Calculus 1

Chapter 5. Integrals

5.4. The Fundamental Theorem of Calculus—Examples and Proofs

Table of contents

Theorem 5.3. The Mean Value Theorem for Definite Integrals Example 5.4.1 Theorem 5.4(a) The Fundamental Theorem of Calculus, Part 1 Exercise 5.4.46 Exercise 5.4.48 Exercise 5.4.54 Theorem 5.4(b) The Fundamental Theorem of Calculus, Part 2 Exercise 5.4.6 Exercise 5.4.14 Exercise 5.4.22 Exercise 5.4.64 Exercise 5.4.82 Exercise 5.4.72 Exercise 5.4.74 Example 5.4.8 Calculus 1

Theorem 5.3

Theorem 5.3. The Mean Value Theorem for Definite Integrals. If f is continuous on [a, b], then at some point c in [a, b],

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Proof. By the Max-Min Inequality (Theorem 5.2(6)), we have

$$\min f \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \max f.$$

Since f is continuous, f must assume any value between min f and max f, including $\frac{1}{b-a} \int_{a}^{b} f(x) dx$ by the Intermediate Value Theorem (Theorem 2.11).

Theorem 5.3

Theorem 5.3. The Mean Value Theorem for Definite Integrals. If f is continuous on [a, b], then at some point c in [a, b],

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Proof. By the Max-Min Inequality (Theorem 5.2(6)), we have

$$\min f \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \max f.$$

Since f is continuous, f must assume any value between min f and max f, including $\frac{1}{b-a} \int_{a}^{b} f(x) dx$ by the Intermediate Value Theorem (Theorem 2.11).

Example 5.4.1

Example 5.4.1. Prove that if f is continuous on [a, b], $a \neq b$, and if $\int_{a}^{b} f(x) dx = 0$, then f(x) = 0 at least once in [a, b].

Proof. Since f is continuous on [a, b], then by The Mean Value Theorem for Definite Integrals (Theorem 5.3) we have $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ for some $c \in [a, b]$. Since we are given that $\int_{a}^{b} f(x) dx = 0$, then for this value c we have

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{b-a}(0) = 0,$$

so that f(c) = 0, as claimed.

Example 5.4.1

Example 5.4.1. Prove that if f is continuous on [a, b], $a \neq b$, and if $\int_{a}^{b} f(x) dx = 0$, then f(x) = 0 at least once in [a, b].

Proof. Since f is continuous on [a, b], then by The Mean Value Theorem for Definite Integrals (Theorem 5.3) we have $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ for some $c \in [a, b]$. Since we are given that $\int_{a}^{b} f(x) dx = 0$, then for this value c we have

$$f(c) = rac{1}{b-a} \int_{a}^{b} f(x) \, dx = rac{1}{b-a}(0) = 0,$$

so that f(c) = 0, as claimed.

Theorem 5.4(a)

Theorem 5.4(a). The Fundamental Theorem of Calculus, Part 1. If f is continuous on [a, b] then the function

$$F(x) = \int_a^x f(t) \, dt$$

has a derivative at every point x in [a, b] and

$$\frac{dF}{dx} = \frac{d}{dx} \left[\int_{a}^{x} f(t) \, dt \right] = f(x).$$

Proof. Notice that by Additivity, Theorem 5.2(5),

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt = \int_{x}^{x+h} f(t) \, dt.$$

So

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} [F(x+h) - F(x)] = \frac{1}{h} \int_{x}^{x+h} f(t) dt.$$

Theorem 5.4(a)

Theorem 5.4(a). The Fundamental Theorem of Calculus, Part 1. If f is continuous on [a, b] then the function

$$F(x) = \int_a^x f(t) \, dt$$

has a derivative at every point x in [a, b] and

$$\frac{dF}{dx} = \frac{d}{dx} \left[\int_{a}^{x} f(t) \, dt \right] = f(x).$$

Proof. Notice that by Additivity, Theorem 5.2(5),

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt.$$

So

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h}[F(x+h) - F(x)] = \frac{1}{h} \int_{x}^{x+h} f(t) dt.$$

