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Example 2.3.1

Example 2.3.1

Example 2.3.1. Consider the function y = 2x − 1 near x = 4. Intuitively
it seems clear that y is close to 7 when x is close to 4, so
limx→4(2x − 1) = 7. However, how close to 4 does x have to be so that
y = 2x − 1 differs from 7 by, say, less than 2 units?

Solution. We use absolute value to measure distance, so the distance
between x and 4 is |x − 4|, and the distance between y and 7 is |y − 7|.
So the question has become: How small must |x − 4| be so that
|y − 7| < 2?

Since y = 2x − 1, we consider the desired inequality
|y − 7| = |(2x − 1)− 7| < 2. This is equivalent to |2x − 8| < 2 or
|2(x − 4)| < 2 or |x − 4| < 1. Hence, we see that to get the distance
between y = 2x − 1 and 7 to be less that 2,
the distance between x and 4 must be less than 1. We now consider the
graph of the function in light of this information.
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Example 2.3.1

Example 2.3.1 (continued)

Solution (continued). Notice that |x − 4| < 1 means −1 < x − 4 < 1 or
3 < x < 5. The inequality |y − 7| < 2 means −2 < y − 7 < 2 or
5 < y < 9. We have the following graph (Figure 2.15):

So we have |y − 7| < 2 (i.e., the graph of the
function lies in the horizontal yellow band)
when |x − 4| < 1 (i.e., when the graph of the
function lies in the vertical blue band). Notice
that if the yellow band is made smaller then
the blue band must also be made smaller (for
this function, the blue band must be at most 1/2
times the width of the yellow band).

With the
yellow band really narrow, the blue band must be
really narrow and the green box where they intersect must be really small;
in fact, the green box then closes in around the point (4, 7). Notice also
that the graph of the function tries to pass through this point (and it
succeeds). �
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Exercise 2.3.A

Exercise 2.3.A

Example 2.3.A. Prove for f (x) = mx + b, m 6= 0, that lim
x→a

f (x) = f (a).

Proof. In the notation of the definition of limit, we have f (x) = mx + b
where m 6= 0, c = a, and we claim L = f (a) = ma + b. Notice that f is
defined on all of R, so f is defined on an open interval about a (namely,
the interval (−∞,∞)) as required by the definition.

Next, let ε > 0. We need to find δ > 0 satisfying the conditions of the
definition of limit. We expect δ to depend in some way on ε.

We choose δ = ε/|m| > 0 (for now, never mind where this comes from;
Example 2.3.2 illustrates the idea behind this choice in the case that
m = 5); this is where we use the fact that m 6= 0. We want to show that
0 < |x − c | = |x − a| < δ implies |f (x)− L| = |(mx + b)− (ma + b)| < ε.
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Exercise 2.3.A

Exercise 2.3.A (continued)

Example 2.3.A. Prove for f (x) = mx + b, m 6= 0, that lim
x→a

f (x) = f (a).

Proof (continued). Suppose 0 < |x − a| < δ, or equivalently (given our
choice of δ) 0 < |x − a| < ε/|m|. Multiplying through by |m|, this implies
that 0 < |m| |x − a| < ε which in turn implies |m| |x − a| < ε or
|m(x − a)| < ε or |mx −ma| < ε or |mx + (b − b)−ma| < ε or
|(mx + b)− (ma + b)| < ε or |f (x)− f (a)| < ε, as desired.

Therefore, by
the definition of limit, limx→a f (x) = f (a).

Note. Notice the logic of being given an arbitrary ε > 0 first, and then
having to find (based on ε) a δ > 0 such that the definition of limit is
satisfied.
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Example 2.3.3

Exercise 2.3.3

Example 2.3.3. Use the formal definition of limit to prove:
(a) limx→c x = c , (b) limx→c k = k where k is a constant.

Proof. (a) We have f (x) = x and we claim L = c . Notice that f is
defined on all of R, so f is defined on an open interval about c (namely,
the interval (−∞,∞)) as required by the definition.

