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Example 2.4.1

Example 2.4.1

Example 2.4.1. The domain of f (x) =
√

4− x2 =
√

(2− x)(2 + x) is
[−2, 2]; its graph is the semicircle given here:
Discuss its one and two sided limits.

Solution. We see from the graph of y = f (x)
that, as x approaches −2 from the right
(i.e., from the positive side), the graph of the
function tries to contain the point (−2, 0).
So by an anthropomorphic version of one-sided
limits (or the informal definition), limx→−2+

√
4− x2 = 0.

Similarly, as x
approaches +2 from the left (i.e., from the negative side), the graph of the
function tries to contain the point (+2, 0). So by an anthropomorphic
version of one sided limits (or the informal definition),
limx→+2−

√
4− x2 = 0. Notice that in both cases, the graph succeeds in

containing these points (though this is irrelevant to the existence of the
limit).
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Example 2.4.1

Example 2.4.1 (continued 1)

Solution (continued). For any other c with
−2 < c < 2, we see that the function tries to
pass though the points
(c , f (c)) = (c ,

√
4− (c)2) (and succeeds)

so that by Dr. Bob’s Anthropomorphic
Definition of Limit (or the informal definition
or the formal definition), the (two-sided) limit exists for each such c .

Notice that the two-sided limit (or simply “limit”) at c = ±2 does not
exist. This is because there is not an open interval containing c = ±2 on
which f is defined, except possibly at c = ±2; notice that f (x) is not
defined for x < −2 and f (x) is not defined for x > +2.
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Example 2.4.1

Example 2.4.1 (continued 2)

Note. As just argued, neither limx→−2− f (x) nor limx→+2+ f (x) exist.
This shows that the evaluation of limits is more complicated than
substituting in a value when there is no division by 0. If we substitute
x = ±2 into f (x) =

√
4− x2 then we simply get f (±2) = 0 (and 0 is the

value of the one-sided limits which exist); but these are not the values of
the two-sided limits since these do not exist! The problem that arises in
the two sided limits is the square roots of negatives. Notice that when x is
“close to” −2 then x could be less than −2 yielding square roots of
negatives for f (x) =

√
4− x2. Similarly when x is “close to” +2 then x

could be greater than +2 yielding square roots of negatives for
f (x) =

√
4− x2. This is why the two-sided limits don’t exist. �

() Calculus 1 September 7, 2020 5 / 18



Example 2.4.1

Example 2.4.1 (continued 2)

Note. As just argued, neither limx→−2− f (x) nor limx→+2+ f (x) exist.
This shows that the evaluation of limits is more complicated than
substituting in a value when there is no division by 0. If we substitute
x = ±2 into f (x) =

√
4− x2 then we simply get f (±2) = 0 (and 0 is the

value of the one-sided limits which exist); but these are not the values of
the two-sided limits since these do not exist! The problem that arises in
the two sided limits is the square roots of negatives. Notice that when x is
“close to” −2 then x could be less than −2 yielding square roots of
negatives for f (x) =

√
4− x2. Similarly when x is “close to” +2 then x

could be greater than +2 yielding square roots of negatives for
f (x) =

√
4− x2. This is why the two-sided limits don’t exist. �

() Calculus 1 September 7, 2020 5 / 18



Exercise 2.4.10

Exercise 2.4.10

Exercise 2.4.10. Consider

f (x) =


x , −1 ≤ x < 0 or 0 < x ≤ 1
1, x = 0
0, x < −1 or x > 1

Graph y = f (x).

(a) What are the domain and range of f ?

(b) At what points c , if any, does limx→c f (x) exist?

(c) At what points does the left-hand limit exist but not the
right-hand limit?

(d) At what points does the right-hand limit exist but not the
left-hand limit?
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Exercise 2.4.10

Exercise 2.4.10 (continued 1)

f (x) =


x , −1 ≤ x < 0 or 0 < x ≤ 1
1, x = 0
0, x < −1 or x > 1

Solution. (a) We see from the graph that the domain of f is all of R
and the range of f is [−1, 1] . �

(b) We use Dr. Bob’s Anthropomorphic Definition of Limit to explore
limx→c f (x). For c < −1 and c > 1 the graph of f tries (and succeeds) to
pass through the point (c , 0) so for these c values the limit exists. For
−1 < c < 1 the graph of f tries to pass through the point (c , c) (and
succeeds, except when c = 0) so for these c values the limit exists.
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Exercise 2.4.10