Theorem 5.4(a) (continued)

Proof (continued). Since f is continuous, The Mean Value Theorem for Definite Integrals (Theorem 5.3) implies that for some $c \in [x, x + h]$ we have

$$f(c)=\frac{1}{h}\int_{x}^{x+h}f(t)\,dt.$$

Since $c \in [x, x + h]$, then $\lim_{h \to 0} f(c) = f(x)$ (since f is continuous at x). Therefore

$$\frac{dF}{dx} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$
$$= \lim_{h \to 0} f(c) = f(x)$$

Exercise 5.4.46 Find dy/dx when $y = \int_{1}^{x} \frac{1}{t} dt$ where x > 0.

Solution. Since f(t) = 1/t is continuous on interval [x, 1] when 0 < x < 1 and is continuous on interval [1, x] when 1 < x, then by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), we have

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[\int_1^x \frac{1}{t} \, dt \right] = \frac{1}{x},$$

Exercise 5.4.46 Find
$$dy/dx$$
 when $y = \int_{1}^{x} \frac{1}{t} dt$ where $x > 0$.

Solution. Since f(t) = 1/t is continuous on interval [x, 1] when 0 < x < 1 and is continuous on interval [1, x] when 1 < x, then by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), we have

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[\int_1^x \frac{1}{t} \, dt \right] = \frac{1}{x},$$

Exercise 5.4.48 Find dy/dx when $y = x \int_{2}^{x^2} \sin(t^3) dt$.

Solution. First, we let $u = u(x) = x^2$ so that y is in the form $y = x \int_2^u \sin(t^3) dt$. Then by the Derivative Product Rule (Theorem 3.3.G), The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), and the Chain Rule (Theorem 3.2)

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[x \int_{2}^{u} \sin(t^{3}) dt \right]$$

$$= [1] \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \frac{d}{dx} \left[\int_{2}^{u} \sin(t^{3}) dt \right]$$

$$= [1] \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \frac{d}{du} \left[\int_{2}^{u} \sin(t^{3}) dt \right] \left[\frac{du}{dx} \right]$$

Exercise 5.4.48 Find dy/dx when $y = x \int_{2}^{x^2} \sin(t^3) dt$.

Solution. First, we let $u = u(x) = x^2$ so that y is in the form $y = x \int_2^u \sin(t^3) dt$. Then by the Derivative Product Rule (Theorem 3.3.G), The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), and the Chain Rule (Theorem 3.2)

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[x \int_{2}^{u} \sin(t^{3}) dt \right]$$

$$= [1] \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \frac{d}{dx} \left[\int_{2}^{u} \sin(t^{3}) dt \right]$$

$$= [1] \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \frac{d}{du} \left[\int_{2}^{u} \sin(t^{3}) dt \right] \stackrel{\sim}{\left[\frac{du}{dx} \right]}$$

Exercise 5.4.48 (continued)

Exercise 5.4.48 Find dy/dx when $y = x \int_{2}^{x^2} \sin(t^3) dt$.

Solution (continued). ...

$$\frac{d}{dx}[y] = [1] \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \frac{d}{du} \left[\int_{2}^{u} \sin(t^{3}) dt \right]^{\frown} \left[\frac{du}{dx} \right]$$
$$= \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) \left[\sin((u)^{3})^{\frown} \left[\frac{du}{dx} \right] \right]$$
$$= \left(\int_{2}^{u} \sin(t^{3}) dt \right) + (x) [\sin((x^{2})^{3})[2x]]$$
$$= \int_{2}^{x^{2}} \sin(t^{3}) dt + 2x^{2} \sin(x^{6}). \Box$$

Exercise 5.4.54 Find
$$dy/dx$$
 when $y = \int_{2^x}^1 \sqrt[3]{t} dt$.

