Calculus 1

Chapter 2. Limits and Continuity
2.4. One-Sided Limits—Examples and Proofs
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Example 2.4.1

Example 2.4.1

Example 2.4.1. The domain of f(x) = V4 —x2 = /(2 —x)(2+x) is
[—2,2]; its graph is the semicircle given here: ¥
Discuss its one and two sided limits.

iscuss its one and two si imi R —
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Example 2.4.1

Example 2.4.1. The domain of f(x) = V4 —x2 = /(2 —x)(2+x) is
[—2,2]; its graph is the semicircle given here: ¥
Discuss its one and two sided limits.

y= V4 —x2

Solution. We see from the graph of y = f(x)

that, as x approaches —2 from the right

(i.e., from the positive side), the graph of the

function tries to contain the point (—2,0). 4
. : . -2 0

So by an anthropomorphic version of one-sided

limits (or the informal definition), lim,_,_>+ v/4 — x2 = 0.
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Caleulus 1 September 7, 2020 3 /18



Example 2.4.1

Example 2.4.1. The domain of f(x) = V4 —x2 = /(2 —x)(2+x) is
[—2,2]; its graph is the semicircle given here: ¥
Discuss its one and two sided limits.

y=V4-22
Solution. We see from the graph of y = f(x)
that, as x approaches —2 from the right
(i.e., from the positive side), the graph of the
function tries to contain the point (—2,0). 4

. . . -2 0

So by an anthropomorphic version of one-sided
limits (or the informal definition), lim,_,_>+ v/4 — x2 = 0. Similarly, as x
approaches +2 from the left (i.e., from the negative side), the graph of the
function tries to contain the point (+2,0). So by an anthropomorphic
version of one sided limits (or the informal definition),
lim,_, . »- V4 — x? = 0. Notice that in both cases, the graph succeeds in
containing these points (though this is irrelevant to the existence of the
limit).
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Example 2.4.1 (continued 1)

Solution (continued). For any other ¢ with
—2 < ¢ < 2, we see that the function tries to
pass though the points

(¢, f(c)) = (c, /4 — (c)?) (and succeeds)

so that by Dr. Bob's Anthropomorphic
Definition of Limit (or the informal definition

-2

0

or the formal definition), the (two-sided) limit exists for each such c.
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Example 2.4.1 (continued 1)

Solution (continued). For any other ¢ with
—2 < ¢ < 2, we see that the function tries to
pass though the points

(¢, f(c)) = (c, /4 — (c)?) (and succeeds)

so that by Dr. Bob's Anthropomorphic
Definition of Limit (or the informal definition 2 0 2
or the formal definition), the (two-sided) limit exists for each such c.

Notice that the two-sided limit (or simply “limit") at ¢ = +2 does not
exist. This is because there is not an open interval containing ¢ = +2 on
which f is defined, except possibly at ¢ = £2; notice that f(x) is not
defined for x < —2 and f(x) is not defined for x > +2.
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Example 2.4.1 (continued 2)

Note. As just argued, neither lim,_,_5- f(x) nor lim,_ o+ f(x) exist.
This shows that the evaluation of limits is more complicated than
substituting in a value when there is no division by 0. /f we substitute

x = %2 into f(x) = V4 — x2 then we simply get f(£2) =0 (and O is the
value of the one-sided limits which exist); but these are not the values of
the two-sided limits since these do not exist!
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Example 2.4.1 (continued 2)

Note. As just argued, neither lim,_,_5- f(x) nor lim,_ o+ f(x) exist.
This shows that the evaluation of limits is more complicated than
substituting in a value when there is no division by 0. /f we substitute

x = %2 into f(x) = V4 — x2 then we simply get f(£2) =0 (and O is the
value of the one-sided limits which exist); but these are not the values of
the two-sided limits since these do not exist! The problem that arises in
the two sided limits is the square roots of negatives. Notice that when x is
“close to” —2 then x could be less than —2 yielding square roots of
negatives for f(x) = v4 — x2. Similarly when x is “close to” +2 then x
could be greater than +2 yielding square roots of negatives for

f(x) = V4 — x2. This is why the two-sided limits don't exist. [J
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Exercise 2.4.10

Exercise 2.4.10. Consider
x, =1<x<0or0<x<1

fixX)=49 1, x=0
0, x<—-lorx>1

Graph y = f(x).
(a) What are the domain and range of 7
(b) At what points c, if any, does lim,_. f(x) exist?
)

(c) At what points does the left-hand limit exist but not the
right-hand limit?

