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Chapter 5. Integrals
5.4. The Fundamental Theorem of Calculus—Examples and Proofs
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Example 5.4.1

Example 5.4.1. Prove that if f is continuous on [a, b], a # b, and if
b
/ f(x)dx =0, then f(x) = 0 at least once in [a, b].

Proof. Since f is continuous on [a, b], then by The Mean Value Theorem

1 b
for Definite Integrals (Theorem 5.3) we have f(c) = m/ f(x) dx for
- a

b
some ¢ € [a, b]. Since we are given that / f(x) dx = 0, then for this
a

value ¢ we have

b
f(c) = bia/ ) de = = (0) =0,

so that f(c) =0, as claimed. O

Theorem 5.3. The Mean Value Theorem for Definite Integrals

Theorem 5.3

Theorem 5.3. The Mean Value Theorem for Definite Integrals.
If f is continuous on [a, b], then at some point c in [a, b],

b
Fc) = ﬁ £(x) dx.

Proof. By the Max-Min Inequality (Theorem 5.2(6)), we have

1
inf <
min <1

b
/ f(x) dx < maxf.
a

Since f is continuous, f must assume any value between min f and max f,

1 b
including E/ f(x) dx by the Intermediate Value Theorem (Theorem
2.11). ’ O

Theorem 5.4(a)

Theorem 5.4(a). The Fundamental Theorem of Calculus, Part 1.
If f is continuous on [a, b] then the function

F(X):/Xf(t)dt

has a derivative at every point x in [a, b] and

% = % [/:f(t)dt] = f(x).

Proof. Notice that by Additivity, Theorem 5.2(5),

F(x+h)—F(x):/X+hf(t)dt—/Xf(t)dt:/x+hf(t)dt.

So
F(x+h)—F 1 1 [xth
CEM = FC) _ Lipe iy - g = 2 / F(t) dt.
h h h /.
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Theorem 5.4(a) (continued) Exercise 5.4.46

Proof (continued). Since f is continuous, The Mean Value Theorem for
Definite Integrals (Theorem 5.3) implies that for some ¢ € [x, x + h] we

1
have , Exercise 5.4.46 Find dy/dx when y = / n dt where x > 0.
1 [x* 1
fle) = F/X f(t) dt Solution. Since f(t) = 1/t is continuous on interval [x, 1] when
: : : . . 0 < x < 1 and is continuous on interval [1,x] when 1 < x, then by The
S € h], then lim f(c) = f f t t x). ’
ince ¢ € [x, x+ A, then Pt (c) (x) (since  is continuous at x) Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), we have
Therefore
d d 1 1

dF . F(x+h) - F(x) =2 / Tae| =1

— = lim dx dx |J1 t X

dx h—0 h

x+h d 1
= Iim—/ f(t)dt ¥y _1l O
h—0 h X or dx x|
= lim f(c) = f(x)
L]
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Exercise 5.4.48 Exercise 5.4.48 (continued)
X2 X2
Exercise 5.4.48 Find dy/dx when y = x/ sin(t) dt. Exercise 5.4.48 Find dy/dx when y = x/ sin(t3) dt.
2 2
Solution. First, we let u = u(x) = x? so that y is in the form Solution (continued). ...
y = x/ sin(t®) dt. Then by the Derivative Product Rule (Theorem J , . md
2 . . u

3.3.G), The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), &[)’] = [1 </ sm(t3)dt) + (X)E [/ sm(t3)dt] [&]
and the Chain Rule (Theorem 3.2) 2 2

m

2 = ][] ([ v 0 o [4

= ([ Caneyan) + 00 | [ sty et = ([ ey de) + otsin( <))

- [1]</2usin(t3)dt)+(X)%[Lusin(t3)dt]T%] - /2X2sin(t3)dt+2x2sin(x6)- m
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Exercise 5.4.54 Theorem 5.4(b) The Fundamental Theorem of Calculus, Part 2

Exercise 5.4.54 Theorem 5.4(b)

1
Exercise 5.4.54 Find dy/dx when y = [ /tdt.
2x Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2.

Solution. Then by the Derivative Product Rule (Theorem 3.3.G) and The If £ is continuous at every point of [a, b] and if F is any antiderivative of f
Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), on [a, b], then .
J J > / f(x)dx = F(b) — F(a).
— = - tdt Th 2(1 a
o [v] Ix [/X \/_dt] o [ /1 Vtd ] by Theorem 5.2(1)
_ i [/ \/_dt] where u = 2% Proof. We know from the first part of the Fundamental Theorem
dx (Theorem 5.4(a)) that
d G(x) = / f(t)dt
= E[/ \/_dt] [ ] by the Chain Rule, Theorem 3.2 (x) a (t)
ml defines an antiderivative of f. Therefore if F is any antiderivative of f,
du then F(x) = G(x) + k for some constant k by Corollary 4.2 (“Functions
= -3 X X] — oxox | _ 4x/3
Vu dx} —V2((In2)2] = ~In2v222 (In2)2 ' with the Same Derivative Differ by a Constant”).
O
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Theorem 5.4(b) The Fundamental Theorem of Calculus, Part 2 Exercise 5.4.6

Theorem 5.4(b) (continued) Exercise 5.4.6

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2.