Next, let ε > 0. We choose δ = ε > 0.

Suppose 0 < |x − c | < δ, or equivalently (given our choice of δ)
0 < |x − c | < ε. This implies that |x − c | < ε, or |f (x)− L| < ε , as
desired. Therefore, by the definition of limit, limx→c x = c .
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Example 2.3.3

Exercise 2.3.3 (continued 1)

Note. In part (a), we chose δ = ε but we could have chosen δ > 0 to be
any value between 0 and ε. We would still have
|f (x)− L| = |x − c | < δ ≤ ε. This is illustrated in Figure 2.19:

Figure 2.19 (modified)
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Example 2.3.3

Exercise 2.3.3 (continued 2)

Example 2.3.3. Use the formal definition of limit to prove:
(a) limx→c x = c , (b) limx→c k = k where k is a constant.

Proof (continued). (b) We have f (x) = k and we claim L = k. Notice
that f is defined on all of R, so f is defined on an open interval about c
(namely, the interval (−∞,∞)) as required by the definition.

Next, let ε > 0. We choose δ = ε > 0.

Suppose 0 < |x − c | < δ. Then |k − k| = 0 < ε or |f (x)− L| < ε, as
desired. Therefore, by the definition of limit, limx→c k = k.
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Example 2.3.3

Exercise 2.3.3 (continued 3)

Note. In part (b), we have |f (x)− L| = |k − k| = 0 < ε, regardless of the
choice of δ so that we could have chosen δ > 0 as any value. This
property is unique to constant functions. This is illustrated in Figure 2.20:

Figure 2.20
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Example 2.3.4

Example 2.3.4

Example 2.3.4. For the limit limx→5

√
x − 1 = 2 (true by the Root Rule,

Theorem 2.1(7)), find δ > 0 that works for ε = 1. That is, find a δ > 0
such that

0 < |x − 5| < δ implies |
√

x − 1− 2| < 1.

Solution. The graph of the relevant part of y = f (x) =
√

x − 1 is given
in Figure 2.22:

Figure 2.22

In the notation of the definition of limit, we have
f (x) =

√
x − 1, c = 5, and we claim L = 2.

To get |f (x)− L| < ε, or |
√

x − 1− 2| < 1,
we need the graph of y = f (x) to lie in the
yellow band. We see that this occurs for x
between 2 and 10. Since we measure the
distance of x from 5, we see that we can go 3
units to the left and 5 units to the right of 5.
We let δ be the smaller of these two
distances. So we take δ = 3.
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Example 2.3.4

Example 2.3.4 (continued)

Notice that if 0 < |x − 5| < δ = 3, then x lies in the blue vertical band. So
the corresponding function values lie in the horizontal yellow band. Notice
that the graph y = f (x) then intersects the vertical edges of the resulting
green box and does not intersect the horizontal edges (except possibly at a
corner). So the chosen δ value of 3 yields the desired behavior:

0 < |x − 5| < δ implies |
√

x − 1− 2| < 1. �
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Exercise 2.3.20

Exercise 2.3.20

Exercise 2.3.20. Consider f (x) =
√

x − 7, c = 23, ε = 1, and L = 4.
Find an open interval about c on which the inequality |f (x)− L| < ε
holds. Then give a value for δ > 0 such that for all x satisfying
0 < |x − c | < δ, the inequality |f (x)− L| < ε holds.

Solution. First, notice that the domain of f (x) =
√

x − 7 is x ≥ 7.
Applying Step 1 of the previous note, we solve the inequality
|f (x)− L| < ε, or |

√
x − 7− 4| < 1. This is equivalent to

−1 <
√

x − 7− 4 < 1 or 3 <
√

x − 7 < 5 or (since the squaring function
is an increasing function for positive inputs) 32 < (

√
x − 7)2 < 52 or

9 < x − 7 < 25 or 16 < x < 32. So an open interval on which the

inequality holds is (16, 32) .

