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Theorem 5.3. The Mean Value Theorem for Definite Integrals

Theorem 5.3

Theorem 5.3. The Mean Value Theorem for Definite Integrals.
If f is continuous on [a, b], then at some point c in [a, b],

f (c) =
1

b − a

∫ b

a
f (x) dx .

Proof. By the Max-Min Inequality (Theorem 5.2(6)), we have

min f ≤ 1

b − a

∫ b

a
f (x) dx ≤ max f .

Since f is continuous, f must assume any value between min f and max f ,

including
1

b − a

∫ b

a
f (x) dx by the Intermediate Value Theorem (Theorem

2.11).
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Example 5.4.1

Example 5.4.1

Example 5.4.1. Prove that if f is continuous on [a, b], a 6= b, and if∫ b

a
f (x) dx = 0, then f (x) = 0 at least once in [a, b].

Proof. Since f is continuous on [a, b], then by The Mean Value Theorem

for Definite Integrals (Theorem 5.3) we have f (c) =
1

b − a

∫ b

a
f (x) dx for

some c ∈ [a, b]. Since we are given that

∫ b

a
f (x) dx = 0, then for this

value c we have

f (c) =
1

b − a

∫ b

a
f (x) dx =

1

b − a
(0) = 0,

so that f (c) = 0, as claimed.
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Theorem 5.4(a) The Fundamental Theorem of Calculus, Part 1

Theorem 5.4(a)

Theorem 5.4(a). The Fundamental Theorem of Calculus, Part 1.
If f is continuous on [a, b] then the function

F (x) =

∫ x

a
f (t) dt

has a derivative at every point x in [a, b] and

dF

dx
=

d

dx

[∫ x

a
f (t) dt

]
= f (x).

Proof. Notice that by Additivity, Theorem 5.2(5),

F (x + h)− F (x) =

∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt =

∫ x+h

x
f (t) dt.

So
F (x + h)− F (x)

h
=

1

h
[F (x + h)− F (x)] =

1

h

∫ x+h

x
f (t) dt.
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Theorem 5.4(a) The Fundamental Theorem of Calculus, Part 1

Theorem 5.4(a) (continued)

Proof (continued). Since f is continuous, The Mean Value Theorem for
Definite Integrals (Theorem 5.3) implies that for some c ∈ [x , x + h] we
have

f (c) =
1

h

∫ x+h

x
f (t) dt.

Since c ∈ [x , x + h], then lim
h→0

f (c) = f (x) (since f is continuous at x).

Therefore

dF

dx
= lim

h→0

F (x + h)− F (x)

h

= lim
h→0

1

h

∫ x+h

x
f (t) dt

= lim
h→0

f (c) = f (x)
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Exercise 5.4.46

Exercise 5.4.46

Exercise 5.4.46 Find dy/dx when y =

∫ x

1

1

t
dt where x > 0.

Solution. Since f (t) = 1/t is continuous on interval [x , 1] when
0 < x < 1 and is continuous on interval [1, x ] when 1 < x , then by The
Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)), we have

d

dx
[y ] =

d

dx

[∫ x

1

1

t
dt

]
=

1

x
,

or
dy

dx
=

1

x
. �
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Exercise 5.4.48

Exercise 5.4.48

Exercise 5.4.48 Find dy/dx when y = x

∫ x2

2
sin(t3) dt.

Solution. First, we let u = u(x) = x2 so that y is in the form

y = x

∫ u

2
sin(t3) dt. Then by the Derivative Product Rule (Theorem

3.3.G), The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)),
and the Chain Rule (Theorem 3.2)

d

dx
[y ] =

d

dx

[
x

∫ u

2
sin(t3) dt

]
= [1]

(∫ u

2
sin(t3) dt

)
+ (x)

d

dx

[∫ u

2
sin(t3) dt

]

= [1]

(∫ u

2
sin(t3) dt

)
+ (x)

d

du

y[∫ u

2
sin(t3) dt

] [
du

dx

]
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Exercise 5.4.48

Exercise 5.4.48 (continued)

Exercise 5.4.48 Find dy/dx when y = x

∫ x2

2
sin(t3) dt.

Solution (continued). . . .

d

dx
[y ] = [1]

(∫ u

2
sin(t3) dt

)
+ (x)

d

du

y[∫ u

2
sin(t3) dt

] [
du

dx

]

=

(∫ u

2
sin(t3) dt

)
+ (x)

 y

sin((u)3)

[
du

dx

]
=

(∫ u

2
sin(t3) dt

)
+ (x)[

y
sin((x2)3)[2x ]]

=

∫ x2

2
sin(t3) dt + 2x2 sin(x6) . �
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Exercise 5.4.54

Exercise 5.4.54

Exercise 5.4.54 Find dy/dx when y =

∫ 1

2x

3
√

t dt.