Exercise 2.4.10 (continued 2)

f (x) =


x , −1 ≤ x < 0 or 0 < x ≤ 1
1, x = 0
0, x < −1 or x > 1

Solution (continued). For c = ±1 there is no single point through which
that the graph of f tries to pass for x near c , so for these c values the
limit does not exist. So limx→c f (x) exists for

c ∈ (−∞,−1) ∪ (−1, 1) ∪ (1,∞) . �

(c,d) Notice that for all c , the graph of f tries to pass through some point
as x approaches c from the left (by a one-sided version of Dr. Bob’s
Anthropomorphic Definition of Limit, or by the Informal Definition of
Left-Hand Limits). So limx→c− f (x) exists for all c .
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Exercise 2.4.10

Exercise 2.4.10 (continued 3)

f (x) =


x , −1 ≤ x < 0 or 0 < x ≤ 1
1, x = 0
0, x < −1 or x > 1

Solution (c,d) (continued). Similarly, for all c , the graph of f tries to
pass through some point as x approaches c from the right (by a one-sided
version of Dr. Bob’s Anthropomorphic Definition of Limit, or by the
Informal Definition of Right-Hand Limits). So limx→c+ f (x) exists for all
c . Hence, there are
no points c where just one of the one-sided limits exist. �

Note. The left-hand and right-hand limits are the same at all points c ,
except for c = ±1. �
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Example 2.4.3

Example 2.4.3

Example 2.4.3. Prove that lim
x→0+

√
x = 0.

Proof. First, we need f (x) =
√

x defined
on an open interval of the form
(c , b) = (0, b). The is the case since the
domain of f is [0,∞) so that we have
f defined on (say) (c , 1) = (0, 1).
Now let ε > 0.

[Not part of the proof:
We see from the graph above that in order to get f (x) within a distance of
ε of L = 0, we need to have x in the interval [0, ε2).] Choose δ = ε2. If
c < x < c + δ, or equivalently 0 < x < 0 + δ = ε2, then (since the square
root function is increasing for nonnegative inputs)

√
x <

√
ε2 = |ε| = ε, or

equivalently |
√

x − 0| = |f (x)− L| < ε where L = 0. Therefore, by the
Formal Definitions of One-Sided Limits, limx→0+ f (x) = L or
limx→0+

√
x = 0.
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Exercise 2.4.50

Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x . Does knowing
that limx→2− f (x) = 7 tell you anything about either limx→−2− f (x) or
limx→−2+ f (x)? Give reasons for your answer.

Solution. Recall that an even function satisfies f (−x) = f (x). When
considering x → 2−, we have x in some interval of the form (2− δ, 2).
That is, we consider 2− δ < x < 2. Then −(2− δ) > −x > −2 or
−2 < −x < −2 + δ.

Since f (x) = f (−x), the behavior of f (x) for
2− δ < x < 2 is the same as the behavior of f (−x) = f (x) for
−2 < −x < −2 + δ. So if |f (x)− 7| < ε for 2− δ < x < 2, then
|f (−x)− 7| < ε for −2 < −x < −2 + δ; or (substituting x for −x in the
last claim) |f (x)− 7| < ε for −2 < x < −2 + δ. So we must have

limx→−2+ f (x) = 7 .

We know nothing about limx→−2− f (x) ; if we knew something about

limx→2+ f (x) then we could use that information to deduce the value of
limx→−2− f (x) using the “evenness” of f , as above. �
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Theorem 2.7. Limit of the Ratio (sin θ)/θ as θ → 0

Theorem 2.7

Theorem 2.7. Limit of the Ratio (sin θ)/θ as θ → 0.

For θ in radians, lim
θ→0

sin θ

θ
= 1.

Proof. Suppose first that θ is positive and less than π/2. Consider the
picture:

Figure 2.33

Notice that
Area 4OAP < area sector OAP < area 4OAT .
We can express these areas in terms of θ as
follows: Area 4OAP = 1

2 base × height

= 1
2(1)(sin θ) = 1

2 sin θ,

Area sector OAP = 1
2 r2θ = 1

2(1)2θ = θ
2 ,

Area 4OAT = 1
2 base × height

= 1
2(1)(tan θ) = 1

2 tan θ.