Now the distance from c = 23 to 16 is δ1 = 7, and the distance from
c = 23 to 32 is δ2 = 9. So we choose δ as the smaller of δ1 and δ2; that
is, we take δ = 7 . Then for 0 < |x − c | = |x − 23| < δ = 7, we have
x ∈ (16, 30) ⊂ (16, 32) and so the inequality holds, as desired. �
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Exercise 2.3.40

Exercise 2.3.40

Exercise 2.3.40. Prove that limx→0

√
4− x = 2.

Proof. We use the formal definition of limit. We have f (x) =
√

4− x ,
c = 0, and we claim L = 2. The domain of f is x ≤ 4, so f is defined on
an open interval containing c = 0, say (−∞, 4). Let ε > 0.

[This is not part of the proof! We step aside and look for δ > 0 such that
0 < |x − c | = |x − 0| = |x | < δ implies |f (x)− L| = |

√
4− x − 2| < ε.

Now |
√

4− x − 2| < ε is equivalent to −ε <
√

4− x − 2 < ε or
2− ε <

√
4− x < 2 + ε or (since the squaring function is an increasing

function for positive inputs) (2− ε)2 < (
√

4− x)2 < (2 + ε)2 (where
0 < ε < 2) or 4− 4ε + ε2 < 4− x < 4 + 4ε + ε2 or
−4ε + ε2 < −x < 4ε + ε2 or 4ε− ε2 > x > −4ε− ε2 or
−(4ε + ε2) < x < 4ε− ε2. So the inequality |f (x)− L| < ε holds on the
interval (−(4ε + ε2), 4ε− ε2), where we need 0 < ε < 2. Now the distance
from c = 0 to −(4ε + ε2) is δ1 = 4ε + ε2, and the distance from c = 0 to
4ε− ε2 is δ2 = 4ε− ε2. We choose δ to be the smaller of δ1 and δ2, so we
choose δ = δ2 = 4ε− ε2 where we need 0 < ε < 2.]
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Exercise 2.3.40

Exercise 2.3.40 (continued)

Exercise 2.3.40. Prove that limx→0

√
4− x = 2.

Proof (continued). If ε < 2 then choose δ = 4ε− ε2 > 0. Suppose that
0 < |x − c | = |x − 0| = |x | < δ = 4ε− ε2.

Then −(4ε− ε2) < x < 4ε− ε2

which implies 4ε− ε2 > −x > −(4ε− ε2) or −(4ε− ε2) < −x < 4ε− ε2

or 4− 4ε + ε2 < 4− x < 4 + 4ε− ε2 or (since 4 + 4ε− ε2 < 4 + 4ε + ε2)
4− 4ε + ε2 < 4− x < 4 + 4ε + ε2 or (2− ε)2 < 4− x < (2 + ε)2 or (since
the square root function is increasing)

√
(2− ε)2 <

√
4− x <

√
(2 + ε)2

or |2− ε| <
√

4− x < |2 + ε| or (since 0 < ε < 2) 2− ε <
√

4− x < 2 + ε
or −ε <

√
4− x − 2 < ε or |

√
4− x − 2| < ε or |f (x)− L| < ε, as desired.

If ε ≥ 2, then choose δ = 4(1)− (1)2 = 3. Then by the computation
above, we have for 0 < |x − 0| < δ = 3, we have |f (x)− L| < 1 (we repeat
the computation above with ε = 1 to establish this). Then we also have
|f (x)− L| < 1 < 2 ≤ ε, or |f (x)− L| < ε, as desired.
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Example 2.3.6. Proof of the Sum Rule

Example 2.3.6

Example 2.3.6. Prove the Sum Rule, Theorem 2.1(1): If lim
x→c

f (x) = L

and lim
x→c

g(x) = M, then

lim
x→c

(f (x) + g(x)) = lim
x→c

(f (x)) + lim
x→c

(g(x)) = L + M.