(d) At what points does the right-hand limit exist but not the
left-hand limit?

Caleulus 1 September 7, 2020 6 /18



Exercise 2.4.10

Exercise 2.4.10 (continued 1)
y=f®

x, —1<x<0or0<x<1 1+
fix)=4¢ 1, x=0
0, x<—-lorx>1 ,

L
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Exercise 2.4.10

Exercise 2.4.10 (continued 1)
y=f®

x, —1<x<0or0<x<1 1+
fix)=4¢ 1, x=0
0, x<-lorx>1 e \
_/ 1
+-1

Solution. (a) We see from the graph that the ’domain of fis all of R
and the ’ range of f is [—1,1] ‘ O
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Exercise 2.4.10

Exercise 2.4.10 (continued 1)
y=f®

1*/
/ ;
4+ —1
Solution. (a) We see from the graph that the ’domain of f is all of R‘
and the ’ range of f is [—1,1] ‘ O

x, —1<x<0or0<x<1
fix)=4¢ 1, x=0
0, x<—-lorx>1

(b) We use Dr. Bob's Anthropomorphic Definition of Limit to explore
limy_¢ f(x). For c < —1 and ¢ > 1 the graph of f tries (and succeeds) to
pass through the point (¢, 0) so for these ¢ values the limit exists. For

—1 < ¢ < 1 the graph of f tries to pass through the point (c, c¢) (and
succeeds, except when ¢ = 0) so for these ¢ values the limit exists.
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Exercise 2.4.10 (continued 2)

x, —1<x<0or0<x<1 11

f(x)=49 1, x=0
0, x<—-lorx>1 . .
_7 i
- -1

Solution (continued). For ¢ = £1 there is no single point through which
that the graph of f tries to pass for x near c, so for these c values the
limit does not exist. So lim,_,c f(x) exists for

c€(—00,~1)U(-1,1) U(L,00)] O
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Exercise 2.4.10 (continued 2)

x, —1<x<0or0<x<1 11

f(x)=49 1, x=0
0, x<—-lorx>1 . .
_7 i
- -1

Solution (continued). For ¢ = £1 there is no single point through which
that the graph of f tries to pass for x near c, so for these c values the
limit does not exist. So lim,_,c f(x) exists for

c€(—00,~1)U(-1,1) U(L,00)] O

(c,d) Notice that for all ¢, the graph of f tries to pass through some point
as x approaches ¢ from the left (by a one-sided version of Dr. Bob's
Anthropomorphic Definition of Limit, or by the Informal Definition of
Left-Hand Limits). So lim,_, .- f(x) exists for all c.
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Exercise 2.4.10 (continued 3)

x, =1<x<0or0<x<1 4 7@

f(x)=49 1, x=0
0, x<—-lorx>1 . y
_V '1
+-1

Solution (c,d) (continued). Similarly, for all ¢, the graph of f tries to
pass through some point as x approaches ¢ from the right (by a one-sided
version of Dr. Bob's Anthropomorphic Definition of Limit, or by the

Informal Definition of Right-Hand Limits). So lim,_, .+ f(x) exists for all
c.
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Exercise 2.4.10

Exercise 2.4.10 (continued 3)
y = f(x)

x, —1<x<0or0<x<1 1+
f(x)=49 1, x=0
0, x<—-lorx>1 . y
_y '1
+ -1

Solution (c,d) (continued). Similarly, for all ¢, the graph of f tries to
pass through some point as x approaches ¢ from the right (by a one-sided
version of Dr. Bob's Anthropomorphic Definition of Limit, or by the
Informal Definition of Right-Hand Limits). So lim,_, .+ f(x) exists for all
c. Hence, there are

no points ¢ where just one of the one-sided limits exist. ‘ O
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Exercise 2.4.10

Exercise 2.4.10 (continued 3)
y = f(x)

x, —1<x<0or0<x<1 1+
f(x)=49 1, x=0
0, x<—-lorx>1 . y
_y '1
+ -1

Solution (c,d) (continued). Similarly, for all ¢, the graph of f tries to
pass through some point as x approaches ¢ from the right (by a one-sided
version of Dr. Bob's Anthropomorphic Definition of Limit, or by the
Informal Definition of Right-Hand Limits). So lim,_, .+ f(x) exists for all
c. Hence, there are

no points ¢ where just one of the one-sided limits exist. ‘ O

Note. The left-hand and right-hand limits are the same at all points c,
except for c = +1. O
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Example 2.4.3

Example 2.4.3

Example 2.4.3. Prove that lim /x = 0. y

x—0t
fo=Va

€ T

|

fe |

|

|
= — b

L=0 X o=¢g"
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Example 2.4.3

Example 2.4.3
Example 2.4.3. Prove that Iirg+ Vx =0. y
Proof. First, we need f(x) = \/x defined o =\VA

on an open interval of the form

(c,b) = (0, b). The is the case since the
domain of f is [0, 00) so that we have

f defined on (say) (c,1) = (0,1).

