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Example 2.2.A

Example 2.2.A

Example 2.2.A. Use the above technique to evaluate lim
x→3

x2 − 4x + 3

x − 3
.

Solution. Let f (x) =
x2 − 4x + 3

x − 3
=

(x − 1)(x − 3)

x − 3
. Then f (x) = x − 1

if x 6= 3, and so lim
x→3

x2 − 4x + 3

x − 3
= lim

x→3
x − 1 if x 6= 3.

But we have seen

that it does not matter what happens at x = 3 when considering a limit as

x approaches 3. So even though
x2 − 4x + 3

x − 3
and x − 1 are different

functions (they only differ at x = 3 where f is undefined and where x − 1
is 2), their limits are the same:

lim
x→3

x2 − 4x + 3

x − 3
= lim

x→3
x − 1.

For x “close to” 3, x − 1 is close to (3)− 1 = 2. So

lim
x→3

x2 − 4x + 3

x − 3
= lim

x→3
x − 1 = (3)− 1 = 2 . �
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Exercise 2.2.2

Exercise 2.2.2.

Exercise 2.2.2. For the function f (t) graphed here, find the following
limits or explain why they do not exist.
(a) lim

t→−2
f (t),

(b) lim
t→−1

f (t),

(c) lim
t→0

f (t),

(d) lim
t→−0.5

f (t)

Solution. (a) When considering lim
t→−2

f (t), we apply Dr. Bobs

Anthropomorphic Definition of Limit and see if there is a point that the
graph of s = f (t) tries to pass through for t near −2.

There is such a
point; the graph of s = f (t) tries to pass through the point (−2, 0) (and it

fails). So we conclude that lim
t→−2

f (t) = 0 . �
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Exercise 2.2.2

Exercise 2.2.2 (continued 1).

Solution (continued). (b) When considering lim
t→−1

f (t), we apply Dr.

Bobs Anthropomorphic Definition of Limit and see if there is a point that
the graph of s = f (t) tries to pass through for t near −1. There is such a
point; the graph of s = f (t) tries to pass through the point (−1,−1) (and

it succeeds). So we conclude that lim
t→−1

f (t) = −1 . �
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Exercise 2.2.2

Exercise 2.2.2 (continued 2).

Solution (continued). (c) When considering lim
t→0

f (t), we apply Dr.

Bobs Anthropomorphic Definition of Limit and see if there is a point that
the graph of s = f (t) tries to pass through for t near 0. There is no such
point! The graph approaches the point (0,−1) when t is close to 0 and
less than 0, but the graph approaches the point (0, 1) when t is close to 0
and greater than 0 (it doesn’t matter what happens at 0). Since there is

no (single) such point, we conclude that lim
t→0

f (t) does not exist . �
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Exercise 2.2.2

Exercise 2.2.2 (continued 3).

Solution (continued). (d) When considering lim
t→−0.5

f (t), we apply Dr.

Bobs Anthropomorphic Definition of Limit and see if there is a point that
the graph of s = f (t) tries to pass through for t near −0.5. There is such
a point; the graph of s = f (t) tries to pass through the point (−0.5,−1)

(and it succeeds). So we conclude that lim
t→−0.5

f (t) = −1 . �
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Exercise 2.2.2

Exercise 2.2.2 (continued 3).

Solution (continued). (d) When considering lim
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Exercise 2.2.52

Exercise 2.2.52

Exercise 2.2.52. Let limx→1 h(x) = 5, limx→1 p(x) = 1, and
limx→1 r(x) = 2. Name the rules in Theorem 2.1 that are used to
accomplish steps (a), (b), and (c) of the following calculation.

lim
x→1

p
5h(x)

p(x)(4− r(x))
=

limx→1

p
5h(x)

limx→1(p(x)(4− r(x)))
(a)

=

p
limx→1 5h(x)

(limx→1 p(x)) (limx→1(4− r(x))
(b)

=

p
5 limx→1 h(x)

(limx→1 p(x)) (limx→1 4− limx→1 r(x))
(c)

=

p
(5)(5)

(1)(4− 2)
=

5

2
.