Solution. Then by the Derivative Product Rule (Theorem 3.3.G) and The
Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)),

d

dx
[y ] =

d

dx

[∫ 1

2x

3
√

t dt

]
=

d

dx

[
−

∫ 2x

1

3
√

t dt

]
by Theorem 5.2(1)

= − d

dx

[∫ u

1

3
√

t dt

]
where u = 2x

= − d

du

y[∫ u

1

3
√

t dt

] [
du

dx

]
by the Chain Rule, Theorem 3.2

=

y

− 3
√

u

[
du

dx

]
= − 3

√
2x [(ln 2)2x ] = − ln 2

3
√

2x2x = −(ln 2)24x/3 .

�
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Exercise 5.4.54

Exercise 5.4.54
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�
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Theorem 5.4(b) The Fundamental Theorem of Calculus, Part 2

Theorem 5.4(b)

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2.
If f is continuous at every point of [a, b] and if F is any antiderivative of f
on [a, b], then ∫ b

a
f (x) dx = F (b)− F (a).

Proof. We know from the first part of the Fundamental Theorem
(Theorem 5.4(a)) that

G (x) =

∫ x

a
f (t) dt

defines an antiderivative of f . Therefore if F is any antiderivative of f ,
then F (x) = G (x) + k for some constant k by Corollary 4.2 (“Functions
with the Same Derivative Differ by a Constant”).
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Theorem 5.4(b) The Fundamental Theorem of Calculus, Part 2

Theorem 5.4(b) (continued)

Theorem 5.4(b). The Fundamental Theorem of Calculus, Part 2.
If f is continuous at every point of [a, b] and if F is any antiderivative of f
on [a, b], then ∫ b

a
f (x) dx = F (b)− F (a).

Proof (continued). Therefore

F (b)− F (a) = [G (b) + k]− [G (a) + k] = G (b)− G (a)

=

∫ b

a
f (t) dt −

∫ a

a
f (t) dt =

∫ b

a
f (t) dt − 0

=

∫ b

a
f (t) dt,

as claimed.
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Exercise 5.4.6

Exercise 5.4.6

Exercise 5.4.6. Evaluate the integral

∫ 2

−2
(x3 − 2x + 3) dx .

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem
5.4(b)), we just need an antiderivative F of the integrand
f (x) = x3 − 2x + 3. We can take F (x) = x4/4− x2 + 3x . Then we have∫ 2

−2
(x3 − 2x + 3) dx =

(
x4

4
− x2 + 3x

)∣∣∣∣2
−2

=

(
(2)4

4
− (2)2 + 3(2)

)
−

(
(−2)4

4
− (−2)2 + 3(−2)

)
= 4− 4 + 6− 4 + 4 + 6 = 12 . �
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Exercise 5.4.14

Exercise 5.4.14

Exercise 5.4.14. Evaluate the integral

∫ π/3

−π/3
sin2 t dt. HINT: By a

half-angle formula, sin2 θ =
1− cos 2θ

2
.

Solution. By The Fundamental Theorem of Calculus, Part 2 (Theorem
5.4(b)), we just need an antiderivative F of the integrand f (t) = sin2 t.

Since sin2 t =
1− cos 2t

2
=

1

2
(1− cos 2t), we can take

F (t) =
1

2

(
t − sin 2t

2

)
(see Table 4.2 entry 3 in Section 4.8). Then we

have ∫ π/3

−π/3
sin2 t dt =

1

2

(
t − sin 2t

2

)∣∣∣∣π/3

−π/3
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Exercise 5.4.14

Exercise 5.4.14 (continued)

Exercise 5.4.14. Evaluate the integral
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sin2 t dt. HINT: By a

half-angle formula, sin2 θ =
1− cos 2θ

2
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Solution (continued). . . .∫ π/3

−π/3
sin2 t dt =

1

2

(
t − sin 2t

2

)∣∣∣∣π/3

−π/3

=
1

2

((π

3

)
− sin 2(π/3)

2

)
− 1

2

((
−π

3

)
− sin 2(−π/3)

2

)

=
π

6
− (

√
3/2)

4
+

π

6
− (

√
3/2)

4
=

π

3
−
√

3

4
. �
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Exercise 5.4.22

Exercise 5.4.22

Exercise 5.4.22. Evaluate the integral

∫ −1

−3

y5 − 2y

y3
dy .

Solution. We apply The Fundamental Theorem of Calculus, Part 2
(Theorem 5.4(b)). We modify the integrand first so that find an
antiderivative. We have∫ −1

−3

y5 − 2y

y3
dy =

∫ −1

−3
y2 − 2y−2 dy =

(
y3

3
− 2(−y−1)

)∣∣∣∣−1

−3

=

(
y3

3
+

2

y

)∣∣∣∣−1

−3

=

(
(−1)3

3
+

2

(−1)

)
−

(
(−3)3

3
+

2

(−3)

)

=

(
−1

3
− 2

)
−

(
−9− 2

3

)
= 7 +

1

3
=

22

3
. �

() Calculus 1 November 2, 2020 16 / 28



Exercise 5.4.22

Exercise 5.4.22

Exercise 5.4.22. Evaluate the integral

∫ −1

−3

y5 − 2y

y3
dy .