Solution. Then by the Derivative Product Rule (Theorem 3.3.G) and The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)),

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[\int_{2^{\times}}^{1} \sqrt[3]{t} \, dt \right] = \frac{d}{dx} \left[-\int_{1}^{2^{\times}} \sqrt[3]{t} \, dt \right] \text{ by Theorem 5.2(1)}$$

$$= -\frac{d}{dx} \left[\int_{1}^{u} \sqrt[3]{t} \, dt \right] \text{ where } u = 2^{\times}$$

$$= -\frac{d}{du} \left[\int_{1}^{u} \sqrt[3]{t} \, dt \right] \left[\frac{du}{dx} \right] \text{ by the Chain Rule, Theorem 3.2}$$

$$= -\sqrt[3]{u} \left[\frac{du}{dx} \right] = -\sqrt[3]{2^{\times}} [(\ln 2)2^{\times}] = -\ln 2\sqrt[3]{2^{\times}}2^{\times} = \boxed{-(\ln 2)2^{4\times/3}}.$$

Exercise 5.4.54 Find
$$dy/dx$$
 when $y = \int_{2^x}^1 \sqrt[3]{t} dt$.

Solution. Then by the Derivative Product Rule (Theorem 3.3.G) and The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)),

$$\frac{d}{dx}[y] = \frac{d}{dx} \left[\int_{2^{\times}}^{1} \sqrt[3]{t} \, dt \right] = \frac{d}{dx} \left[-\int_{1}^{2^{\times}} \sqrt[3]{t} \, dt \right] \text{ by Theorem 5.2(1)}$$

$$= -\frac{d}{dx} \left[\int_{1}^{u} \sqrt[3]{t} \, dt \right] \text{ where } u = 2^{\times}$$

$$= -\frac{d}{du} \left[\int_{1}^{u} \sqrt[3]{t} \, dt \right] \stackrel{\frown}{\left[\frac{du}{dx} \right]} \text{ by the Chain Rule, Theorem 3.2}$$

$$= -\sqrt[3]{u} \left[\frac{du}{dx} \right] = -\sqrt[3]{2^{\times}} [(\ln 2)2^{\times}] = -\ln 2\sqrt[3]{2^{\times}}2^{\times} = \boxed{-(\ln 2)2^{4\times/3}}.$$

Theorem 5.4(b)

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2. If f is continuous at every point of [a, b] and if F is any antiderivative of f on [a, b], then

$$\int_a^b f(x)\,dx = F(b) - F(a).$$

Proof. We know from the first part of the Fundamental Theorem (Theorem 5.4(a)) that

$$G(x) = \int_{a}^{x} f(t) \, dt$$

defines an antiderivative of f. Therefore if F is any antiderivative of f, then F(x) = G(x) + k for some constant k by Corollary 4.2 ("Functions with the Same Derivative Differ by a Constant").

Theorem 5.4(b)

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2. If f is continuous at every point of [a, b] and if F is any antiderivative of f on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Proof. We know from the first part of the Fundamental Theorem (Theorem 5.4(a)) that

$$G(x) = \int_a^x f(t) \, dt$$

defines an antiderivative of f. Therefore if F is any antiderivative of f, then F(x) = G(x) + k for some constant k by Corollary 4.2 ("Functions with the Same Derivative Differ by a Constant").

Theorem 5.4(b) (continued)

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2. If f is continuous at every point of [a, b] and if F is any antiderivative of f on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Proof (continued). Therefore

$$F(b) - F(a) = [G(b) + k] - [G(a) + k] = G(b) - G(a)$$

= $\int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt = \int_{a}^{b} f(t) dt - 0$
= $\int_{a}^{b} f(t) dt$,

as claimed.