If f is continuous at every point of [a, b] and if F is any antiderivative of f
on [a, b], then

2
Exercise 5.4.6. Evaluate the integral / (x3 — 2x + 3) dx.
-2
b .
Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem
f(x)dx = F(b) — F(a). ’
/a () o (6) (2) 5.4(b)), we just need an antiderivative F of the integrand
f(x) = x> — 2x + 3. We can take F(x) = x*/4 — x?> 4+ 3x. Then we have
Proof (continued). Therefore

2 4 2
F(b)— F(a) = [G(b)+ k| —[G(a) + K] = G(b) — G(a) /Jﬁ_y+ng<%_ﬁ+y)4
_ /a" £(t) dt_/: F(t) dt = /ab f(t)dt —0 _ (% B (2)2+3(2)> - (% - (_2)2+3(_2)>
= /abf(f)df’ —4-446-4+4+6=[12] O
as claimed. O
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Exercise 5.4.14

w/3
Exercise 5.4.14. Evaluate the integral / sint dt. HINT: By a
—7/3
1— cos26
half-angle formula, sin®6 = %.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem
5.4(b)), we just need an antiderivative F of the integrand f(t) = sin® t.

1 — cos2t 1

14 /28

Since sin® t = 5 2(1 — cos 2t), we can take
1 sin 2t . .

F(t) = 5 t— > (see Table 4.2 entry 3 in Section 4.8). Then we
have ) "

/3 : ™

1 2t
/ sin? t dt = —(t—sm )
—7T/3 2 2 _7_‘_/3
Calculus 1 November 2, 2020

Exercise 5.4.22

-1 y5 _ 2y
Exercise 5.4.22. Evaluate the integral / ——dy.
-3 y

Solution. We apply The Fundamental Theorem of Calculus, Part 2

(Theorem 5.4(b)). We modify the integrand first so that find an
antiderivative. We have

) —1 B 3 B
/ a dy = / y? =2y 2dy = <yg—2(—y 1))
-3 y -3

(53 (5 ) - (5 )
2
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Exercise 5.4.14 (continued)

w/3

Exercise 5.4.14. Evaluate the integral / sint dt. HINT: By a

—7/3
1 — cos 26

half-angle formula, sin?6 = >

Solution (continued).

/3 1 in 2t [/
/ sin tdt = = (t— =1 )
—7T/3 2 2 —7T/3
1 <7T) sin2(m/3) - sin2(—m/3)
- 2\\3 2 3 2
(32 T ( / ) |7 V3| .
6 4 6 3 4 |
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Exercise 5.4.64
Exercise 5.4.64. Find the area of the shaded region: X
Solution. We know that a definite integral over
[a, b] of a nonnegative function f is (by definition) \
the area under y = f(x) from a to b. Notice that A
the desired area (in blue) is the area in a rectangle * ™" | I/j':
of width 1 + 7/4 and height 2 minus the area under —z ¢ :
2 . . 4
y = sec” t from —m/4 to 0 (in yellow) and minus
the area under y = 1 — t? from 0 to 1 (in orange): y
That is, the desireg area is . \
(1+7r/4)(2)—/ sec2tdt—/ 1— t2dt. 5
—n/4 0 y= fi‘:t >
= t
i
Calculus 1 November 2, 2020 17 /28



Exercise 5.4.64 (continued) Exercise 5.4.82

2

Exercise 5.4.82. Find the linearization of g(x) =3 +/ sec(t — 1) dt at
1

x =—1.
Solution (continued). ...the desired area is
Solution. Recall that the linearization of g at x = a is

(14 7/4)(2) — /O sec® t dt — /01 1— 24t L(x) = g(a) + g'(a)(x — a). We have

—m/4 d x2
gx) = = 3~|—/ sec(t — 1) dt
=2+7/2—tant , —(t—3/3)]; X 1
=2+ m/2 ~ (tan(0) ~ tan(~m/4)) ~ (((1) = (1)*/3) = ((0) = (0)°/3)) -4 [3 s [t -1) dt] % by the Chain Rule, where u = x°
=2+71/2—(1)-(2/3)=[1/3+x/2| O o
d
= 0+ sec(u— 1)d_i by The Fundamental Theorem of Calculus,
Part 1 (Theorem 5.4(a))
= sec(x? — 1)[2x] = 2xsec(x® — 1).
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Exercise 5.4.82 (continued) Exercise 5.4.72

X2
Exercise 5.4.82. Find the linearization of g(x) =3 +/ sec(t — 1) dt at X
.o 1 1 f(x):e2—|—/ f(t) dt.
: 1

Exercise 5.4.72. Find a function f satisfying the equation

2

X . . - . . .
Solution (continued). With g(x) = 3 + / sec(t — 1) dt and Solution. First, we differentiation with respect to x to get
1

d d x
g'(x) = 2xsec?(x? — 1), we have il S / —
it ™ f(x)] ol i ) f(t)dt| = f(x)
g(a):g(—l):3+/ sec(t —1)dt =3 +0 =3 and
1 by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)). So