Solution. In (a) we have used the fact that the limit of a quotient is the
quotient of the limits (Theorem 2.1(5), Quotient Rule), provided the
denominator doesn’t have a limit of 0.

In (b) we, we have used the Root
Rule (Theorem 2.1(7)) in the numerator, and the Product Rule (Theorem
2.1(4)) in the denominator.
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Exercise 2.2.52

Exercise 2.2.52 (continued)

Exercise 2.2.52. Let limx→1 h(x) = 5, limx→1 p(x) = 1, and
limx→1 r(x) = 2. Name the rules in Theorem 2.1 that are used to
accomplish steps (a), (b), and (c) of the following calculation.

lim
x→1

p
5h(x)

p(x)(4− r(x))
=

limx→1

p
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(c)
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p
(5)(5)

(1)(4− 2)
=

5

2
.

Solution (continued). In (c) we, we have used the Constant Multiple
Rule (Theorem 2.1(3)) in the numerator, and the Difference Rule
(Theorem 2.1(2)) in the denominator. In the last step we have substituted
in the given limit values (and used Note 2.2.A). �
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Theorem 2.2. Limits of Polynomials Can Be Found by Substitution

Theorem 2.2

Theorem 2.2. Limits of Polynomials Can Be Found by Substitution.
If P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then

lim
x→c

P(x) = P(c) = anc
n + an−1c

n−1 + · · ·+ a1c + a0.

Proof. We apply Theorem 2.1, “Limit Rules.” We have

lim
x→c

P(x) = lim
x→c

(anx
n + an−1x

n−1 + · · ·+ a1x + a0)

by the definition of P

= lim
x→c

anx
n + lim

x→c
an−1x

n−1 + · · ·+ lim
x→c

a1x + lim
x→c

a0

by repeated use of the Sum Rule, Theorem 2.1(1)

= an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x + lim
x→c

a0

by repeated use of the Constant Multiple Rule,

Theorem 2.1(3). . .

() Calculus 1 September 2, 2020 10 / 26



Theorem 2.2. Limits of Polynomials Can Be Found by Substitution

Theorem 2.2

Theorem 2.2. Limits of Polynomials Can Be Found by Substitution.
If P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then

lim
x→c

P(x) = P(c) = anc
n + an−1c

n−1 + · · ·+ a1c + a0.

Proof. We apply Theorem 2.1, “Limit Rules.” We have

lim
x→c

P(x) = lim
x→c

(anx
n + an−1x

n−1 + · · ·+ a1x + a0)

by the definition of P

= lim
x→c

anx
n + lim

x→c
an−1x

n−1 + · · ·+ lim
x→c

a1x + lim
x→c

a0

by repeated use of the Sum Rule, Theorem 2.1(1)

= an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x + lim
x→c

a0

by repeated use of the Constant Multiple Rule,

Theorem 2.1(3). . .

() Calculus 1 September 2, 2020 10 / 26



Theorem 2.2. Limits of Polynomials Can Be Found by Substitution

Theorem 2.2

Theorem 2.2. Limits of Polynomials Can Be Found by Substitution.
If P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then

lim
x→c

P(x) = P(c) = anc
n + an−1c

n−1 + · · ·+ a1c + a0.

Proof. We apply Theorem 2.1, “Limit Rules.” We have

lim
x→c

P(x) = lim
x→c

(anx
n + an−1x

n−1 + · · ·+ a1x + a0)

by the definition of P

= lim
x→c

anx
n + lim

x→c
an−1x

n−1 + · · ·+ lim
x→c

a1x + lim
x→c

a0

by repeated use of the Sum Rule, Theorem 2.1(1)

= an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x + lim
x→c

a0

by repeated use of the Constant Multiple Rule,

Theorem 2.1(3). . .