Exercise 5.4.6. Evaluate the integral
$$\int_{-2}^{2} (x^3 - 2x + 3) dx$$
.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)), we just need an antiderivative F of the integrand $f(x) = x^3 - 2x + 3$. We can take $F(x) = x^4/4 - x^2 + 3x$. Then we have

$$\int_{-2}^{2} (x^3 - 2x + 3) \, dx = \left(\frac{x^4}{4} - x^2 + 3x \right) \Big|_{-2}^{2}$$

$$= \left(\frac{(2)^4}{4} - (2)^2 + 3(2)\right) - \left(\frac{(-2)^4}{4} - (-2)^2 + 3(-2)\right)$$
$$= 4 - 4 + 6 - 4 + 4 + 6 = \boxed{12}. \quad \Box$$

Exercise 5.4.6. Evaluate the integral $\int_{-2}^{2} (x^3 - 2x + 3) dx$.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)), we just need an antiderivative F of the integrand $f(x) = x^3 - 2x + 3$. We can take $F(x) = x^4/4 - x^2 + 3x$. Then we have

$$\int_{-2}^{2} (x^3 - 2x + 3) \, dx = \left(\frac{x^4}{4} - x^2 + 3x \right) \Big|_{-2}^{2}$$

$$= \left(\frac{(2)^4}{4} - (2)^2 + 3(2)\right) - \left(\frac{(-2)^4}{4} - (-2)^2 + 3(-2)\right)$$
$$= 4 - 4 + 6 - 4 + 4 + 6 = \boxed{12}. \quad \Box$$

Exercise 5.4.14. Evaluate the integral
$$\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt$$
. HINT: By a half-angle formula, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)), we just need an antiderivative *F* of the integrand $f(t) = \sin^2 t$. Since $\sin^2 t = \frac{1 - \cos 2t}{2} = \frac{1}{2}(1 - \cos 2t)$, we can take $F(t) = \frac{1}{2}\left(t - \frac{\sin 2t}{2}\right)$ (see Table 4.2 entry 3 in Section 4.8). Then we have

$$\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt = \frac{1}{2} \left(t - \frac{\sin 2t}{2} \right) \Big|_{-\pi/3}^{\pi/3}$$

Exercise 5.4.14. Evaluate the integral $\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt$. HINT: By a half-angle formula, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)), we just need an antiderivative *F* of the integrand $f(t) = \sin^2 t$. Since $\sin^2 t = \frac{1 - \cos 2t}{2} = \frac{1}{2}(1 - \cos 2t)$, we can take $F(t) = \frac{1}{2}\left(t - \frac{\sin 2t}{2}\right)$ (see Table 4.2 entry 3 in Section 4.8). Then we have

$$\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt = \frac{1}{2} \left(t - \frac{\sin 2t}{2} \right) \Big|_{-\pi/3}^{\pi/3}$$

Calculus 1

Exercise 5.4.14 (continued)

Exercise 5.4.14. Evaluate the integral $\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt$. HINT: By a half-angle formula, $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$.

Solution (continued). ...

$$\int_{-\pi/3}^{\pi/3} \sin^2 t \, dt = \frac{1}{2} \left(t - \frac{\sin 2t}{2} \right) \Big|_{-\pi/3}^{\pi/3}$$
$$= \frac{1}{2} \left(\left(\frac{\pi}{3} \right) - \frac{\sin 2(\pi/3)}{2} \right) - \frac{1}{2} \left(\left(\frac{-\pi}{3} \right) - \frac{\sin 2(-\pi/3)}{2} \right)$$
$$= \frac{\pi}{6} - \frac{(\sqrt{3}/2)}{4} + \frac{\pi}{6} - \frac{(\sqrt{3}/2)}{4} = \boxed{\frac{\pi}{3} - \frac{\sqrt{3}}{4}}.$$

Exercise 5.4.22. Evaluate the integral
$$\int_{-3}^{-1} \frac{y^5 - 2y}{y^3} dy$$
.

Solution. We apply The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)). We modify the integrand first so that find an antiderivative. We have

$$\int_{-3}^{-1} \frac{y^5 - 2y}{y^3} \, dy = \int_{-3}^{-1} y^2 - 2y^{-2} \, dy = \left(\frac{y^3}{3} - 2(-y^{-1})\right) \Big|_{-3}^{-1}$$

$$= \left(\frac{y^3}{3} + \frac{2}{y}\right)\Big|_{-3}^{-1} = \left(\frac{(-1)^3}{3} + \frac{2}{(-1)}\right) - \left(\frac{(-3)^3}{3} + \frac{2}{(-3)}\right)$$
$$= \left(-\frac{1}{3} - 2\right) - \left(-9 - \frac{2}{3}\right) = 7 + \frac{1}{3} = \boxed{\frac{22}{3}}.$$

Exercise 5.4.22. Evaluate the integral
$$\int_{-3}^{-1} \frac{y^5 - 2y}{y^3} dy$$
.

