $2(5) - 3(4) = -2 \text{ since } \int_{7}^{9} f(x) dx = 5 \text{ and } \int_{7}^{9} h(x) dx = 4.$

Exercise 5.3.10 (continued 3)

Exercise 5.3.10. Suppose that
$$f$$
 is h are integrable and that $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$, and $\int_{7}^{9} h(x) dx = 4$. Use the rules in Theorem 5.2 to find **(d)** $\int_{9}^{1} f(x) dx$.

Solution (continued). (d) We have

 $\int_{9}^{1} f(x) dx = -\int_{1}^{9} f(x) dx \text{ by the Order of Integration, Theorem 5.2(1)}$ $= -(-1) = 1 \text{ since } \int_{1}^{9} f(x) dx = -1. \quad \Box$

Exercise 5.3.10 (continued 4)

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$, and $\int_{7}^{9} h(x) dx = 4$. Use the rules in Theorem 5.2 to find (e) $\int_{1}^{7} f(x) dx$.

Solution (continued). (e) By Additivity (Theorem 5.2(5)) we have $\int_{1}^{7} f(x) dx + \int_{7}^{9} f(x) dx = \int_{1}^{9} f(x) dx, \text{ then}$ $\int_{1}^{7} f(x) dx = \int_{1}^{9} f(x) dx - \int_{7}^{9} f(x) dx. \text{ So}$ $\int_{1}^{7} f(x) dx = (-1) - (5) = \boxed{-6}, \text{ since } \int_{1}^{9} f(x) dx = -1 \text{ and}$ $\int_{7}^{9} f(x) dx = 5. \qquad \Box$

Exercise 5.3.10 (continued 5)

Exercise 5.3.10. Suppose that f is h are integrable and that $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$, and $\int_{7}^{9} h(x) dx = 4$. Use the rules in Theorem 5.2 to find **(f)** $\int_{9}^{7} (h(x) - f(x)) dx$.

Solution (continued). (f) We have $\int_9^7 (h(x) - f(x)) dx =$

 $= \int_{9}^{7} h(x) dx - \int_{9}^{7} f(x) dx \text{ by the Difference Rule, Theorem 5.2(4)}$ $= -\int_{7}^{9} h(x) dx + \int_{7}^{9} f(x) dx \text{ by Order of Integration, Theorem 5.2(1)}$ $= -(4) + (5) = \boxed{1} \text{ since } \int_{7}^{9} f(x) dx = 5 \text{ and } \int_{7}^{9} h(x) dx = 4. \quad \Box$

Exercise 5.3.63. Let c be a constant. Prove that $\int_a^b c \, dx = c(b-a)$.

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see Note 5.3.A).

Calculus 1

Exercise 5.3.63. Let c be a constant. Prove that $\int_a^b c \, dx = c(b-a)$.

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} c \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c\left(\frac{b-a}{n}\right)$$
$$= \lim_{n \to \infty} \left(nc\frac{b-a}{n}\right) \text{ by Theorem 5.2.A(4)}$$
$$= \lim_{n \to \infty} c(b-a) = c(b-a). \square$$

Exercise 5.3.63. Let c be a constant. Prove that $\int_a^b c \, dx = c(b-a)$.

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b - a)/n$, $x_k = a + k(b - a)/n$, and $c_k \in [x_{k-1}, x_k]$ (see Note 5.3.A). Now $||P|| = \Delta x = (b - a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} c \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c\left(\frac{b-a}{n}\right)$$
$$= \lim_{n \to \infty} \left(nc\frac{b-a}{n}\right) \text{ by Theorem 5.2.A(4)}$$
$$= \lim_{n \to \infty} c(b-a) = c(b-a). \square$$

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x \, dx = \frac{b^2}{2} - \frac{a^2}{2}$.

Proof. Let f(x) = x. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \dots, x_n\} \text{ for which } \Delta x_k = \Delta x = (b-a)/n,$ $x_k = a + k(b-a)/n, \text{ and } c_k \in [x_{k-1}, x_k] \text{ satisfies } c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A).

