
Calculus 1

November 9, 2020

Chapter 5. Integrals
5.6. Substitution and Area Between Curves—Examples and Proofs

() Calculus 1 November 9, 2020 1 / 29



Table of contents

1 Theorem 5.7. Substitution in Definite Integrals

2 Exercise 5.6.22

3 Exercise 5.6.18

4 Theorem 5.8

5 Exercise 5.6.14

6 Exercise 5.6.58

7 Example 5.6.6

8 Exercise 5.6.62

9 Exercise 5.6.90

10 Exercise 5.6.78

11 Exercise 5.6.108

12 Exercise 5.6.114

13 Exercise 5.6.118

() Calculus 1 November 9, 2020 2 / 29



Theorem 5.7. Substitution in Definite Integrals

Theorem 5.7

Theorem 5.7. Substitution in Definite Integrals.
If g ′ is continuous on the interval [a, b] and f is continuous on the range
of g(x) = u, then ∫ b

a
f (g(x))g ′(x) dx =

∫ g(b)

g(a)
f (u) du.

Proof. Let F be an antiderivative of f . Then
d

dx
[F (g(x))] =

y
F ′(g(x))[g ′(x)] = f (g(x))g ′(x), so that F (g(x)) is an

antiderivative of f (g(x))g ′(x). So∫ b

a
f (g(x))g ′(x) dx = F (g(x))|x=b

x=a by the Fundamental Theorem

of Calculus, Part 2 (Theorem 5.4(b)

= F (g(b))− F (g(a)) = F (u)|u=g(b)
u=g(a) with u = g(x)
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Theorem 5.7. Substitution in Definite Integrals

Theorem 5.7 (continued)

Theorem 5.7. Substitution in Definite Integrals.
If g ′ is continuous on the interval [a, b] and f is continuous on the range
of g(x) = u, then ∫ b

a
f (g(x))g ′(x) dx =

∫ g(b)

g(a)
f (u) du.

Proof (continued). . . .∫ b

a
f (g(x))g(x) dx = F (u)|u=g(b)

u=g(a) with u = g(x)

=

∫ g(b)

g(a)
f (u) du with u = g(x) and by the

Fundamental Theorem of Calculus,

Part 2 (Theorem 5.4(b).
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Exercise 5.6.22

Exercise 5.6.22

Exercise 5.6.22. Evaluate

∫ 1

0
(y3 + 6y2 − 12y + 9)−1/2(y2 + 4y − 4) dy .

Solution. We apply Theorem 5.7 (Substitution in Definite Integrals) and
let u = g(y) = y3 + 6y2 − 12y + 9. Then
g ′(y) = 3y2 + 12y − 12 = 3(y2 + 4y − 4). Notice that f and g ′ are
continuous everywhere, so the hypotheses of Theorem 5.7 are satisfied.

Here, [a, b] = [0, 1] so that a = 0 and b = 1,
g(a) = g(0) = (0)3 + 6(0)2 − 12(0) + 9 = 9, and
g(b) = g(1) = (1)3 + 6(1)2 − 12(1) + 9 = 4, so Theorem 5.7 gives∫ b

a
f (g(y))g ′(y) dy =

∫ g(b)

g(a)
f (u) du or. . .
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Exercise 5.6.22

Exercise 5.6.22 (continued)

Exercise 5.6.22. Evaluate

∫ 1

0
(y3 + 6y2 − 12y + 9)−1/2(y2 + 4y − 4) dy .

Solution (continued). . . .∫ b

a
f (g(y))g ′(y) dy =

∫ g(b)

g(a)
f (u) du or

∫ 1

0
(y3 + 6y2 − 12y + 9)−1/2(y2 + 4y − 4) dy

=
1

3

∫ 1

0
(y3 + 6y2 − 12y + 9)−1/23(y2 + 4y − 4) dy

=
1

3

∫ 4

9
u−1/2 du =

1

3
2u1/2

∣∣∣∣4
9

=
1

3
2
√

(4)− 1

3
2
√

(9) =
4

3
− 2 = −2

3
. �

() Calculus 1 November 9, 2020 6 / 29



Exercise 5.6.18

Exercise 5.6.18

Exercise 5.6.18. Evaluate

∫ 3π/2

π
cot5

(
θ

6

)
sec2

(
θ

6

)
dθ.

Solution. We have seen sec x and tan x “travel together” through this
world of differentiation and antiderivatives (as have csc x and cot x). Since
cot x = 1/ tan x , we start by modifying the integrand as

cot5
(

θ

6

)
sec2

(
θ

6

)
=

sec2(θ/6)

tan5(θ/6)
.

We apply Theorem 5.7 (Substitution in Definite Integrals), let

f (u) = 1/u5, and let u = g(θ) = tan(θ/6). Then g ′(θ) =
y

sec2(θ/6)[1/6].
Notice that f and g ′ are continuous everywhere, so the hypotheses of
Theorem 5.7 are satisfied. Here, [a, b] = [π, 3π/2] so that a = π and
b = 3π/2, g(a) = g(π) = tan((π)/6) = 1/

√
3, and

g((3π/2)/6) = g(π/4) = tan(π/4) = 1, so Theorem 5.7 gives . . .
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Exercise 5.6.18

Exercise 5.6.18 (continued 1)

Exercise 5.6.18. Evaluate

∫ 3π/2

π
cot5

(
θ

6

)
sec2

(
θ

6

)
dθ.

Solution (continued). . . .∫ b

a
f (g(θ))g ′(θ) dθ =

∫ g(b)

g(a)
f (u) du or

∫ 3π/2

π
cot5

(
θ

6

)
sec2

(
θ

6

)
dθ = 6

∫ 3π/2

π

sec2(θ/6)/6

tan5(θ/6)
dθ = 6

∫ 1

1/
√

3

1

u5
du

= 6

∫ 1

1/
√

3
u−5 du = 6

u−4

−4

∣∣∣∣1
1/
√

3

= 6
(1)−4

−4
− 6

(1/
√

3)−4

−4

= 6
−1

4
+ 6

(
√

3)4

4
= 6

(
−1 + 9

4

)
= (6)(2) = 12 .
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Exercise 5.6.18

Exercise 5.6.18 (continued 2)

Solution (continued). We now work this problem again, but this time we
use differentials to represent the substitution. This process is justified by
Theorem 5.7 (Substitution in Definite Integrals) and just involves a
simplified notation. We have:∫ 3π/2

π
cot5

(
θ

6

)
sec2

(
θ

6

)
dθ =

∫ θ=3π/2

θ=π

sec2(θ/6)

tan5(θ/6)
dθ

= 6

∫ u=1

u=1/
√

3

1

u5
du where u = tan(θ/6) and so du = sec2(θ/6)/6 dθ or

6 du = sec2(θ/6) dθ; when θ = π then u = g(π) = tan(π/6) = 1/
√

3,

and when θ = 3π/2, u = g(3π/2) = tan((3π/2)/6) = tan(π/4) = 1

= 6

∫ u=1

u=1/
√

3
u−5 du = 6

u−4

−4

∣∣∣∣1
1/
√

3

= 6
(1)−4

−4
− 6

(1/
√

3)−4

−4
= 12 ,

as above. �
() Calculus 1 November 9, 2020 9 / 29



Theorem 5.8

Theorem 5.8

Theorem 5.8. Let f be continuous on the symmetric interval [−a, a].

(a) If f is even, then

∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx .

(b) If f is odd, then

∫ a

−a
f (x) dx = 0.

Proof. Notice that by the Additivity property of the integral (Theorem

5.2(5)),

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx . (∗)

(a) For f an even function, f (−x) = f (x) so that∫ 0

−a
f (x) dx =

∫ 0

a
f (−u) (−du) where u = −x and so du = −dx

or − du = dx and when x = −a then u = −(−a) = a,

and when x = 0 then u = −(0) = 0
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Theorem 5.8

Theorem 5.8 (continued 1)

Proof (continued). . . .∫ 0

−a
f (x) dx =

∫ 0

a
f (−u) (−du) = −

∫ 0

a
f (u) du

=

∫ a

0
f (u) du by Order of Integration, Theorem 5.2(1)

=

∫ a

0
f (x) dx .

So by (∗),∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx = 2

∫ a

0
f (x) dx ,

as claimed.

() Calculus 1 November 9, 2020 11 / 29



Theorem 5.8

Theorem 5.8 (continued 2)

Proof (continued). (b) For f an odd function, f (−x) = −f (x) so that∫ 0

−a
f (x) dx =

∫ 0

a
f (−u) (−du) where u = −x and so du = −dx

or − du = dx and when x = −a then u = −(−a) = a,

and when x = 0 then u = −(0) = 0

= −
∫ 0

a
(−f (u)) du =

∫ 0

a
f (u) du

= −
∫ a

0
f (u) du by Order of Integration, Theorem 5.2(1)

= −
∫ a

0
f (x) dx replacing the variable of integration.

So by (∗),
∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx = 0, as claimed.
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Exercise 5.6.14

Exercise 5.6.14

Exercise 5.6.14. (a) Evaluate

∫ 0

−π/2

(
2 + tan

t

2

)
sec2 t

2
dt. (b) Evaluate∫ π/2

−π/2

(
2 + tan

t

2

)
sec2 t

2
dt.

Solution. (a) We have

∫ 0

−π/2

(
2 + tan

t

2

)
sec2 t

2
dt

=

∫ 0

−1
(2 + u)(2 du) where u = tan

t

2
and so du =

1

2
sec2 t

2
dt

or 2 du = sec2 t

2
dt and when t = −π/2 then u = tan

−π/2

2
= −1,

and when t = 0 then u = tan
0

2
= 0

=

∫ 0

−1
(4 + 2u) du = (4u + u2)

∣∣0
−1

= (4(0) + (0)2)− (4(−1) + (−1)2) = 3 .
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=
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1

2
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dt
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−π/2

2
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and when t = 0 then u = tan
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2
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∫ 0

−1
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∣∣0
−1

= (4(0) + (0)2)− (4(−1) + (−1)2) = 3 .
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Exercise 5.6.14

Exercise 5.6.14 (continued)

Solution (continued). (b) We have∫ π/2

−π/2

(
2 + tan

t

2

)
sec2 t

2
dt

=

∫ 1

−1
(2 + u)(2 du) where u = tan

t

2
and so du =

1

2
sec2 t

2
dt

or 2 du = sec2 t

2
dt and when t = −π/2 then u = tan

−π/2

2
= −1,

and when t = π/2 then u = tan
π/2

2
= 1

=

∫ 1

−1
(4 + 2u) du = (4u + u2)

∣∣1
−1

= (4(1) + (1)2)− (4(−1) + (−1)2) = 8 . �
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Exercise 5.6.58

Exercise 5.6.58

Exercise 5.6.58. Find the area:

Solution. For f (x) = x2 and g(x) = −2x4 we have f (x) ≥ g(x) for
x ∈ [−1, 1], so by definition we have that the area is

A =

∫ b

a
(f (x)− g(x)) dx =

∫ 1

−1
((x2)− (−2x4)) dx =

∫ 1

−1
(x2 + 2x4) dx
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Exercise 5.6.58

Exercise 5.6.58 (continued)

Solution (continued). . . .

A =

∫ b

a
(f (x)− g(x)) dx =

∫ 1

−1
(x2)− (−2x4)) dx =

∫ 1

−1
(x2 + 2x4) dx

=

(
x3

3
+

2x5

5

)∣∣∣∣1
−1

=

(
(1)3

3
+

2(1)5

5

)
−

(
(−1)3

3
+

2(−1)5

5

)

=

(
1

3
+

2

5

)
−

(
−1

3
− 2

5

)
=

(
5 + 6

15

)
−

(
−5− 6

15

)
=

22

15
. �
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Example 5.6.6

Example 5.6.6

Example 5.6.6. Find the area of the region in the first quadrant that is
bounded above by y =

√
x and below by the x-axis and the line y = x − 2.

Solution. We consider the graph as given in Figure 5.30:

Figure 5.30

Notice that for x ∈ [0, 2] the region is bounded above by y =
√

x and
below by y = 0. For x ∈ [2, 4] the region is bounded above by y =

√
x

and below by y = x − 2.
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Example 5.6.6

Example 5.6.6 (continued)

Solution (continued). So we can express the area as the sum of two
integrals:

A =

∫ 2

0
(
√

x−0) dx+

∫ 4

2
(
√

x−(x−2)) dx =

∫ 2

0
x1/2 dx+

∫ 4

2
(x1/2−x+2) dx

=

(
2

3
x3/2

)∣∣∣∣2
0

+

(
2

3
x3/2 − 1

2
x2 + 2x

)∣∣∣∣4
2

=

(
2

3
(2)3/2 − 2

3
(0)3/2

)
+

(
2

3
(4)3/2 − 1

2
(4)2 + 2(4)

)
−

(
2

3
(2)3/2 − 1

2
(2)2 + 2(2)

)
=

2

3
(2)3/2 +

2

3
(4)3/2−8+8− 2

3
(2)3/2 +2−4

=
2

3
(8)− 2 =

10

3
. �
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Exercise 5.6.62

Exercise 5.6.62

Exercise 5.6.62. Find the area:

Solution. From the graph we see that
f (x) = 2x3 − x2 − 5x ≥ −x2 + 3x = g(x) for x ∈ [−2, 0], and
g(x) = −x2 + 3x ≥ 2x3 − x2 − 5x = f (x) for x ∈ [0, 2]. So the area can
be found, by definition, by adding the integral of f − g over the interval
[−2, 0] to the integral of g − f over the interval [0, 2]. . .
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Exercise 5.6.62

Exercise 5.6.62 (continued)

Solution (continued). . . .

A =

∫ 0

−2
((2x3−x2−5x)−(−x2+3x)) dx+

∫ 2

0
((−x2+3x)−(2x3−x2−5x)) dx

=

∫ 0

−2
(2x3 − 8x) dx +

∫ 2

0
(−2x3 + 8x) dx

=

(
2x4

4
− 8x2

2

)∣∣∣∣0
−2

+

(
8x2

2
− 2x4

4

)∣∣∣∣2
0

=

(
x4

2
− 4x2

)∣∣∣∣0
−2

+

(
4x2 − x4

2

)∣∣∣∣2
0

= (0− 0)−
(

(−2)4

2
− 4(−2)2

)
+

(
4(2)2 − (2)4

2

)
− (0− 0)

= −(8− 16) + (16− 8) = 8 + 8 = 16 . �
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Exercise 5.6.90

Exercise 5.6.90

Exercise 5.6.90. Find the area of the region enclosed by the line y = x
and the curve y = sin(πx/2).

Solution. Notice that the amplitude of y = sin(πx/2) is 1 and the period
is 2π/(π/2) = 4. From the graph we see that y = sin(πx/2) and y = x
intersect at (−1,−1), (0, 0), and (1, 1):

We have x ≥ sin(πx/2) for x ∈ [−1, 0], and sin(πx/2) ≥ x for x ∈ [0, 1].
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Exercise 5.6.90

Exercise 5.6.90 (continued)

Solution (continued). . . .We have x ≥ sin(πx/2) for x ∈ [−1, 0], and
sin(πx/2) ≥ x for x ∈ [0, 1]. So the area enclosed by y = x and
y = sin(πx/2) is given by the sum of the integrals:

A =

∫ 0

−1
(x − sin(πx/2)) dx +

∫ 1

0
(sin(πx/2)− x) dx

=

(
x2

2
+

2

π
cos

(πx

2

))∣∣∣∣0
−1

+

(
− 2

π
cos

(πx

2

)
− x2

2

)∣∣∣∣1
0

=

((
(0)2

2
+

2

π
cos

(
π(0)

2

))
−

(
(−1)2

2
+

2

π
cos

(
π(−1)

2

)))
+

((
− 2

π
cos

(
π(1)

2

)
− (1)2

2

)
−

(
− 2

π
cos

(
π(0)

2

)
− (0)2

2

))
=

(
0 +

2

π
(1)

)
−

(
1

2
+

2

π
(0)

)
+

(
− 2

π
(0)− 1

2

)
−

(
− 2

π
(1)− 0

)
= 2

(
2

π
− 1

2

)
.�
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Exercise 5.6.90

Exercise 5.6.90 (continued)

Solution (continued). . . .We have x ≥ sin(πx/2) for x ∈ [−1, 0], and
sin(πx/2) ≥ x for x ∈ [0, 1]. So the area enclosed by y = x and
y = sin(πx/2) is given by the sum of the integrals:

A =

∫ 0

−1
(x − sin(πx/2)) dx +

∫ 1

0
(sin(πx/2)− x) dx

=

(
x2

2
+

2

π
cos

(πx

2

))∣∣∣∣0
−1

+

(
− 2

π
cos

(πx

2

)
− x2

2

)∣∣∣∣1
0

=

((
(0)2

2
+

2

π
cos

(
π(0)

2

))
−

(
(−1)2

2
+

2

π
cos

(
π(−1)

2

)))
+

((
− 2

π
cos

(
π(1)

2

)
− (1)2

2

)
−

(
− 2

π
cos

(
π(0)

2

)
− (0)2

2

))
=

(
0 +

2

π
(1)

)
−

(
1

2
+

2

π
(0)

)
+

(
− 2

π
(0)− 1

2

)
−

(
− 2

π
(1)− 0

)
= 2

(
2

π
− 1

2

)
.�
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Exercise 5.6.78

Exercise 5.6.78

Exercise 5.6.78. Find the area of the region bounded by the curves
x − y2 = 0 and x + 2y2 = 3.

Solution. We need to find where these curves intersect. We have x = y2

and x = 3− 2y2, so to find the intersection we set the x-coordinates equal
and consider y2 = 3− 2y2 or 3y2 = 3 or y = ±1. Notice that for both
curves we have x as a function of y . The graphs are:
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Exercise 5.6.78

Exercise 5.6.78 (continued)

Solution (continued).

Notice that x = 3− 2y2 is on the right
and x = y2 is on the left. So we
integrate with respect to y from −1 to 1
the difference (3− 2y2)− (y2):

∫ 1

−1
(3− 2y2)− (y2) dy =

∫ 1

−1
3− 3y2 dy =

(
3y − y3

)∣∣1
−1

= (3(1)− (1)3)− (3(−1)− (−1)3) = 4 . �
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Exercise 5.6.78

Exercise 5.6.78 (continued)

Solution (continued).
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Exercise 5.6.108

Exercise 5.6.108

Exercise 5.6.108. Find the area of the region in the first quadrant
bounded on the left by the y -axis, below by the curve x = 2

√
y , above left

by the curve x = (y − 1)2, and above right be the line x = 3− y :

Solution. Notice for y ∈ [0, 1] that the graph of x = 2
√

y is on the right
of the region and x = 0 is on the left. For y ∈ [1, 2] the graph of
x = 3− y is on the right of the region and x = (y − 1)2 is on the left. So
the area is the sum of two integrals with respect to y : . . .
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Exercise 5.6.108

Exercise 5.6.108 (continued 1)

Solution (continued).

So the area is the sum of two integrals with respect to y :

A =

∫ 1

0
(2
√

y − 0) dy +

∫ 2

1
((3− y)− (y − 1)2) dy

=

∫ 1

0
2y1/2 dy +

∫ 2

1
−y2 + y + 2 dy

= 2

(
2

3
y3/2

)∣∣∣∣1
0

+

(
−1

3
y3 +

1

2
y2 + 2y

)∣∣∣∣2
1
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Exercise 5.6.108

Exercise 5.6.108 (continued 2)

Solution (continued).

A = 2

(
2

3
y3/2

)∣∣∣∣1
0

+

(
−1

3
y3 +

1

2
y2 + 2y

)∣∣∣∣2
1

=

(
4

3
(1)3/2 − 4

3
(0)3/2

)
+

(
−(2)3

3
+

(2)2

2
+ 2(2)

)
−

(
−(1)3

3
+

(1)2

2
+ 2(1)

)

=
4

3
+

(
−8

3
+ 2 + 4

)
−

(
−1

3
+

1

2
+ 2

)
= 3− 1

2
=

5

2
. �
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Exercise 5.6.114

Exercise 5.6.114

Exercise 5.6.114. Show that if f is continuous, then∫ 1

0
f (x) dx =

∫ 1

0
f (1− x) dx .

Solution. We have∫ 1

0
f (1− x) dx =

∫ 0

1
f (u) (−du) where u = 1− x and so du = −dx

or − du = dx and when x = 0 then u = 1− (0) = 1,

and when x = 1 then u = 1− (1) = 0

= −
∫ 0

1
f (u) du =

∫ 1

0
f (u) du by Order of Integration,

Theorem 5.2(1)

=

∫ 1

0
f (x) dx replacing the variable of integration.

�
() Calculus 1 November 9, 2020 28 / 29



Exercise 5.6.114

Exercise 5.6.114

Exercise 5.6.114. Show that if f is continuous, then∫ 1

0
f (x) dx =

∫ 1

0
f (1− x) dx .

Solution. We have∫ 1

0
f (1− x) dx =

∫ 0

1
f (u) (−du) where u = 1− x and so du = −dx

or − du = dx and when x = 0 then u = 1− (0) = 1,

and when x = 1 then u = 1− (1) = 0

= −
∫ 0

1
f (u) du =

∫ 1

0
f (u) du by Order of Integration,

Theorem 5.2(1)

=

∫ 1

0
f (x) dx replacing the variable of integration.

�
() Calculus 1 November 9, 2020 28 / 29



Exercise 5.6.118

Exercise 5.6.118

Exercise 5.6.118. By using a substitution, prove that for all positive

numbers x and y ,

∫ xy

x

1

t
dt =

∫ y

1

1

t
dt.

Proof. We have∫ xy

x

1

t
dt =

∫ y

1

1

ux
x du where u = t/x (or t = ux) and so du = 1/x dt

or x du = dt and when t = x then u = (x)/x = 1,

and when t = xy then u = (xy)/x = y

=

∫ y

1

1

u
du

=

∫ y

1

1

t
dt replacing the variable of integration.
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