() Calculus 1 September 2, 2020 10 / 26



Theorem 2.2. Limits of Polynomials Can Be Found by Substitution

Theorem 2.2

Theorem 2.2. Limits of Polynomials Can Be Found by Substitution.
If P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then

lim
x→c

P(x) = P(c) = anc
n + an−1c

n−1 + · · ·+ a1c + a0.

Proof. We apply Theorem 2.1, “Limit Rules.” We have

lim
x→c

P(x) = lim
x→c

(anx
n + an−1x

n−1 + · · ·+ a1x + a0)

by the definition of P

= lim
x→c

anx
n + lim

x→c
an−1x

n−1 + · · ·+ lim
x→c

a1x + lim
x→c

a0

by repeated use of the Sum Rule, Theorem 2.1(1)

= an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x + lim
x→c

a0

by repeated use of the Constant Multiple Rule,

Theorem 2.1(3). . .

() Calculus 1 September 2, 2020 10 / 26



Theorem 2.2. Limits of Polynomials Can Be Found by Substitution

Theorem 2.2 (continued)

Theorem 2.2. Limits of Polynomials Can Be Found by Substitution.
If P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then

lim
x→c

P(x) = P(c) = anc
n + an−1c

n−1 + · · ·+ a1c + a0.

Proof (continued).

lim
x→c

P(x) = an lim
x→c

xn + an−1 lim
x→c

xn−1 + · · ·+ a1 lim
x→c

x + lim
x→c

a0

= an

(
lim
x→c

x
)n

+ an−1

(
lim
x→c

x
)n−1

+ · · ·+ a1

(
lim
x→c

x
)

+ lim
x→c

a0

by repeated use of the Power Rule, Theorem 2.1(6)

= an(c)n + an−1(c)n−1 + · · ·+ a1(c) + a0 by Note 2.2.A

= anc
n + an−1c

n−1 + · · ·+ a1c + a0,

as claimed.
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Theorem 2.3. Limits of Rational Functions Can Be Found by
Substitution IF the Limit of the Denominator Is Not Zero

Theorem 2.3

Theorem 2.3. Limits of Rational Functions Can Be Found by
Substituting IF the Limit of the Denominator Is Not Zero.
If P and Q are polynomials and Q(c) 6= 0, then

lim
x→c

P(x)

Q(x)
=

limx→c P(x)

limx→c Q(x)
=

P(c)

Q(c)
.

Proof. We apply Theorem 2.1 and Theorem 2.2. Since P and Q are
polynomials then, by Theorem 2.2, lim

x→c
P(x) = P(c) and

lim
x→c

Q(x) = Q(c). By hypothesis Q(c) 6= 0, so by the Quotient Rule

(Theorem 2.1(5)) we have

lim
x→c

P(x)

Q(x)
=

limx→c P(x)

limx→c Q(x)
=

P(c)

Q(c)
,

as claimed.
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limx→c Q(x)
=

P(c)

Q(c)
,

as claimed.
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Exercise 2.2.14

Exercise 2.2.14

Exercise 2.2.14. Evaluate limx→−2 x3 − 2x2 + 4x + 8.

Solution. Since P(x) = x3 − 2x2 + 4x + 8 is a polynomial function, then
by Theorem 2.2

lim
x→−2

P(x) = lim
x→−2

x3 − 2x2 + 4x + 8 = P(−2)

= (−2)3 − 2(−2)2 + 4(−2) + 8 = −8− 8− 8 + 8 = −16.
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Exercises 2.2.18

Exercise 2.2.18

Exercise 2.2.18. Evaluate lim
y→2

y + 2

y2 + 5y + 6
.