Solution. We apply The Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)). We modify the integrand first so that find an antiderivative. We have

$$\int_{-3}^{-1} \frac{y^5 - 2y}{y^3} \, dy = \int_{-3}^{-1} y^2 - 2y^{-2} \, dy = \left(\frac{y^3}{3} - 2(-y^{-1})\right) \Big|_{-3}^{-1}$$

$$= \left(\frac{y^3}{3} + \frac{2}{y}\right)\Big|_{-3}^{-1} = \left(\frac{(-1)^3}{3} + \frac{2}{(-1)}\right) - \left(\frac{(-3)^3}{3} + \frac{2}{(-3)}\right)$$
$$= \left(-\frac{1}{3} - 2\right) - \left(-9 - \frac{2}{3}\right) = 7 + \frac{1}{3} = \boxed{\frac{22}{3}}.$$

Exercise 5.4.64. Find the area of the shaded region:

Solution. We know that a definite integral over [a, b] of a nonnegative function f is (by definition) the area under y = f(x) from a to b. Notice that the desired area (in blue) is the area in a rectangle of width $1 + \pi/4$ and height 2 minus the area under $y = \sec^2 t$ from $-\pi/4$ to 0 (in yellow) and minus the area under $y = 1 - t^2$ from 0 to 1 (in orange):

Exercise 5.4.64. Find the area of the shaded region:

Solution. We know that a definite integral over [a, b] of a nonnegative function f is (by definition) the area under y = f(x) from a to b. Notice that the desired area (in blue) is the area in a rectangle of width $1 + \pi/4$ and height 2 minus the area under $y = \sec^2 t$ from $-\pi/4$ to 0 (in yellow) and minus the area under $y = 1 - t^2$ from 0 to 1 (in orange):

That is, the desired area is $(1 + \pi/4)(2) - \int_{-\pi/4}^{0} \sec^2 t \, dt - \int_{0}^{1} 1 - t^2 \, dt.$

Exercise 5.4.64. Find the area of the shaded region:

Solution. We know that a definite integral over [a, b] of a nonnegative function f is (by definition) the area under y = f(x) from a to b. Notice that the desired area (in blue) is the area in a rectangle of width $1 + \pi/4$ and height 2 minus the area under $y = \sec^2 t$ from $-\pi/4$ to 0 (in yellow) and minus the area under $y = 1 - t^2$ from 0 to 1 (in orange):

That is, the desired area is
$$(1 + \pi/4)(2) - \int_{-\pi/4}^{0} \sec^2 t \, dt - \int_{0}^{1} 1 - t^2 \, dt$$

Exercise 5.4.64 (continued)

Solution (continued). ... the desired area is

$$(1 + \pi/4)(2) - \int_{-\pi/4}^{0} \sec^{2} t \, dt - \int_{0}^{1} 1 - t^{2} \, dt$$
$$= 2 + \pi/2 - \tan t |_{-\pi/4}^{0} - (t - t^{3}/3)|_{0}^{1}$$
$$= 2 + \pi/2 - (\tan(0) - \tan(-\pi/4)) - (((1) - (1)^{3}/3) - ((0) - (0)^{3}/3))$$
$$= 2 + \pi/2 - (1) - (2/3) = \boxed{1/3 + \pi/2}. \quad \Box$$

Exercise 5.4.82. Find the linearization of $g(x) = 3 + \int_{1}^{x^2} \sec(t-1) dt$ at x = -1.