Thus, 1
2 sin θ < 1

2θ < 1
2 tan θ.
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Theorem 2.7. Limit of the Ratio (sin θ)/θ as θ → 0

Theorem 2.7 (continued)

Proof (continued). Thus,
1

2
sin θ <

1

2
θ <

1

2
tan θ. Dividing all three

terms in this inequality by the positive number (1/2) sin θ gives:

1 <
θ

sin θ
<

1

cos θ
. Taking reciprocals reverses the inequalities:

cos θ <
sin θ

θ
< 1. Since lim

θ→0+
cos θ = 1 by Example 2.2.11(b), the

Sandwich Theorem (applied to the one-sided limit) gives lim
θ→0+

sin θ

θ
= 1.

Since sin θ and θ are both odd functions, f (θ) =
sin θ

θ
is an even function

and hence
sin(−θ)

−θ
=

sin θ

θ
. Therefore lim

θ→0−

sin θ

θ
= 1 = lim

θ→0+

sin θ

θ
, so

lim
θ→0

sin θ

θ
= 1 by Theorem 2.6 (Relation Between One-Sided and

Two-Sided Limits).
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Example 2.4.5(a)

Example 2.4.5(a)

Example 2.4.5(a) Show that lim
h→0

cos h − 1

h
= 0.

Solution. We multiply by
cos h + 1

cos h + 1
to get

lim
h→0

cos h − 1

h
= lim

h→0

cos h − 1

h

(
cos h + 1

cos h + 1

)
= lim

h→0

cos2 h − 1

h(cos h + 1)
= lim

h→0

sin2 h

h(cos h + 1)

= lim
h→0

sin h

h

sin h

cos h + 1

= lim
h→0

sin h

h
lim
h→0

sin h

cos h + 1
by Theorem 2.1(4)

(Product Rule)
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Example 2.4.5(a)

Example 2.4.5(a) (continued)

Example 2.4.5(a) Show that lim
h→0

cos h − 1

h
= 0.

Solution (continued).

lim
h→0

cos h − 1

h
= lim

h→0

sin h

h
lim
h→0

sin h

cos h + 1

= (1) lim
h→0

sin h

cos h + 1
by Theorem 2.7

=
limh→0 sin h

limh→0 cos h + 1
by Theorem 2.1(5) (Quotient Rule)

=
sin 0

cos 0 + 1
=

0

1 + 1
= 0 by Example 2.2.11.
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Exercise 2.4.28

Exercise 2.4.28

Exercise 2.4.28. Evaluate lim
t→0

2t

tan t
.

Solution. We have

lim
t→0

2t

tan t
= lim

t→0

2t

(sin t)/(cos t)

= 2 lim
t→0

t cos t

sin t
by Theorem 2.1(3) Constant Multiple Rule

= 2 lim
t→0

t

sin t
lim
t→0

cos t by Theorem 2.1(4) (Product Rule)

= 2 lim
t→0

1

(sin t)/t
lim
t→0

cos t

= 2
limt→0 1

limt→0(sin t)/t
lim
t→0

cos t by Theorem 2.1(5)

(Quotient Rule)
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Exercise 2.4.28

Exercise 2.4.28 (continued)

Exercise 2.4.28. Evaluate lim
t→0

2t

tan t
.

Solution (continued).

lim
t→0

2t

tan t
= 2

limt→0 1

limt→0(sin t)/t
lim
t→0

cos t

= 2
(1)

(1)
cos 0 by Example 2.3.3(b), Theorem 2.7,

and Example 2.2.11(a)(b)

= 2.

�
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Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ε > 0, find δ > 0 where I = (4− δ, 4) is such that
if x lies in I , then

√
4− x < ε. What limit is being verified and what is its

value?

Solution. We let c = 4 and f (x) =
√

4− x . We want
x ∈ (c − δ, c) = (4− δ, 4) to imply
|f (x)− L| = |

√
4− x − 0| =

√
4− x < ε. So we take L = 0.

Now
x ∈ (4− δ, 4) means 4− δ < x < 4 or −δ < x − 4 < 0 or 0 < 4− x < δ.
The implies

√
0 <

√
4− x <

√
δ since the square root function is an

increasing function. Therefore we need
√

δ ≤ ε, or δ ≤ ε2. In order to

keep I = (4− δ, 4) a subset of the domain of f , we take δ = min{ε2, 4} .

We have f (x) =
√

4− x , c = 4, and L = 0. Since we consider x such that
4− δ < x < 4, then we are considering a limit from the negative side as x

approaches c = 4. So the limit being verified is limx→4−
√

4− x = 0 . �

() Calculus 1 September 7, 2020 18 / 18



Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ε > 0, find δ > 0 where I = (4− δ, 4) is such that
if x lies in I , then

√
4− x < ε. What limit is being verified and what is its

value?