Solution. Since R(y) =
P(y)

Q(y)
=

y + 2

y2 + 5y + 6
is a rational function (with

the numerator as the polynomial function P(y) = y + 2 and the
denominator as the polynomial function Q(y) = y2 + 5y + 6) where, by
Theorem 2.2, lim

y→2
P(y) = lim

y→2
y + 2 = P(2) = (2) + 2 = 4 and

lim
y→2

Q(y) = lim
y→2

y2+5y+6 = Q(2) = (2)2+5(2)+6 = 4+10+6 = 20 6= 0,

then by Theorem 2.3

lim
y→2

R(y) = lim
y→2

P(y)

Q(y)
=

limy→2 P(y)

limy→2 Q(y)
=

P(2)

Q(2)
=

4

20
=

1

5
.
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Exercise 2.2.34

Exercise 2.2.34

Exercise 2.2.34. Evaluate lim
v→2

v3 − 8

v4 − 16
.

Solution. We apply Dr. Bob’s Limit Theorem (Theorem 2.2.A), which
allows us to Factor/Cancel/Substitute. Recall that
a3 − b3 = (a− b)(a2 + ab + b2) (the difference of cubes identity), so we
have that
v3 − 8 = v3 − 23 = (v − 2)(v2 + 2v + 22) = (v − 2)(v2 + 2v + 4).

We
then have

lim
v→2

v3 − 8

v4 − 16
= lim

v→2

(v − 2)(v2 + 2v + 4)

(v2 − 4)(v2 + 4)
using the

difference of cubes identity and the fact that

v4 − 16 = (v2)2 − 42 is a difference of two squares

= lim
v→2

(v − 2)(v2 + 2v + 4)

(v − 2)(v + 2)(v2 + 4)
since v2 − 4 = v2 − 22

is a difference of two squares (∗)
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Exercise 2.2.34

Exercise 2.2.34 (continued 1)

Exercise 2.2.34. Evaluate lim
v→2

v3 − 8

v4 − 16
.

Solution (continued).

lim
v→2

v3 − 8

v4 − 16
= lim

v→2

(v − 2)(v2 + 2v + 4)

(v − 2)(v + 2)(v2 + 4)

= lim
v→2

(v2 + 2v + 4)

(v + 2)(v2 + 4)
cancelling the factors (v − 2)

and applying Dr. Bob’s Limit Theorem (∗∗)

=
(2)2 + 2(2) + 4

((2) + 2)((2)2 + 4)
substituting, by Theorem 2.3

(Limits of Rational Functions) (∗ ∗ ∗)

=
4 + 4 + 4

(4)(4 + 4)
=

12

32
=

3

8
. �
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Exercise 2.2.34

Exercise 2.2.34 (continued 1)
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Exercise 2.2.34

Exercise 2.2.34 (continued 2)

Note. We repeat the starred equations here to emphasize that we have
Factored (at step (∗)), Cancelled (at step (∗∗)), and Substituted (at step
(∗ ∗ ∗)):

lim
v→2

v3 − 8

v4 − 16
= lim

v→2

(v − 2)(v2 + 2v + 4)

(v − 2)(v + 2)(v2 + 4)
(∗)

= lim
v→2

(v2 + 2v + 4)

(v + 2)(v2 + 4)
(∗∗)

=
(2)2 + 2(2) + 4

((2) + 2)((2)2 + 4)
= 3/8. (∗ ∗ ∗)

This is a common way to evaluate limits! Here, the steps are justified by
algebra (the Factoring), Dr. Bob’s Limit Theorem (the Cancellation), and
Theorem 2.3 (the Substitution). One must be careful when substituting to
avoid division by zero, square roots of negatives, logarithms of zero or
negatives, or other forbidden mathematical maneuvers! If Theorem 2.3
applies, then the “FCS” technique can be used on any rational function. �
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Exercises 2.2.38

Exercise 2.2.38

Exercise 2.2.38. Evaluate lim
x→−1

√
x2 + 8− 3

x + 1
.