Calculus 1

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x \, dx = \frac{b^2}{2} - \frac{a^2}{2}$.

Proof. Let f(x) = x. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b-a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b-a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \left(\frac{b-a}{n} \right)$$

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x \, dx = \frac{b^2}{2} - \frac{a^2}{2}$.

Proof. Let f(x) = x. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b-a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b-a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \left(\frac{b-a}{n}\right)$$

Example 5.3.A (continued 1)

Proof (continued).

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right) \left(\frac{b-a}{n} \right)$$
$$= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left(\sum_{k=1}^{n} a + \frac{b-a}{n} \sum_{k=1}^{n} k \right)$$
$$= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na) + \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) \right)$$
since $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
$$= \lim_{n \to \infty} \left((b-a)a + \left(\frac{b-a}{n} \right)^2 \left(\frac{n(n+1)}{2} \right) \right)$$

Example 5.3.A (continued 2)

Proof (continued).

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \left((b-a)a + \left(\frac{b-a}{n}\right)^{2} \left(\frac{n(n+1)}{2}\right) \right)$$

$$= (b-a)a + (b-a)^{2} \lim_{n \to \infty} \frac{n(n+1)}{2n^{2}}$$

$$= (b-a)a + (b-a)^{2} \lim_{n \to \infty} \frac{n^{2}+n}{2n^{2}} \left(\frac{1/n^{2}}{1/n^{2}}\right)$$

$$= (b-a)a + (b-a)^{2} \lim_{n \to \infty} \frac{1+1/n}{2}$$

$$= (b-a)a + (b-a)^{2} \frac{1+\lim_{n \to \infty} 1/n}{2}$$

$$= (b-a)a + (b-a)^{2} \frac{1+(0)}{2} = ab - a^{2} + \frac{b^{2}-2ab+a^{2}}{2}$$

$$= \frac{b^{2}}{2} - \frac{a^{2}}{2}. \square$$

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b-a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A).

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b-a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b-a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n}\right)$$

Exercise 5.3.65. Use a regular partition of [a, b] with $c_k = x_k$ to prove that for a < b: $\int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$.

Proof. Let $f(x) = x^2$. Then f is continuous on [a, b] so, by "Integrability of Continuous Functions" (Theorem 5.1), f is integrable on [a, b]. Therefore, we can consider any sequence of partitions which have a norm approaching 0. So we consider an equal width partition $P = \{x_0, x_1, \ldots, x_n\}$ for which $\Delta x_k = \Delta x = (b-a)/n$, $x_k = a + k(b-a)/n$, and $c_k \in [x_{k-1}, x_k]$ satisfies $c_k = x_k = a + k(b-a)/n$ (see Note 5.3.A). Now $||P|| = \Delta x = (b-a)/n$, so when $n \to \infty$ we have $||P|| \to 0$. So the value of the Riemann integral is given by

$$\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_{k}) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n}\right)$$

Exercise 5.3.65 (continued 1)

$$\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} c_{k}^{2} \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(a + k \frac{b-a}{n} \right)^{2} \left(\frac{b-a}{n} \right)$$
$$= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \sum_{k=1}^{n} \left(a^{2} + 2ak \frac{b-a}{n} + k^{2} \left(\frac{b-a}{n} \right)^{2} \right)$$
$$= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \sum_{k=1}^{n} k + \left(\frac{b-a}{n} \right)^{2} \sum_{k=1}^{n} k^{2} \right)$$
$$= \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) + \left(\frac{b-a}{n} \right)^{2} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)$$
since $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ and $\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$

Exercise 5.3.65 (continued 2)

$$\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \left((na^{2}) + 2a \frac{b-a}{n} \left(\frac{n(n+1)}{2} \right) \right)$$
$$+ \left(\frac{b-a}{n} \right)^{2} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)$$
$$= \lim_{n \to \infty} (b-a) \left(a^{2} + 2a \frac{b-a}{n^{2}} \left(\frac{n(n+1)}{2} \right) \right)$$
$$+ \frac{(b-a)^{2}}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6} \right) \right)$$
$$= \lim_{n \to \infty} (b-a) \left(a^{2} + 2a(b-a) \left(\frac{(n^{2}+n)/n^{2}}{2} \right) \right)$$
$$+ (b-a)^{2} \left(\frac{(2n^{3} + 3n^{2} + n)/n^{3}}{6} \right) \right)$$