Solution. We apply The Fundamental Theorem of Calculus, Part 2
(Theorem 5.4(b)). We modify the integrand first so that find an
antiderivative. We have∫ −1

−3

y5 − 2y

y3
dy =

∫ −1

−3
y2 − 2y−2 dy =

(
y3

3
− 2(−y−1)

)∣∣∣∣−1

−3

=

(
y3

3
+

2

y

)∣∣∣∣−1

−3

=

(
(−1)3

3
+

2

(−1)

)
−

(
(−3)3

3
+

2

(−3)

)

=

(
−1

3
− 2

)
−

(
−9− 2

3

)
= 7 +

1

3
=

22

3
. �
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Exercise 5.4.64

Exercise 5.4.64

Exercise 5.4.64. Find the area of the shaded region:

Solution. We know that a definite integral over
[a, b] of a nonnegative function f is (by definition)
the area under y = f (x) from a to b. Notice that
the desired area (in blue) is the area in a rectangle
of width 1 + π/4 and height 2 minus the area under
y = sec2 t from −π/4 to 0 (in yellow) and minus
the area under y = 1− t2 from 0 to 1 (in orange):

That is, the desired area is

(1 + π/4)(2)−
∫ 0

−π/4
sec2 t dt −

∫ 1

0
1− t2 dt.
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Exercise 5.4.64

Exercise 5.4.64 (continued)

Solution (continued). . . . the desired area is

(1 + π/4)(2)−
∫ 0

−π/4
sec2 t dt −

∫ 1

0
1− t2 dt

= 2 + π/2− tan t|0−π/4 − (t − t3/3)|10

= 2 + π/2− (tan(0)− tan(−π/4))− (((1)− (1)3/3)− ((0)− (0)3/3))

= 2 + π/2− (1)− (2/3) = 1/3 + π/2 . �
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Exercise 5.4.82

Exercise 5.4.82

Exercise 5.4.82. Find the linearization of g(x) = 3 +

∫ x2

1
sec(t − 1) dt at

x = −1.

Solution. Recall that the linearization of g at x = a is
L(x) = g(a) + g ′(a)(x − a). We have

g ′(x) =
d

dx

[
3 +

∫ x2

1
sec(t − 1) dt

]

=
d

du

y[
3 +

∫ u

1
sec(t − 1) dt

]
du

dx
by the Chain Rule, where u = x2

= 0 +

y

sec(u − 1)
du

dx
by The Fundamental Theorem of Calculus,

Part 1 (Theorem 5.4(a))

= sec(x2 − 1)[2x ] = 2x sec(x2 − 1).
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Exercise 5.4.82

Exercise 5.4.82 (continued)

Exercise 5.4.82. Find the linearization of g(x) = 3 +

∫ x2

1
sec(t − 1) dt at

x = −1.

Solution (continued). With g(x) = 3 +

∫ x2

1
sec(t − 1) dt and

g ′(x) = 2x sec2(x2 − 1), we have

g(a) = g(−1) = 3 +

∫ (−1)2

1
sec(t − 1) dt = 3 + 0 = 3 and

g ′(a) = g ′(−1) = 2(−1) sec((−1)2 − 1) = −2 sec(0) = −2(1) = −2. So
the linearization of g at x = a = −1 is L(x) = g(−1) + g ′(−1)(x − (−1))
is

L(x) = (3) + (−2)(x − (−1)) = 3− 2x − 2 = −2x + 1 .

�
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Exercise 5.4.72

Exercise 5.4.72

Exercise 5.4.72. Find a function f satisfying the equation

f (x) = e2 +

∫ x

1
f (t) dt.

Solution. First, we differentiation with respect to x to get

d

dx
[f (x)] =

d

dx

[
e2 +

∫ x

1
f (t) dt

]
= f (x)

by The Fundamental Theorem of Calculus, Part 1 (Theorem 5.4(a)). So
f ′(x) = f (x). Some functions satisfying this condition are functions of the
form kex where k is some constant.

Notice also that

f (1) = e2 +

∫ (1)

1
f (t) dt = e2 + 0 = e2. Now (kex)|x=1 = ke(1) = ke, so

with k = e we have f (x) = eex = ex+1.
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Exercise 5.4.72

Exercise 5.4.72 (continued)

Exercise 5.4.72. Find a function f satisfying the equation

f (x) = e2 +

∫ x

1
f (t) dt.