Solution. It turns out that this can be evaluated by the FCS method, but
first we must multiply by the “conjugate” of the numerator. Consider,

lim
x→−1

√
x2 + 8− 3

x + 1
= lim

x→−1

√
x2 + 8− 3

x + 1

„√
x2 + 8 + 3√
x2 + 8 + 3

«
multiplying by 1

= lim
x→−1

`√
x2 + 8

´2 − (3)2

(x + 1)(
√

x2 + 8 + 3)
= lim

x→−1

(x2 + 8)− 9

(x + 1)(
√

x2 + 8 + 3)

= lim
x→−1

x2 − 1

(x + 1)(
√

x2 + 8 + 3)

= lim
x→−1

(x + 1)(x − 1)

(x + 1)(
√

x2 + 8 + 3)
factoring

= lim
x→−1

x − 1√
x2 + 8 + 3

cancelling, by Dr. Bob’s Limit Theorem . . .
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Exercise 2.2.38. Evaluate lim
x→−1

√
x2 + 8− 3

x + 1
.

Solution. It turns out that this can be evaluated by the FCS method, but
first we must multiply by the “conjugate” of the numerator. Consider,

lim
x→−1

√
x2 + 8− 3

x + 1
= lim

x→−1

√
x2 + 8− 3

x + 1

„√
x2 + 8 + 3√
x2 + 8 + 3

«
multiplying by 1

= lim
x→−1

`√
x2 + 8

´2 − (3)2

(x + 1)(
√

x2 + 8 + 3)
= lim

x→−1

(x2 + 8)− 9

(x + 1)(
√

x2 + 8 + 3)

= lim
x→−1

x2 − 1

(x + 1)(
√

x2 + 8 + 3)

= lim
x→−1

(x + 1)(x − 1)

(x + 1)(
√

x2 + 8 + 3)
factoring

= lim
x→−1

x − 1√
x2 + 8 + 3

cancelling, by Dr. Bob’s Limit Theorem . . .

() Calculus 1 September 2, 2020 18 / 26



Exercises 2.2.38

Exercise 2.2.38 (continued)

Exercise 2.2.38. Evaluate lim
x→−1

√
x2 + 8− 3

x + 1
.

Solution (continued).

lim
x→−1

√
x2 + 8− 3

x + 1
= lim

x→−1

x − 1√
x2 + 8 + 3

=
limx→−1 x − 1

limx→−1

√
x2 + 8 + 3

by the Quotient Rule

(Theorem 3.1(5))

=
(−1)− 1√

(−1)2 + 8 + 3
substituting by Theorem 2.2

and the Root Rule (Theorem 3.1(7))

=
−2

6
=

−1

3
. �
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Example 2.2.11(a)(b)

Example 2.2.11(a)(b)

Example 2.2.11. Use the Sandwich Theorem to show that:
(a) lim

θ→0
sin θ = 0.

(b) lim
θ→0

cos θ = 1.

Solution. In Section 1.3 we saw that −|θ| ≤ sin θ ≤ |θ| and
0 ≤ 1− cos θ ≤ |θ| for all θ. See Figure 2.14.
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Example 2.2.11(a)(b)

Example 2.2.11(a)(b) (continued 1)

Solution (continued). (a) We take g(θ) = −|θ|, f (θ) = sin θ, and
h(θ) = |θ|. Then there is an open interval containing c = 0 such that
g(θ) ≤ f (θ) ≤ h(θ) (namely, the interval (−∞,∞)), except possibly at
c = 0 itself. By Dr. Bob’s Anthropomorphic Definition of Limit,
limθ→0 g(θ) = limθ→0−|θ| = 0 = L and limθ→0 h(θ) = limθ→0 |θ| = 0 = L.
So by the Sandwich Theorem (Theorem 2.4),
limθ→0 f (θ) = limθ→0 sin θ = L = 0 . �
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Example 2.2.11(a)(b)

Example 2.2.11(a)(b) (continued 2)