Solution. Recall that the linearization of g at x = a is L(x) = g(a) + g'(a)(x - a). We have

 $g'(x) = \frac{d}{dx} \left[3 + \int_{1}^{x^2} \sec(t-1) dt \right]$ $= \frac{d}{du} \left[3 + \int_{1}^{u} \sec(t-1) dt \right] \frac{du}{dx}$ by the Chain Rule, where $u = x^{2}$ $= 0 + \sec(u-1)\frac{du}{dx}$ by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)) $= \sec(x^2 - 1)[2x] = 2x \sec(x^2 - 1).$

Exercise 5.4.82. Find the linearization of $g(x) = 3 + \int_{1}^{x^2} \sec(t-1) dt$ at x = -1.

Solution. Recall that the linearization of g at x = a is L(x) = g(a) + g'(a)(x - a). We have

$$g'(x) = \frac{d}{dx} \left[3 + \int_{1}^{x^{2}} \sec(t-1) dt \right]$$

$$= \frac{d}{du} \left[3 + \int_{1}^{u} \sec(t-1) dt \right] \frac{du}{dx} \text{ by the Chain Rule, where } u = x^{2}$$

$$= 0 + \sec(u-1) \frac{du}{dx} \text{ by The Fundamental Theorem of Calculus,}$$
Part 1 (Theorem 5.4(a))
$$= \sec(x^{2}-1)[2x] = 2x \sec(x^{2}-1).$$

Exercise 5.4.82 (continued)

Exercise 5.4.82. Find the linearization of $g(x) = 3 + \int_{1}^{x^2} \sec(t-1) dt$ at x = -1.

Solution (continued). With $g(x) = 3 + \int_{1}^{x^{-}} \sec(t-1) dt$ and $g'(x) = 2x \sec^{2}(x^{2}-1)$, we have $g(a) = g(-1) = 3 + \int_{1}^{(-1)^{2}} \sec(t-1) dt = 3 + 0 = 3$ and $g'(a) = g'(-1) = 2(-1) \sec((-1)^{2}-1) = -2 \sec(0) = -2(1) = -2$. So the linearization of g at x = a = -1 is L(x) = g(-1) + g'(-1)(x - (-1))is

$$L(x) = (3) + (-2)(x - (-1)) = 3 - 2x - 2 = -2x + 1.$$

Exercise 5.4.72. Find a function f satisfying the equation $f(x) = e^2 + \int_1^x f(t) dt$.

Solution. First, we differentiation with respect to x to get

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}\left[e^2 + \int_1^x f(t) dt\right] = f(x)$$

by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)). So f'(x) = f(x). Some functions satisfying this condition are functions of the form ke^x where k is some constant.

Exercise 5.4.72. Find a function f satisfying the equation $f(x) = e^2 + \int_1^x f(t) dt$.

Solution. First, we differentiation with respect to x to get

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}\left[e^2 + \int_1^x f(t) dt\right] = f(x)$$

by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)). So f'(x) = f(x). Some functions satisfying this condition are functions of the form ke^x where k is some constant. Notice also that $f(1) = e^2 + \int_{-1}^{(1)} f(t) dt = e^2 + 0 = e^2$. Now $(ke^x)|_{x=1} = ke^{(1)} = ke$, so

with k = e we have $f(x) = ee^x = e^{x+1}$.

Exercise 5.4.72. Find a function f satisfying the equation $f(x) = e^2 + \int_1^x f(t) dt$.

Solution. First, we differentiation with respect to x to get

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}\left[e^2 + \int_1^x f(t) dt\right] = f(x)$$

by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)). So f'(x) = f(x). Some functions satisfying this condition are functions of the form ke^x where k is some constant. Notice also that $f(1) = e^2 + \int_1^{(1)} f(t) dt = e^2 + 0 = e^2$. Now $(ke^x)|_{x=1} = ke^{(1)} = ke$, so with k = e we have $f(x) = ee^x = e^{x+1}$.

Exercise 5.4.72 (continued)

Exercise 5.4.72. Find a function f satisfying the equation $f(x) = e^2 + \int_1^x f(t) dt$.