Solution. We let c = 4 and f (x) =
√

4− x . We want
x ∈ (c − δ, c) = (4− δ, 4) to imply
|f (x)− L| = |

√
4− x − 0| =

√
4− x < ε. So we take L = 0. Now

x ∈ (4− δ, 4) means 4− δ < x < 4 or −δ < x − 4 < 0 or 0 < 4− x < δ.
The implies

√
0 <

√
4− x <

√
δ since the square root function is an

increasing function.

Therefore we need
√

δ ≤ ε, or δ ≤ ε2. In order to

keep I = (4− δ, 4) a subset of the domain of f , we take δ = min{ε2, 4} .

We have f (x) =
√

4− x , c = 4, and L = 0. Since we consider x such that
4− δ < x < 4, then we are considering a limit from the negative side as x

approaches c = 4. So the limit being verified is limx→4−
√

4− x = 0 . �

() Calculus 1 September 7, 2020 18 / 18



Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ε > 0, find δ > 0 where I = (4− δ, 4) is such that
if x lies in I , then

√
4− x < ε. What limit is being verified and what is its

value?

Solution. We let c = 4 and f (x) =
√

4− x . We want
x ∈ (c − δ, c) = (4− δ, 4) to imply
|f (x)− L| = |

√
4− x − 0| =

√
4− x < ε. So we take L = 0. Now

x ∈ (4− δ, 4) means 4− δ < x < 4 or −δ < x − 4 < 0 or 0 < 4− x < δ.
The implies

√
0 <

√
4− x <

√
δ since the square root function is an

increasing function. Therefore we need
√

δ ≤ ε, or δ ≤ ε2. In order to

keep I = (4− δ, 4) a subset of the domain of f , we take δ = min{ε2, 4} .

We have f (x) =
√

4− x , c = 4, and L = 0. Since we consider x such that
4− δ < x < 4, then we are considering a limit from the negative side as x

approaches c = 4. So the limit being verified is limx→4−
√

4− x = 0 . �

() Calculus 1 September 7, 2020 18 / 18



Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ε > 0, find δ > 0 where I = (4− δ, 4) is such that
if x lies in I , then

√
4− x < ε. What limit is being verified and what is its

value?

Solution. We let c = 4 and f (x) =
√

4− x . We want
x ∈ (c − δ, c) = (4− δ, 4) to imply
|f (x)− L| = |

√
4− x − 0| =

√
4− x < ε. So we take L = 0. Now

x ∈ (4− δ, 4) means 4− δ < x < 4 or −δ < x − 4 < 0 or 0 < 4− x < δ.
The implies

√
0 <

√
4− x <

√
δ since the square root function is an

increasing function. Therefore we need
√

δ ≤ ε, or δ ≤ ε2. In order to

keep I = (4− δ, 4) a subset of the domain of f , we take δ = min{ε2, 4} .

We have f (x) =
√

4− x , c = 4, and L = 0. Since we consider x such that
4− δ < x < 4, then we are considering a limit from the negative side as x

approaches c = 4. So the limit being verified is limx→4−
√

4− x = 0 . �

() Calculus 1 September 7, 2020 18 / 18



Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ε > 0, find δ > 0 where I = (4− δ, 4) is such that
if x lies in I , then

√
4− x < ε. What limit is being verified and what is its

value?

Solution. We let c = 4 and f (x) =
√

4− x . We want
x ∈ (c − δ, c) = (4− δ, 4) to imply
|f (x)− L| = |

√
4− x − 0| =

√
4− x < ε. So we take L = 0. Now

x ∈ (4− δ, 4) means 4− δ < x < 4 or −δ < x − 4 < 0 or 0 < 4− x < δ.
The implies

√
0 <

√
4− x <

√
δ since the square root function is an

increasing function. Therefore we need
√

δ ≤ ε, or δ ≤ ε2. In order to

keep I = (4− δ, 4) a subset of the domain of f , we take δ = min{ε2, 4} .

We have f (x) =
√

4− x , c = 4, and L = 0. Since we consider x such that
4− δ < x < 4, then we are considering a limit from the negative side as x

approaches c = 4. So the limit being verified is limx→4−
√

4− x = 0 . �

() Calculus 1 September 7, 2020 18 / 18


	Example 2.4.1
	Exercise 2.4.10
	Example 2.4.3
	Exercise 2.4.50
	Theorem 2.7. Limit of the Ratio (sin)/ as 0
	Example 2.4.5(a)
	Exercise 2.4.28
	Example 2.4.52