Now let € > 0.

&

f(x) ¢

1\

L
=

~
|
=

»
Il
o
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Example 2.4.3

Example 2.4.3

Example 2.4.3. Prove that IirgJr Vx =0. y

Proof. First, we need f(x) = \/x defined fay=a
on an open interval of the form &

(c,b) = (0,b). The is the case since the
domain of f is [0, 00) so that we have

f defined on (say) (c,1) = (0,1). — .
Now let ¢ > 0. [Not part of the proof: '
We see from the graph above that in order to get f(x) within a distance of
e of L =0, we need to have x in the interval [0,£2).] Choose § = 2.

)

~
g2

>
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Example 2.4.3

Example 2.4.3

Example 2.4.3. Prove that Ing Vx=0. y

Proof. First, we need f(x) = \/x defined =
on an open interval of the form &

(c,b) = (0,b). The is the case since the
domain of f is [0, 00) so that we have
f defined on (say) (c,1) = (0,1).
Now let ¢ > 0. [Not part of the proof:
We see from the graph above that in order to get f(x) within a distance of
e of L =0, we need to have x in the interval [0,£2).] Choose § = £2. If

c < x < c+d,orequivalently 0 < x < 04§ = £2, then (since the square
root function is increasing for nonnegative inputs) v/x < Ve2 = || = ¢, or
equivalently |/x — 0| = |f(x) — L| < € where L = 0. Therefore, by the
Formal Definitions of One-Sided Limits, lim,_o+ f(x) = L or

lim,_o+ \/)? =0. L]

Calculus 1 September 7, 2020 10/ 18
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Exercise 2.4.50

Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x. Does knowing

that lim,_,- f(x) = 7 tell you anything about either lim,_,_,— f(x) or
lim,_, o+ f(x)? Give reasons for your answer.
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Exercise 2.4.50

Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x. Does knowing
that lim,_,- f(x) = 7 tell you anything about either lim,_,_,— f(x) or
lim,_, o+ f(x)? Give reasons for your answer.

Solution. Recall that an even function satisfies f(—x) = f(x). When
considering x — 27, we have x in some interval of the form (2 — 4, 2).

That is, we consider 2 —§ < x < 2. Then —(2 —9) > —x > —2 or
—2 < —x < —=2+0.
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Exercise 2.4.50

Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x. Does knowing
that lim,_,- f(x) = 7 tell you anything about either lim,_,_,— f(x) or
lim,_, o+ f(x)? Give reasons for your answer.

Solution. Recall that an even function satisfies f(—x) = f(x). When
considering x — 27, we have x in some interval of the form (2 — 4, 2).
That is, we consider 2 —§ < x < 2. Then —(2 —9) > —x > —2 or

—2 < —x < —2+494. Since f(x) = f(—x), the behavior of f(x) for

2 — 6 < x < 2 is the same as the behavior of f(—x) = f(x) for
—2< —x < —=2+496. Soif [f(x) =7 <efor2—3J < x <2, then
|f(—x) — 7| < e for =2 < —x < =24 6; or (substituting x for —x in the
last claim) |f(x) — 7| < e for =2 < x < =2+ §. So we must have
lim,_ o+ F(x) =7

Calculus 1 September 7, 2020 11/ 18



Exercise 2.4.50

Exercise 2.4.50. Suppose that f is an even function of x. Does knowing
that lim,_,- f(x) = 7 tell you anything about either lim,_,_,— f(x) or
lim,_, o+ f(x)? Give reasons for your answer.

Solution. Recall that an even function satisfies f(—x) = f(x). When
considering x — 27, we have x in some interval of the form (2 — 4, 2).
That is, we consider 2 —§ < x < 2. Then —(2 —9) > —x > —2 or

—2 < —x < —2+494. Since f(x) = f(—x), the behavior of f(x) for

2 — 6 < x < 2 is the same as the behavior of f(—x) = f(x) for
—2< —x < —=2+496. Soif [f(x) =7 <efor2—3J < x <2, then
|f(—x) — 7| < e for =2 < —x < =24 6; or (substituting x for —x in the
last claim) |f(x) — 7| < e for =2 < x < =2+ §. So we must have
lim,_ o+ F(x) =7

We know nothing about lim,_,_,- f(x) |, if we knew something about

lim,_»+ f(x) then we could use that information to deduce the value of

lim,_,_o— f(x) using the “evenness” of f, as above. [J
Calculus 1 September 7, 2020 11/ 18




Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7
Theorem 2.7. Limit of the Ratio (sin0)/¢ as ¢ — 0.
For 6 in radians, lim ﬂ =1.