Solution (continued). With $f(x) = e^{x+1}$, we have that both $f(1) = e^{(1)+1} = e^2$ and (by the Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)):

$$e^{2} + \int_{1}^{x} f(t) dt = e^{2} + \int_{1}^{x} e^{t+1} dt = e^{2} + e^{t+1} \Big|_{t=1}^{t=x}$$
$$= e^{2} + (e^{(x)+1} - e^{(1)+1}) = e^{2} + e^{x+1} - e^{2} = e^{x+1} = f(x),$$
ed. So one such function is $f(x) - e^{x+1}$.

as desired. So one such function is $f(x) = e^{x+1}$. \Box

Exercise 5.4.74. Show that if k is a positive constant, then the area between the x-axis and one arch of the curve $y = \sin kx$ is 2/k.

Solution. The graph of $y = \sin kx$, along with the area under one arch, is:

Exercise 5.4.74. Show that if k is a positive constant, then the area between the x-axis and one arch of the curve $y = \sin kx$ is 2/k.

Solution. The graph of $y = \sin kx$, along with the area under one arch, is:

Exercise 5.4.74. Show that if k is a positive constant, then the area between the x-axis and one arch of the curve $y = \sin kx$ is 2/k.

Solution. The graph of $y = \sin kx$, along with the area under one arch, is:

Exercise 5.4.74 (continued)

Exercise 5.4.74. Show that if k is a positive constant, then the area between the x-axis and one arch of the curve $y = \sin kx$ is 2/k.

Solution (continued). ... So the area is $A = \int_0^{\pi/k} \sin kx \, dx$ (since $\sin kx \ge 0$ for $x \in [0, \pi/k]$). Evaluating the integral using the Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)) we have

$$A = \int_0^{\pi/k} \sin kx \, dx = \frac{-\cos kx}{k} \Big|_0^{\pi/k} = \frac{-\cos k(\pi/k)}{k} - \frac{-\cos k(0)}{k}$$

$$= \frac{-\cos \pi}{k} + \frac{\cos 0}{k} = \frac{-(-1)}{k} + \frac{1}{k} = \left\lfloor \frac{2}{k} \right\rfloor,$$

as claimed (where the antiderivative of sin kx is given by Table 4.2(2) in Section 4.8). \Box

Exercise 5.4.74 (continued)

Exercise 5.4.74. Show that if k is a positive constant, then the area between the x-axis and one arch of the curve $y = \sin kx$ is 2/k.

Solution (continued). ... So the area is $A = \int_0^{\pi/k} \sin kx \, dx$ (since $\sin kx \ge 0$ for $x \in [0, \pi/k]$). Evaluating the integral using the Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)) we have

$$A = \int_0^{\pi/k} \sin kx \, dx = \left. \frac{-\cos kx}{k} \right|_0^{\pi/k} = \frac{-\cos k(\pi/k)}{k} - \frac{-\cos k(0)}{k}$$

$$= \frac{-\cos \pi}{k} + \frac{\cos 0}{k} = \frac{-(-1)}{k} + \frac{1}{k} = \lfloor \frac{2}{k} \rfloor,$$

as claimed (where the antiderivative of sin kx is given by Table 4.2(2) in Section 4.8). \Box

Example 5.4.8

Example 5.4.8. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$.

Solution. We need the sign of $f(x) = x^3 - x^2 - 2x$ so that we can separate the region bounded by the *x*-axis and the graph of y = f(x) into a part where the function is positive and a part where the function is negative. Notice that

$$f(x) = x^{3} - x^{2} - 2x = x(x^{2} - x - 2) = x(x + 1)(x - 2)$$

so that f(x) = 0 for x = -1, x = 0, and x = 2. Since f is continuous (it is a polynomial function), then we perform a sign test of f as we did when applying the First and Second Derivative Tests in Chapter 4.

Example 5.4.8

Example 5.4.8. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$.