Proof. First, since lim
x→c

f (x) and lim
x→c

g(x) exist, then there is an open

interval containing c , say (a1, b1), such that f is defined on (a1, b1) except
possibly at c , and there is an open interval containing c , say (a2, b2), such
that g is defined on (a2, b2) except possibly at c . Define the interval
(a, b) = (a1, b1) ∩ (a2, b2) = (max{a1, a2},min{b1, b2}), and then (a, b) is
an open interval containing c where f + g is defined on (a, b), except
possibly at c .

Let ε > 0 be given. Then ε/2 > 0 and since lim
x→c

f (x) = L then by the

definition of limit there exists δ1 > 0 such that 0 < |x − c | < δ1 implies
|f (x)− L| < ε/2.
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Example 2.3.6. Proof of the Sum Rule

Example 2.3.6 (continued)

Proof (continued). Similarly, since lim
x→c

g(x) = M then there exists

δ2 > 0 such that 0 < |x − c | < δ2 implies |g(x)−M| < ε/2. We choose
δ = min{δ1, δ2}. Now 0 < |x − c | < δ implies

|(f (x) + g(x))− (L + M)| = |(f (x)− L) + (g(x)−M)|
≤ |f (x)− L|+ |g(x)−M| by the Triangle

Inequality for absolute values

<
ε

2
+

ε

2
= ε.

Therefore, by the definition of limit, lim
x→c

(f (x) + g(x)) = L + M, as

claimed.
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Example 2.3.6 (continued)
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Exercise 2.3.58

Exercise 2.3.58

Exercise 2.3.58. Use the comment above to show that
(a) limx→2 h(x) 6= 4, (b) limx→2 h(x) 6= 3, (c) limx→2 h(x) 6= 2 for the

piecewise defined function h(x) =


x2, x < 2
3, x = 2
2, x > 2.
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Exercise 2.3.58

Exercise 2.3.58 (continued 1)

(a) limx→2 h(x) 6= 4

Solution. (a) We show that ε = 1 is “bad”in the sense described above. If

L = 4, then we need the graph of y = h(x) to lie in the yellow band determined

by 3 < y < 5 since 4− ε = 4− 1 = 3 and 4 + ε = 4 + 1 = 5.

However, no matter

how small we make δ > 0, the blue band (of width 2δ and centered at x = 2) and

yellow band intersect to give the little green box in such a way that there are

function values outside of the green box (such points on the graph of y = h(x)

are indicated as “BAD” above). So the limit is not L = 4. �
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Exercise 2.3.58

Exercise 2.3.58 (continued 2)

(b) limx→2 h(x) 6= 3

Solution. (b) We show that ε = 1 is “bad”in the sense described above. If

L = 3, then we need the graph of y = h(x) to lie in the yellow band determined

by 2 < y < 4 since 3− ε = 3− 1 = 2 and 3 + ε = 3 + 1 = 4.

However, no matter

how small we make δ > 0, the blue band (of width 2δ and centered at x = 2) and

yellow band intersect to give the little green box in such a way that there are

function values outside of the green box (such points on the graph of y = h(x)

are indicated as “BAD” above). So the limit is not L = 3. �
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function values outside of the green box (such points on the graph of y = h(x)

are indicated as “BAD” above). So the limit is not L = 3. �
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Exercise 2.3.58

Exercise 2.3.58 (continued 4)

Note. In the first problem, we could have taken ε as big as 2 and it would still
have been “bad” because of the behavior of y = h(x) for x > 2; the straight-line
right-hand part of h lies outside of the yellow band, no matter what δ > 0 is. Any
value of ε > 2 would not be bad, since the yellow band would then be wide
enough to include all relevant function values in the blue band given above (for
example).

In the second problem, similar to discussed above, any value of ε > 1 is
not bad since the yellow band would then be wide enough to include all relevant
function values in the blue band given above (for example). In the third problem,
we would need ε ≥ 2 in order to include all relevant function values; that is, and
ε < 2 if “bad.” �
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