Exercise 5.3.65 (continued 3)

$$\int_{a}^{b} x^{2} dx = \lim_{n \to \infty} (b-a) \left(a^{2} + 2a(b-a) \left(\frac{(n^{2}+n)/n^{2}}{2} \right) + (b-a)^{2} \left(\frac{(2n^{3}+3n^{2}+n)/n^{3}}{6} \right) \right)$$

$$= \lim_{n \to \infty} (b-a) \left(a^{2} + 2a(b-a) \left(\frac{1+1/n}{2} \right) + (b-a)^{2} \left(\frac{2+3/n+1/n^{2}}{6} \right) \right)$$

$$= (b-a) \left(a^{2} + 2a(b-a) \left(\frac{1+\lim_{n \to \infty} 1/n}{2} \right) + (b-a)^{2} \left(\frac{2+3\lim_{n \to \infty} (1/n) + (\lim_{n \to \infty} 1/n)^{2}}{6} \right) \right)$$

Exercise 5.3.65 (continued 4)

$$\int_{a}^{b} x^{2} dx = (b-a) \left(a^{2} + 2a(b-a) \left(\frac{1+(0)}{2}\right) + (b-a)^{2} \left(\frac{2+3(0)+(0)^{2}}{6}\right)\right)$$

$$= (b-a) \left(a^{2} + a(b-a) + (b-a)^{2}(1/3)\right)$$

$$= (b-a)(a^{2} + ab - a^{2} + b^{2}/3 - 2ab/3 + a^{2}/3)$$

$$= (b-a)(ab/3 + b^{2}/3 + a^{2}/3)$$

$$= (ab^{2} + b^{3} + a^{2}b - a^{2}b - ab^{2} - a^{3})/3$$

$$= \frac{b^{3}}{3} - \frac{a^{3}}{3}. \square$$

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the integral $\int_{0}^{\pi/2} \theta^2 d\theta$.

Solution. The integrand is $f(\theta) = \theta^2$, the lower bound of the integral is a = 0, and the upper bound of the integral is $b = \pi/2$. So by Equation (4) (Exercise 5.3.65),

$$\int_0^{\pi/2} \theta^2 \, d\theta = \frac{b^3}{3} - \frac{a^3}{3} = \frac{(\pi/2)^3}{3} - \frac{0^3}{3} = \frac{\pi^3}{24}.$$

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the integral $\int_{0}^{\pi/2} \theta^2 d\theta$.

Solution. The integrand is $f(\theta) = \theta^2$, the lower bound of the integral is a = 0, and the upper bound of the integral is $b = \pi/2$. So by Equation (4) (Exercise 5.3.65),

$$\int_0^{\pi/2} \theta^2 \, d\theta = \frac{b^3}{3} - \frac{a^3}{3} = \frac{(\pi/2)^3}{3} - \frac{0^3}{3} = \boxed{\frac{\pi^3}{24}}.$$

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: $\int_{-4}^{0} \sqrt{16 - x^2} \, dx.$

Solution. Notice that with $y = \sqrt{16 - x^2}$, we have $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y = \sqrt{16 - x^2}$ is the top half (since $y \ge 0$) of a circle of radius r = 4 and center (0,0):

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: $\int_{-4}^{0} \sqrt{16 - x^2} \, dx.$

Solution. Notice that with $y = \sqrt{16 - x^2}$, we have $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y = \sqrt{16 - x^2}$ is the top half (since $y \ge 0$) of a circle of radius r = 4 and center (0, 0):

Exercise 5.3.18. Graph the integrand and use known area formulas to evaluate the integral: $\int_{-4}^{0} \sqrt{16 - x^2} \, dx.$

Solution. Notice that with $y = \sqrt{16 - x^2}$, we have $y^2 = (\sqrt{16 - x^2})^2 = 16 - x^2$ and $y \ge 0$. So $x^2 + y^2 = 16$ and $y \ge 0$. So the graph of $y = \sqrt{16 - x^2}$ is the top half (since $y \ge 0$) of a circle of radius r = 4 and center (0, 0):

Exercise 5.3.18 (continued)

Solution.