6—0 0

Calculus 1 September 7, 2020 12/ 18



Theorem 2.7. Limit of the Ratio (sin6)/6 as 6 — 0

Theorem 2.7
Theorem 2.7. Limit of the Ratio (sin0)/¢ as ¢ — 0.
For 6 in radians, lim ﬂ =1.

60— 0

Proof. Suppose first that @ is positive and less than 7/2. Consider the

picture:

y

tan 6

sin 6

0 coso '

[ o A(1,0)

Calculus 1
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Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7
Theorem 2.7. Limit of the Ratio (sin0)/¢ as ¢ — 0.
For 6 in radians, lim ﬂ =1.

60— 0

Proof. Suppose first that @ is positive and less than 7/2. Consider the
picture:

y

tan 6

sin 6

0 coso '
o 0 A(1,0)

1

Figure 2.33
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Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7
Theorem 2.7. Limit of the Ratio (sin6)/6 as § — 0.
For @ in radians, I|m LH =1
—0 0
Proof. Suppose first that @ is positive and less than 7/2. Consider the
picture:
Notice that
Area AOAP < area sector OAP < area AQOAT.
I We can express these areas in terms of 6 as
B follows: Area ANOAP = 1 base X height
- = 1(1)(sin0) = 3sin®,
7 i Area sector OAP = 1r20 = 1(1)%0 = &,
0 cost Area AOAT = % base x height
0,
’ ; il = 1(1)(tan @) = S tan®.
Figure 2.33 Thus, 3sind < 30 < S tand.
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Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7 (continued)

1 1 1
Proof (continued). Thus, 5 sinf < 59 < Etan 6. Dividing all three
terms in this inequality by the positive number (1/2)sin 6 gives:
0
1 < —— < ——. Taking reciprocals reverses the inequalities:
sinf_~ cosfd

sin
< — <1
cos 7
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Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7 (continued)

1 1 1
Proof (continued). Thus, 5 sinf < 59 < = tanf. Dividing all three

terms in this inequality by the positive number (1/2)sin 6 gives:
0
1 < —— < ——. Taking reciprocals reverses the inequalities:
sinf_~ cosfd

0
cosf < % < 1. Since lim cos® =1 by Example 2.2.11(b), the

0—0
in6
Sandwich Theorem (applied to the one-sided limit) gives elirgJr % =1

Caleulus 1 September 7, 2020 13 / 18



Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7 (continued)

1 1 1
Proof (continued). Thus, 5 sinf < 59 < = tanf. Dividing all three

terms in this inequality by the positive number (1/2)sin 6 gives:
0

1 < —— < ——. Taking reciprocals reverses the inequalities:
sinf_~ cosfd

0
cosf < % < 1. Since lim cos® =1 by Example 2.2.11(b), the

0—0
ind
Sandwich Theorem (applied to the one-sided limit) gives elirgJr % =1
in6
Since sin @ and 6 are both odd functions, f(0) = % is an even function
sin(—f)  sinf

dh —_— =

and hence —— 7
Calculus 1 September 7, 2020 13 / 18



Theorem 2.7. Limit of the Ratio (sin0)/6 as 6 — 0

Theorem 2.7 (continued)

1 1 1
Proof (continued). Thus, 5 sinf < 59 < = tanf. Dividing all three

terms in this inequality by the positive number (1/2)sin 6 gives:
0

1 < —— < ——. Taking reciprocals reverses the inequalities:
sinf_~ cosfd

cosf < % < 1. Since lim cos® =1 by Example 2.2.11(b), the

0—0
inf
Sandwich Theorem (applied to the one-sided limit) gives elirgJr % =1
inf

Since sin @ and 6 are both odd functions, f(0) = % is an even function
and hence M = ﬂ Therefore lim ﬂ =1= lim ﬂ, so

- —0 0 6—0- 9—0+ 0
6Iim0 % =1 by Theorem 2.6 (Relation Between One-Sided and
Two-Sided Limits). O
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Example 2.4.5(a)