Solution (continued). (b) We take g(θ) = 0, f (θ) = 1− cos θ, and
h(θ) = |θ|. Then there is an open interval containing c = 0 such that
g(θ) ≤ f (θ) ≤ h(θ) (namely, the interval (−∞,∞)), except possibly at
c = 0 itself. By Dr. Bob’s Anthropomorphic Definition of Limit,
limθ→0 g(θ) = limθ→0 0 = 0 = L and limθ→0 h(θ) = limθ→0 |θ| = 0 = L.
So by the Sandwich Theorem (Theorem 2.4),
limθ→0 f (θ) = limθ→0(1− cos θ) = L = 0. By the Difference Rule
(Theorem 2.1(2)), limθ→0(1− cos θ) = 1− limθ→0 cos θ = 0, so
limθ→0 cos θ = 1 . �
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Example 2.2.11(a)(b)

Example 2.2.11(a)(b) (continued 2)

Solution (continued). (b) We take g(θ) = 0, f (θ) = 1− cos θ, and
h(θ) = |θ|. Then there is an open interval containing c = 0 such that
g(θ) ≤ f (θ) ≤ h(θ) (namely, the interval (−∞,∞)), except possibly at
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So by the Sandwich Theorem (Theorem 2.4),
limθ→0 f (θ) = limθ→0(1− cos θ) = L = 0. By the Difference Rule
(Theorem 2.1(2)), limθ→0(1− cos θ) = 1− limθ→0 cos θ = 0, so
limθ→0 cos θ = 1 . �
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Exercise 2.2.66(a)

Exercise 2.2.66(a)

Exercise 2.2.66(a). Suppose that the inequalities

1

2
− x2

24
<

1− cos x

x2
<

1

2

hold for values of x close to zero (that is, this holds on some open interval
containing zero, except at zero itself; we will see in Section 10.9 that this
does in fact hold). What, if anything, does this tell you about

lim
x→0

1− cos x

x2
? Give reasons for your answer.

Solution. We let g(x) =
1

2
− x2

24
, f (x) =

1− cos x

x2
, h(x) =

1

2
, and c = 0.

Then we have g(x) ≤ f (x) ≤ h(x) on some open interval containing c = 0
except at c = 0 itself, by hypothesis.

Now

lim
x→0

g(x) = lim
x→0

1

2
− x2

24
=

1

2
− 02

24
=

1

2
by Theorem 2.2, and

h(x) = lim
x→0

1

2
=

1

2
by Note 2.2.A.
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Exercise 2.2.66(a)

Exercise 2.2.66(a) (continued)

Exercise 2.2.66(a). Suppose that the inequalities

1

2
− x2

24
<

1− cos x

x2
<

1

2

hold for values of x close to zero (that is, this holds on some open interval
containing zero, except at zero itself; we will see in Section 10.9 that this
does in fact hold). What, if anything, does this tell you about

lim
x→0

1− cos x

x2
? Give reasons for our answer.

Solution (continued). That is,

lim
x→0

g(x) = lim
x→0

h(x) = L = 1/2.

Therefore, by the Sandwich Theorem (Theorem 2.4),

lim
x→0

f (x) = lim
x→0

1− cos x

x2
= L = 1/2 .

�
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Exercise 2.2.79

Exercise 2.2.79

Exercise 2.2.79. If lim
x→4

f (x)− 5

x − 2
= 1, then find limx→4 f (x).

Solution. We have

lim
x→4

f (x)− 5

x − 2
=

limx→4(f (x)− 5)

limx→4(x − 2)
by the Quotient Rule, Theorem 2.1(5)

=
limx→4 f (x)− limx→4(5)

limx→4(x − 2)
by the Difference Rule,

Theorem 2.1(2)

=
limx→4(f (x))− 5

(4)− 2
by Theorem 2.2

=
1

2
lim
x→4

(f (x))− 5

2
.
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Exercise 2.2.79

Exercise 2.2.79 (continued)

Exercise 2.2.79. If lim
x→4

f (x)− 5

x − 2
= 1, then find limx→4 f (x).

Solution (continued). Since lim
x→4

f (x)− 5

x − 2
= 1 by hypothesis, then

1

2
lim
x→4

(f (x))− 5

2
= 1, or lim

x→4
(f (x))− 5 = 2, and so limx→4 f (x) = 7 . �
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