Since $y = f(x) = \sqrt{16 - x^2}$ is non-negative, then (by definition) the definite integral $\int_{-4}^{0} \sqrt{16 - x^2} \, dx$ is the area under the curve $y = \sqrt{16 - x^2}$ (and above the x-axis) from a = -4 to b = 0. That is, the integral is 1/4 of the area of a circle of radius r = 4. Therefore, $\int_{-4}^{0} \sqrt{16 - x^2} \, dx = \left. \frac{\pi(r)^2}{4} \right|_{r=4} = \frac{\pi(4)^2}{4} = \left. \frac{4\pi}{4} \right|_{r=4}$.

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

y = h(x)y = h(x)By definition $av(h) = \frac{1}{h-a} \int_{a}^{b} h(x) dx$, so calculating the integrals using areas we have (a) The average of h over [-1,0] is $\frac{1}{(0)-(-1)}\int_{-1}^{0}h(x) dx = |1/2|$. (b) The average of *h* over [0,1] is $\frac{1}{(1)-(0)} \int_0^1 h(x) dx = \boxed{1/2}$. (c) The average of h over [-1, 1] is $\frac{1}{(1)-(-1)}\int_{-1}^{1}h(x)\,dx=1/2(1)=1/2$.

Calculus 1

Exercise 5.3.62. Graph the function h(x) = |x| and find the average value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

y = h(x)y = h(x)By definition $av(h) = \frac{1}{h-a} \int_a^b h(x) dx$, so calculating the integrals using areas we have (a) The average of h over [-1,0] is $\frac{1}{(0)-(-1)}\int_{-1}^{0}h(x) dx = |1/2|$. (b) The average of *h* over [0,1] is $\frac{1}{(1)-(0)} \int_0^1 h(x) dx = \boxed{1/2}$. (c) The average of h over [-1, 1] is $\frac{1}{(1)-(-1)}\int_{-1}^{1}h(x)\,dx=1/2(1)=1/2$. \Box

Calculus 1

Exercise 5.3.76. Show that the value of $\int_0^1 \sqrt{x+8} \, dx$ lies between $2\sqrt{2} \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x+8}}$ and so the only critical point of f is x = -8. So continuous function f has no critical points in [0, 1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on [0, 1] occur at the endpoints.

Exercise 5.3.76. Show that the value of $\int_0^1 \sqrt{x+8} \, dx$ lies between $2\sqrt{2} \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x+8}}$ and so the only critical point of f is x = -8. So continuous function f has no critical points in [0,1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on [0,1] occur at the endpoints. Since $f(0) = \sqrt{(0) + 8} = \sqrt{8} = 2\sqrt{2}$ and $f(1) = \sqrt{(1) + 8} = \sqrt{9} = 3$, then the minimum of f on [a, b] = [0, 1] is min $f = 2\sqrt{2}$ and the maximum is min f = 3.

Exercise 5.3.76. Show that the value of $\int_0^1 \sqrt{x+8} \, dx$ lies between $2\sqrt{2} \approx 2.8$ and 3.

Solution. Let $f(x) = \sqrt{x+8} = (x+8)^{1/2}$. Then $f'(x) = \frac{1}{2}(x+8)^{-1/2} = \frac{1}{2\sqrt{x+8}}$ and so the only critical point of f is x = -8. So continuous function f has no critical points in [0,1] and hence by the technique of Section 4.1, "Extreme Values of Functions on Closed Intervals," the extremes of f on [0,1] occur at the endpoints. Since $f(0) = \sqrt{(0) + 8} = \sqrt{8} = 2\sqrt{2}$ and $f(1) = \sqrt{(1) + 8} = \sqrt{9} = 3$, then the minimum of f on [a, b] = [0, 1] is min $f = 2\sqrt{2}$ and the maximum is min f = 3.

Exercise 5.3.76 (continued)

Exercise 5.3.76. Show that the value of $\int_0^1 \sqrt{x+8} \, dx$ lies between $2\sqrt{2} \approx 2.8$ and 3.

Solution (continued). By Theorem 5.2(6), the Max-Min Inequality, we have

$$\min f \cdot (b-a) = (2\sqrt{2})((1) - (0)) \le \int_a^b f(x) \, dx$$
$$= \int_0^1 \sqrt{x+8} \, dx \le \max f \cdot (b-a) = (3)((1) - (0),$$

of
$$2\sqrt{2} \leq \int_0^1 \sqrt{x+8} \, dx \leq 3$$
, as claimed. \Box

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then return over the same 150 miles at the rate of 50 miles/hour, what is your average speed for the trip? Give reasons for your answer.

Solution. We define function f(t) as your speed as a function of time t, where t is measured in hours and f is measured in miles/hour. So we have f defined piecewise as f(t) = 30 miles/hour for t between 0 hours and 5 hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and f(t) = 50 miles/hour for t between 5 hours and 8 hours (since it takes 3 hours to travel 150 miles at 50 miles/hour): $f(t) = \begin{cases} 30, & 0 \le t < 5 \\ 50, & 5 \le t \le 8 \end{cases}$

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then return over the same 150 miles at the rate of 50 miles/hour, what is your average speed for the trip? Give reasons for your answer.

Solution. We define function f(t) as your speed as a function of time t, where t is measured in hours and f is measured in miles/hour. So we have f defined piecewise as f(t) = 30 miles/hour for t between 0 hours and 5 hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and f(t) = 50 miles/hour for t between 5 hours and 8 hours (since it takes 3 hours to travel 150 miles at 50 miles/hour): $f(t) = \begin{cases} 30, & 0 \le t < 5 \\ 50, & 5 \le t \le 8 \end{cases}$

Exercise 5.3.88 (continued)

Solution (continued). ... $f(t) = \begin{cases} 30, & 0 \le t < 5\\ 50, & 5 \le t \le 8\\ 0 \le t \le 0 \end{cases}$ So, by definition,

the average speed (i.e., the average of f over [0, 8]) is

$$av(f) = \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{(8)-(0)} \int_{0}^{8} f(t) dt$$

= $\frac{1}{8} \left(\int_{0}^{5} f(t) dt + \int_{5}^{8} f(t) dt \right)$ by Theorem 5.2(5), Additivity
= $\frac{1}{8} \left(\int_{0}^{5} 30 dt + \int_{5}^{8} 50 dt \right)$
= $\frac{1}{8} ((30)((5) - (0)) + (50)((8) - (5)))$ by Exercise 5.3.63
= $\frac{1}{8} (150 + 150) = \frac{300}{8} = \frac{75}{2}$ miles/hour.

Exercise 5.3.88 (continued)

Solution (continued). ... $f(t) = \begin{cases} 30, & 0 \le t < 5\\ 50, & 5 \le t \le 8 \end{cases}$ So, by definition, the average speed (i.e., the average of f over [0, 8]) is

$$av(f) = \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{(8)-(0)} \int_{0}^{8} f(t) dt$$

= $\frac{1}{8} \left(\int_{0}^{5} f(t) dt + \int_{5}^{8} f(t) dt \right)$ by Theorem 5.2(5), Additivity
= $\frac{1}{8} \left(\int_{0}^{5} 30 dt + \int_{5}^{8} 50 dt \right)$
= $\frac{1}{8} ((30)((5) - (0)) + (50)((8) - (5)))$ by Exercise 5.3.63
= $\frac{1}{8} (150 + 150) = \frac{300}{8} = \frac{75}{2}$ miles/hour.