_ _ 2 _
g’(a). - g"(—ll) = 2(—1)sec((~1) __1) —2sec(0) = —2(1) = ~2. So f'(x) = f(x). Some functions satisfying this condition are functions of the
jche linearization of g at x = a = —11s L(x) = g(—1) + g'(-=1)(x — (1)) form ke* Where(ll§ is some constant. Notice also that
is
2 X — —
L) = (3) + (-D)(x— (~1)) =3 - 2x—2 =[x +1] F) =€+ [ A(e)de= 40 = & Now (ke = keld) = ke, 50
0 with k = e we have f(x) = eeX = eX*1.



Exercise 5.4.72 (continued)

Exercise 5.4.72. Find a function f satisfying the equation

f(x) = e +/ f(t) dt.
1

Solution (continued). With f(x) = e**!, we have that both

f(1) = e+ = €2 and (by the Fundamental Theorem of Calculus, Part 2
(Theorem 5.4(b)):

X X
e2—i—/ f(t)dt:e2+/ ettldt = e + e ]
1 1

— @2 + (e(x)+1 _ e(1)+1) — 2 + Tl _ o2 — oxtl f(X),

as desired. So one such function is | f(x) = 1| O

Exercise 5.4.74

Exercise 5.4.74

Exercise 5.4.74. Show that if k is a positive constant, then the area
between the x-axis and one arch of the curve y = sin kx is 2/k.

Solution. The graph of y = sin kx, along with the area under one arch, is:

19~ y = sin(kx)

+-1

w/k
So the area is A = / sin kx dx (since sin kx > 0 for x € [0, 7/k]).
0
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Exercise 5.4.74 Example 5.4.8

Caleulus 1

Exercise 5.4.74 (continued)

Exercise 5.4.74. Show that if k is a positive constant, then the area
between the x-axis and one arch of the curve y = sin kx is 2/k.

7 /k

Solution (continued). ...So the area is A = sin kx dx (since

0
sin kx > 0 for x € [0, w/k]). Evaluating the integral using the
Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)) we have

w/k _
A:/ sin ko dx — 05 Kx
. K

"k _cosk(m/k) —cosk(0)

. k k

_—cos7r+c050_—(—1)+1_ 2
 k S k| k[

as claimed (where the antiderivative of sin kx is given by Table 4.2(2) in
Section 4.8). O
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Example 5.4.8

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f(x) =x3 —x? —2x, —-1 < x <2

Solution. We need the sign of f(x) = x> — x2 — 2x so that we can
separate the region bounded by the x-axis and the graph of y = f(x) into
a part where the function is positive and a part where the function is
negative. Notice that

f(x)=x3—x*>—2x=x(x* = x —2) = x(x+ 1)(x = 2)

so that f(x) =0 for x = —1, x =0, and x = 2. Since f is continuous (it
is a polynomial function), then we perform a sign test of f as we did when
applying the First and Second Derivative Tests in Chapter 4.

November 2, 2020 25 /28



Example 5.4.8 (continued 1)

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f(x) =x3 — x> —2x, -1 < x <2
Solution (continued). Consider:

interval (—o0,—1) (—1,0)
test value k -2 -1/2
f(k) (=2 - (=2)"—2(-2) = -8 [ (-1/2)’ — (-1/2)* — 2(-1/2) =5/8
f(x) - +
interval (0,2) (2, 00)
test value k 1 3
) |- 20 =—2|GF —GF —20) =12
f(x) - +

So f(x) >0 for x € [-1,0] U [2,00), and f(x) < 0 for

x € (—oc, —1] U[0,2]. In particular, on [—1,0] we have f(x) > 0 (and the
area between f and the x-axis is given by the integral of f over [—1,0]),
and on [0, 2] we have f(x) < 0 (and the negative of the area between f
and the x-axis is given by the integral of f over [0, 2]).

Calculus 1

Example 5.4.8 (continued 3)

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f(x) =x3 — x> —2x, ~-1 < x <2

Solution (continued). ...So the desired area is
A=5/12—(-8/3) =5/12+ 8/3 = 37/12. The text book gives the
following graph to illustrate how the area is calculated:

.‘.

|'J|

3 2
Area y=x>—x"—2x

L.,

o

Area = l—%

wioe

U
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Example 5.4.8 (continued 2)

Solution (continued). So the desired area is

A = /_Olf(x)dx—i—(—/ozf(x)dx)
0

2
X3—X2—2XdX—/ x3 — x%2 — 2xdx
1 0

- <XZ4_X;_X2> (11_ (%4_%3_)(2) 0
((0)4 _ 0 (0)2> _ ((—1)4 (= (_1)2>

4 3
o)

2" (@° 0)* (0’
(-5 ) (F-5
= ((0)—(1/4+1/3-1))—((4-8/3—4)—(0))
= 5/12—(—8/3) =5/12+8/3 =|37/12|

2
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