Solution (continued). With f (x) = ex+1, we have that both
f (1) = e(1)+1 = e2 and (by the Fundamental Theorem of Calculus, Part 2
(Theorem 5.4(b)):

e2 +

∫ x

1
f (t) dt = e2 +

∫ x

1
et+1 dt = e2 + et+1

∣∣t=x

t=1

= e2 + (e(x)+1 − e(1)+1) = e2 + ex+1 − e2 = ex+1 = f (x),

as desired. So one such function is f (x) = ex+1 . �
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Exercise 5.4.74

Exercise 5.4.74

Exercise 5.4.74. Show that if k is a positive constant, then the area
between the x-axis and one arch of the curve y = sin kx is 2/k.

Solution. The graph of y = sin kx , along with the area under one arch, is:

So the area is A =

∫ π/k

0
sin kx dx (since sin kx ≥ 0 for x ∈ [0, π/k]).
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Exercise 5.4.74

Exercise 5.4.74 (continued)

Exercise 5.4.74. Show that if k is a positive constant, then the area
between the x-axis and one arch of the curve y = sin kx is 2/k.

Solution (continued). . . . So the area is A =

∫ π/k

0
sin kx dx (since

sin kx ≥ 0 for x ∈ [0, π/k]). Evaluating the integral using the
Fundamental Theorem of Calculus, Part 2 (Theorem 5.4(b)) we have

A =

∫ π/k

0
sin kx dx =

− cos kx

k

∣∣∣∣π/k

0

=
− cos k(π/k)

k
− − cos k(0)

k

=
− cos π

k
+

cos 0

k
=
−(−1)

k
+

1

k
=

2

k
,

as claimed (where the antiderivative of sin kx is given by Table 4.2(2) in
Section 4.8). �
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Exercise 5.4.74

Exercise 5.4.74 (continued)
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Example 5.4.8

Example 5.4.8

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f (x) = x3 − x2 − 2x , −1 ≤ x ≤ 2.

Solution. We need the sign of f (x) = x3 − x2 − 2x so that we can
separate the region bounded by the x-axis and the graph of y = f (x) into
a part where the function is positive and a part where the function is
negative. Notice that

f (x) = x3 − x2 − 2x = x(x2 − x − 2) = x(x + 1)(x − 2)

so that f (x) = 0 for x = −1, x = 0, and x = 2. Since f is continuous (it
is a polynomial function), then we perform a sign test of f as we did when
applying the First and Second Derivative Tests in Chapter 4.
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Example 5.4.8

Example 5.4.8 (continued 1)

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f (x) = x3 − x2 − 2x , −1 ≤ x ≤ 2.
Solution (continued). Consider:

interval (−∞,−1) (−1, 0)

test value k −2 −1/2

f (k) (−2)3 − (−2)2 − 2(−2) = −8 (−1/2)3 − (−1/2)2 − 2(−1/2) = 5/8

f (x) − +

interval (0, 2) (2,∞)

test value k 1 3

f (k) (1)3 − (1)2 − 2(1) = −2 (3)3 − (3)2 − 2(3) = 12

f (x) − +

So f (x) ≥ 0 for x ∈ [−1, 0] ∪ [2,∞), and f (x) ≤ 0 for
x ∈ (−∞,−1] ∪ [0, 2]. In particular, on [−1, 0] we have f (x) ≥ 0 (and the
area between f and the x-axis is given by the integral of f over [−1, 0]),
and on [0, 2] we have f (x) ≤ 0 (and the negative of the area between f
and the x-axis is given by the integral of f over [0, 2]).
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Example 5.4.8

Example 5.4.8 (continued 2)

Solution (continued). So the desired area is

A =

∫ 0

−1
f (x) dx +

(
−

∫ 2

0
f (x) dx

)
=

∫ 0

−1
x3 − x2 − 2x dx −

∫ 2

0
x3 − x2 − 2x dx

=

(
x4

4
− x3

3
− x2

)∣∣∣∣0
−1

−
(

x4

4
− x3

3
− x2

)∣∣∣∣2
0

=

(
(0)4

4
− (0)3

3
− (0)2

)
−

(
(−1)4

4
− (−1)3

3
− (−1)2

)
−

((
(2)4

4
− (2)3

3
− (2)2

)
−

(
(0)4

4
− (0)3

3
− (0)2

))
= ((0)− (1/4 + 1/3− 1))− ((4− 8/3− 4)− (0))

= 5/12− (−8/3) = 5/12 + 8/3 = 37/12 .
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Example 5.4.8

Example 5.4.8 (continued 3)

Example 5.4.8. Find the area of the region between the x-axis and the
graph of f (x) = x3 − x2 − 2x , −1 ≤ x ≤ 2.

Solution (continued). . . . So the desired area is
A = 5/12− (−8/3) = 5/12 + 8/3 = 37/12. The text book gives the
following graph to illustrate how the area is calculated:

�
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