Solution. We need the sign of $f(x) = x^3 - x^2 - 2x$ so that we can separate the region bounded by the x-axis and the graph of y = f(x) into a part where the function is positive and a part where the function is negative. Notice that

$$f(x) = x^3 - x^2 - 2x = x(x^2 - x - 2) = x(x + 1)(x - 2)$$

so that f(x) = 0 for x = -1, x = 0, and x = 2. Since f is continuous (it is a polynomial function), then we perform a sign test of f as we did when applying the First and Second Derivative Tests in Chapter 4.

Example 5.4.8 (continued 1)

Example 5.4.8. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$. **Solution (continued).** Consider:

interval	$(-\infty,-1)$	(-1,0)
test value k	-2	-1/2
f(k)	$(-2)^3 - (-2)^2 - 2(-2) = -8$	$(-1/2)^3 - (-1/2)^2 - 2(-1/2) = 5/8$
f(x)	_	+

interval	(0,2)	$(2,\infty)$
test value k	1	3
f(k)	$(1)^3 - (1)^2 - 2(1) = -2$	$(3)^3 - (3)^2 - 2(3) = 12$
f(x)	_	+

So $f(x) \ge 0$ for $x \in [-1,0] \cup [2,\infty)$, and $f(x) \le 0$ for $x \in (-\infty,-1] \cup [0,2]$. In particular, on [-1,0] we have $f(x) \ge 0$ (and the area between f and the x-axis is given by the integral of f over [-1,0]), and on [0,2] we have $f(x) \le 0$ (and the *negative* of the area between f and the x-axis is given by the integral of f over [0,2]).

Example 5.4.8 (continued 1)

Example 5.4.8. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$. **Solution (continued).** Consider:

interval	$(-\infty,-1)$	(-1,0)
test value k	-2	-1/2
f(k)	$(-2)^3 - (-2)^2 - 2(-2) = -8$	$(-1/2)^3 - (-1/2)^2 - 2(-1/2) = 5/8$
f(x)	_	+

interval	(0,2)	$(2,\infty)$
test value k	1	3
f(k)	$(1)^3 - (1)^2 - 2(1) = -2$	$(3)^3 - (3)^2 - 2(3) = 12$
f(x)	_	+

So $f(x) \ge 0$ for $x \in [-1,0] \cup [2,\infty)$, and $f(x) \le 0$ for $x \in (-\infty, -1] \cup [0,2]$. In particular, on [-1,0] we have $f(x) \ge 0$ (and the area between f and the x-axis is given by the integral of f over [-1,0]), and on [0,2] we have $f(x) \le 0$ (and the *negative* of the area between f and the x-axis is given by the integral of f over [0,2]).

- C

Example 5.4.8 (continued 2)

Solution (continued). So the desired area is

$$A = \int_{-1}^{0} f(x) dx + \left(-\int_{0}^{2} f(x) dx\right)$$

= $\int_{-1}^{0} x^{3} - x^{2} - 2x dx - \int_{0}^{2} x^{3} - x^{2} - 2x dx$
= $\left(\frac{x^{4}}{4} - \frac{x^{3}}{3} - x^{2}\right)\Big|_{-1}^{0} - \left(\frac{x^{4}}{4} - \frac{x^{3}}{3} - x^{2}\right)\Big|_{0}^{2}$
= $\left(\frac{(0)^{4}}{4} - \frac{(0)^{3}}{3} - (0)^{2}\right) - \left(\frac{(-1)^{4}}{4} - \frac{(-1)^{3}}{3} - (-1)^{2}\right)$
 $- \left(\left(\frac{(2)^{4}}{4} - \frac{(2)^{3}}{3} - (2)^{2}\right) - \left(\frac{(0)^{4}}{4} - \frac{(0)^{3}}{3} - (0)^{2}\right)\right)$
= $((0) - (1/4 + 1/3 - 1)) - ((4 - 8/3 - 4) - (0))$
= $5/12 - (-8/3) = 5/12 + 8/3 = 37/12$.

Example 5.4.8 (continued 3)

Example 5.4.8. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$.

Solution (continued). ... So the desired area is A = 5/12 - (-8/3) = 5/12 + 8/3 = 37/12. The text book gives the following graph to illustrate how the area is calculated:

