Chapter 1. Functions
1.3. Trigonometric Functions—Examples and Proofs
1	Exercise 1.3.2
2	Exercise 1.3.6
3	Exercise 1.3.31
4	Example 1.3.A
5	Exercise 1.3.68
Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π. Find the angle’s radian and degree measure.

Solution. The radius is $r = 8$ and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = \frac{5\pi}{4}$.
Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π. Find the angle’s radian and degree measure.

Solution. The radius is $r = 8$ and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = \frac{5\pi}{4}$.

To convert θ to degrees, we multiply by the conversion factor of $180^\circ/\pi$ (or, if you like, $(180/\pi)^\circ$/radian; but remember that that radians are unitless). So we have $\theta = (5\pi/4)(180^\circ/\pi) = 225^\circ$. □
Exercise 1.3.2. A central angle in a circle of radius 8 is subtended by an arc of length 10π. Find the angle’s radian and degree measure.

Solution. The radius is $r = 8$ and the arc length is $s = 10\pi$. Since $\theta = s/r$, then here $\theta = (10\pi)/8 = \frac{5\pi}{4}$.

To convert θ to degrees, we multiply by the conversion factor of $180^\circ/\pi$ (or, if you like, $(180/\pi)^\circ$/radian; but remember that that radians are unitless). So we have $\theta = (5\pi/4)(180^\circ/\pi) = 225^\circ$. □
Exercise 1.3.6. Finish the following table of trigonometric values of some special angles:

<table>
<thead>
<tr>
<th>θ</th>
<th>$-\frac{3\pi}{2}$</th>
<th>$-\frac{\pi}{3}$</th>
<th>$-\frac{\pi}{6}$</th>
<th>$\frac{\pi}{4}$</th>
<th>$\frac{5\pi}{6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cot \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sec \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\csc \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1.3.6 (continued 1)

Solution. For $\theta = -3\pi/2$, the point on the unit circle and terminal side of θ is $(x, y) = (0, 1)$. By definition, since $r = 1$ on the unit circle, we have

\[
\begin{align*}
\sin(-3\pi/2) &= y/r = 1/1 = 1, \\
\cos(-3\pi/2) &= x/r = 0/1 = 0, \\
\sec(-3\pi/2) &= r/x \text{ is undefined}, \\
\csc(-3\pi/2) &= r/y = 1/1 = 1, \\
\tan(-3\pi/2) &= y/x \text{ is undefined}, \\
\cot(-3\pi/2) &= x/y = 0/1 = 0.
\end{align*}
\]
Solution (continued). For $\theta = -\pi/3$, we use the special right triangle containing an angle of $\pi/3$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (1/2, -\sqrt{3}/2)$. By definition, since $r = 1$ on the unit circle, we have $\sin(-\pi/3) = y/r = (-\sqrt{3}/2)/(1) = -\sqrt{3}/2$, $\cos(-\pi/3) = x/r = (1/2)/(1) = 1/2$, $\sec(-\pi/3) = r/x = (1)/(1/2) = 2$, $\csc(-\pi/3) = r/y = (1)/(-\sqrt{3}/2) = -2/\sqrt{3}$, $\tan(-\pi/3) = y/x = (-\sqrt{3}/2)/(1/2) = -\sqrt{3}$, and $\cot(-\pi/3) = x/y = (1/2)/(-\sqrt{3}/2) = -1/\sqrt{3}$.
Solution (continued). For $\theta = -\pi/6$, we use the special right triangle containing an angle of $\pi/6$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (\sqrt{3}/2, -1/2)$. By definition, since $r = 1$ on the unit circle, we have

\[
\sin(-\pi/6) = y/r = (-1/2)/(1) = -1/2,
\]

\[
\cos(-\pi/6) = x/r = (\sqrt{3}/2)/(1) = \sqrt{3}/2,
\]

\[
\sec(-\pi/6) = r/x = (1)/(\sqrt{3}/2) = 2/\sqrt{3},
\]

\[
\csc(-\pi/6) = r/y = (1)/(-1/2) = -2,
\]

\[
\tan(-\pi/6) = y/x = (-1/2)/(\sqrt{3}/2) = -1/\sqrt{3}, \text{ and}
\]

\[
\cot(-\pi/6) = x/y = (\sqrt{3}/2)/(-1/2) = -\sqrt{3}.
\]
Solution (continued). For $\theta = \pi/4$, we use the special right triangle containing an angle of $\pi/4$ to find that the point on the unit circle and terminal side of θ is $(x, y) = (\sqrt{2}/2, \sqrt{2}/2)$. By definition, since $r = 1$ on the unit circle, we have $\sin(\pi/4) = y/r = (\sqrt{2}/2)/(1) = \sqrt{2}/2$,
$\cos(\pi/4) = x/r = (\sqrt{2}/2)/(1) = \sqrt{2}/2$,
$\sec(\pi/4) = r/x = (1)/(\sqrt{2}/2) = \sqrt{2}$,
$\csc(\pi/4) = r/y = (1)/(\sqrt{2}/2) = \sqrt{2}$,
$\tan(\pi/4) = y/x = (\sqrt{2}/2)/(\sqrt{2}/2) = 1$, and
$\cot(\pi/4) = x/y = (\sqrt{2}/2)/(\sqrt{2}/2) = 1$.
Solution (continued). For \(\theta = 5\pi/6 \), we use the special right triangle containing an angle of \(5\pi/6 \) to find that the point on the unit circle and terminal side of \(\theta \) is \((x, y) = (-\sqrt{3}/2, 1/2)\). By definition, since \(r = 1 \) on the unit circle, we have \[\sin(5\pi/6) = y/r = (1/2)/(1) = 1/2, \]
\[\cos(5\pi/6) = x/r = (-\sqrt{3}/2)/(1) = -\sqrt{3}/2, \]
\[\sec(5\pi/6) = r/x = (1)/(-\sqrt{3}/2) = -2/\sqrt{3}, \]
\[\csc(5\pi/6) = r/y = (1)/(1/2) = 2, \]
\[\tan(5\pi/6) = y/x = (1/2)/(-\sqrt{3}/2) = -1/\sqrt{3}, \text{ and} \]
\[\cot(5\pi/6) = x/y = (-\sqrt{3}/2)/(1/2) = -\sqrt{3}. \]
Solution (continued). We therefore have:

<table>
<thead>
<tr>
<th>θ</th>
<th>$-\frac{3\pi}{2}$</th>
<th>$-\frac{\pi}{3}$</th>
<th>$-\frac{\pi}{6}$</th>
<th>$\frac{\pi}{4}$</th>
<th>$\frac{5\pi}{6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td>1</td>
<td>$-\sqrt{3}/2$</td>
<td>$-1/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>0</td>
<td>$1/2$</td>
<td>$\sqrt{3}/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$-\sqrt{3}/2$</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>UND</td>
<td>$-\sqrt{3}$</td>
<td>$-1/\sqrt{3}$</td>
<td>1</td>
<td>$-1/\sqrt{3}$</td>
</tr>
<tr>
<td>$\cot \theta$</td>
<td>0</td>
<td>$-1/\sqrt{3}$</td>
<td>$-\sqrt{3}$</td>
<td>1</td>
<td>$-\sqrt{3}$</td>
</tr>
<tr>
<td>$\sec \theta$</td>
<td>UND</td>
<td>2</td>
<td>$2/\sqrt{3}$</td>
<td>$\sqrt{2}$</td>
<td>$-2/\sqrt{3}$</td>
</tr>
<tr>
<td>$\csc \theta$</td>
<td>1</td>
<td>$-2/\sqrt{3}$</td>
<td>-2</td>
<td>$\sqrt{2}$</td>
<td>2</td>
</tr>
</tbody>
</table>
Exercise 1.3.31. Use the addition formulas to derive the identity
\[\cos \left(x - \frac{\pi}{2} \right) = \sin x. \]

Solution. We have the formula \(\cos(A - B) = \cos A \cos B + \sin A \sin B \), so with \(A = x \) and \(B = \pi/2 \) we have
\[
\cos(x - \pi/2) = \cos x \cos \pi/2 + \sin x \sin \pi/2 = \cos x(0) + \sin x(1) = \sin x.
\]
Exercise 1.3.31. Use the addition formulas to derive the identity
\[\cos \left(x - \frac{\pi}{2} \right) = \sin x. \]

Solution. We have the formula \(\cos(A - B) = \cos A \cos B + \sin A \sin B \), so with \(A = x \) and \(B = \pi/2 \) we have
\[\cos(x - \pi/2) = \cos x \cos \pi/2 + \sin x \sin \pi/2 = \cos x(0) + \sin x(1) = \sin x. \]
\(\square \)

Notice that \(x \) and \(x - \pi/2 \) are complementary angles since
\((x) + (x - \pi/2) = \pi/2 \). So this exercise shows that the sine of an angle equals the cosine of its complement; *this* is why cosine is called “cosine.”
Exercise 1.3.31. Use the addition formulas to derive the identity
\[\cos \left(x - \frac{\pi}{2} \right) = \sin x. \]

Solution. We have the formula \(\cos(A - B) = \cos A \cos B + \sin A \sin B \), so with \(A = x \) and \(B = \pi/2 \) we have
\[\cos(x - \pi/2) = \cos x \cos \pi/2 + \sin x \sin \pi/2 = \cos x(0) + \sin x(1) = \sin x. \]
□

Notice that \(x \) and \(x - \pi/2 \) are complementary angles since
\((x) + (x - \pi/2) = \pi/2 \). So this exercise shows that the sine of an angle equals the cosine of its complement; *this* is why cosine is called “cosine.”
Example 1.3.A. For any angle θ measured in radians, we have $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$.

Solution. As in Figure 1.47, we put θ in standard position. Since the circle is a unit circle (that is, $r = 1$), then $|\theta|$ equals the length of the circular arc AP.
Example 1.3.A. For any angle θ measured in radians, we have $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$.

Solution. As in Figure 1.47, we put θ in standard position. Since the circle is a unit circle (that is, $r = 1$), then $|\theta|$ equals the length of the circular arc AP.
Solution (continued). We see from the figure that the length of line segment AP is less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. So by the Pythagorean Theorem (and the fact that $AP \leq |\theta|$) we have

$$\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \leq \theta^2.$$

So we have both $\sin^2 \theta \leq \theta^2$ and $(1 - \cos \theta)^2 \leq \theta^2$.

\[\hspace{10cm} \]
Solution (continued). We see from the figure that the length of line segment AP is less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. So by the Pythagorean Theorem (and the fact that $AP \leq |\theta|$) we have

$$\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \leq \theta^2.$$

So we have both $\sin^2 \theta \leq \theta^2$ and $(1 - \cos \theta)^2 \leq \theta^2$. Taking square roots (and observing that the square root function is an increasing function so that it preserves inequalities),

$$\sqrt{\sin^2 \theta} \leq \sqrt{\theta^2} \quad \text{and} \quad \sqrt{(1 - \cos \theta)^2} \leq \sqrt{\theta^2},$$

or $|\sin \theta| \leq |\theta|$ and $|1 - \cos \theta| \leq |\theta|$. These two inequalities imply that $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$, as claimed (see Appendix A.1. Real Numbers and the Real Line where intervals are related to absolute values). □
Example 1.3.A (continued)

Solution (continued). We see from the figure that the length of line segment AP is less than or equal to $|\theta|$. Triangle APQ is a right triangle with sides of length $QP = |\sin \theta|$ and $AQ = 1 - \cos \theta$. So by the Pythagorean Theorem (and the fact that $AP \leq |\theta|$) we have

$$\sin^2 \theta + (1 - \cos \theta)^2 = (AP)^2 \leq \theta^2.$$

So we have both $\sin^2 \theta \leq \theta^2$ and $(1 - \cos \theta)^2 \leq \theta^2$. Taking square roots (and observing that the square root function is an increasing function so that it preserves inequalities),

$$\sqrt{\sin^2 \theta} \leq \sqrt{\theta^2} 	ext{ and } \sqrt{(1 - \cos \theta)^2} \leq \sqrt{\theta^2},$$

or $|\sin \theta| \leq |\theta|$ and $|1 - \cos \theta| \leq |\theta|$. These two inequalities imply that $-|\theta| \leq \sin \theta \leq |\theta|$ and $-|\theta| \leq 1 - \cos \theta \leq |\theta|$, as claimed (see Appendix A.1. Real Numbers and the Real Line where intervals are related to absolute values). □
Exercise 1.3.68

Exercise 1.3.68. The general sine curve is

$$f(x) = A \sin \left(\frac{2\pi}{B} (x - C) \right) + D.$$

For $y = \frac{1}{2} \sin(\pi x - \pi) + \frac{1}{2}$ identify A, B, C, and D and sketch the graph.

Solution. First we write

$$y = \frac{1}{2} \sin(\pi x - \pi) + \frac{1}{2} = \frac{1}{2} \sin (\pi(x - 1)) + \frac{1}{2} = \frac{1}{2} \sin \left(\frac{2\pi}{2} (x - 1) \right) + \frac{1}{2}.$$

We have $A = 1/2$, $B = 2$, $C = 1$, and $D = 1/2$. Now A is the amplitude, B is the period, C is the horizontal shift, and $y = D$ is the axis. ...
Exercise 1.3.68

Exercise 1.3.68. The general sine curve is

\[f(x) = A \sin \left(\frac{2\pi}{B} (x - C) \right) + D. \]

For \(y = \frac{1}{2} \sin(\pi x - \pi) + \frac{1}{2} \) identify \(A, B, C, \) and \(D \) and sketch the graph.

Solution. First we write

\[y = \frac{1}{2} \sin(\pi x - \pi) + \frac{1}{2} = \frac{1}{2} \sin (\pi (x - 1)) + \frac{1}{2} = \frac{1}{2} \sin \left(\frac{2\pi}{2} (x - 1) \right) + \frac{1}{2}. \]

We have \(A = 1/2, B = 2, C = 1, \) and \(D = 1/2. \) Now \(A \) is the amplitude, \(B \) is the period, \(C \) is the horizontal shift, and \(y = D \) is the axis. . . .
Solution (continued). We have $A = \frac{1}{2}$, $B = 2$, $C = 1$, and $D = \frac{1}{2}$. Now A is the amplitude, B is the period, C is the horizontal shift, and $y = D$ is the axis.