Example 2.4.5(a)

h—1
Example 2.4.5(a) Show that /I7im0 cosh—2 _

Calculus 1
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Example 2.4.5(a)

Example 2.4.5(a)

cosh—1 B

Example 2.4.5(a) Show that /I7im0 =0.

cosh+1

Solution. We multiply b to get
uHply by cosh+1 &

h—0 h h—0 h
im cos? h—1 _ im sin® h
h—0 h(cosh+1)  h—0 h(cosh+ 1)
—im sinh sinh
h—0 h cosh+1
= lim S i S Theorem 2.1(4)
h—0 h h—0cosh+1
(Product Rule)

. cosh—1 . cosh—1 (cosh+1
[im ——— = I|im
cosh+1

Caleulus 1 September 7, 2020
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Example 2.4.5(a)

Example 2.4.5(a) (continued)

h—1
Example 2.4.5(a) Show that lim 72 .
Solution (continued).
- cosh—1 im sin h - sinh
h—0  h "~ h=0 h h—0cosh+1
_ sin h
= (1) /LTO coshi1 by Theorem 2.7
limp_gsinh

= mn o cosh 1 1 by Theorem 2.1(5) (Quotient Rule)

sin0 _ 0
cosO0+1 141

= 0 by Example 2.2.11.

O
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Exercise 2.4.28

Exercise 2.4.28. Evaluate lim .
t—0tant

T
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Exercise 2.4.28

Exercise 2.4.28. Evaluate lim

t—0 tant’
Solution. We have
I 2t . 2t
im = lim —————
t—0 tant t—0 (sin t)/(cos t)
. tcost .
= 2 Img) o by Theorem 2.1(3) Constant Multiple Rule
t— In

t
= 2lim —— lim cost by Theorem 2.1(4) (Product Rule)
t—0sint t—0

1
= 2lim .——=— lim cos t
t—0 (sin t)/t t—0
lime—o1 .
— 2 M0 iy cost by Theorem 2.1(5)

lime_o(sint)/t t—0
(Quotient Rule)

Calculus 1 September 7, 2020 16 / 18



Exercise 2.4.28 (continued)

Exercise 2.4.28. Evaluate lim

t—0tant’
Solution (continued).
2t |imt*>0 1 .
im = 2————— limcost
t—0 tan t lim¢_o(sint)/t t—0
1
= 28 cos 0 by Example 2.3.3(b), Theorem 2.7,
and Example 2.2.11(a)(b)

= 2.
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Example 2.4.52

Exercise 2.4.52

Exercise 2.4.52. Given ¢ > 0, find § > 0 where | = (4 — 4, 4) is such that

if x liesin /, then /4 — x < e. What limit is being verified and what is its
value?

Calculus 1 September 7, 2020 18 / 18



Exercise 2.4.52

Exercise 2.4.52. Given ¢ > 0, find § > 0 where | = (4 — 4, 4) is such that
if x liesin /, then /4 — x < e. What limit is being verified and what is its

value?

Solution. We let ¢ =4 and f(x) = v/4 — x. We want
x€(c—0d,c)=(4—19,4) to imply

|f(x) — L =]vV4—x—0] =+v4—x <e. Sowe take L =0.

Caleulus 1 September 7, 2020 18 / 18



Exercise 2.4.52

Exercise 2.4.52. Given ¢ > 0, find § > 0 where | = (4 — 4, 4) is such that

if x liesin /, then /4 — x < e. What limit is being verified and what is its
value?

Solution. We let ¢ =4 and f(x) = v/4 — x. We want

x € (c—4d,¢c)=(4—-6,4) to imply

|f(x) — L =]v4—x—0] =+v4—x <e. So we take L =0. Now
x€(@d—06,4) meansd—J<x<dor—0<x—4<0or0<4—x<9.
The implies v/0 < v/4 — x < v/3 since the square root function is an
increasing function.

Calculus 1 September 7, 2020 18 / 18



Exercise 2.4.52

Exercise 2.4.52. Given ¢ > 0, find § > 0 where | = (4 — 4, 4) is such that

if x liesin /, then /4 — x < e. What limit is being verified and what is its
value?

Solution. We let ¢ =4 and f(x) = v/4 — x. We want

x € (c—4d,¢c)=(4—-6,4) to imply

|f(x) — L =]v4—x—0] =+v4—x <e. So we take L =0. Now
x€(@d—06,4) meansd—J<x<dor—0<x—4<0or0<4—x<9.
The implies v/0 < v/4 — x < v/3 since the square root function is an
increasing function. Therefore we need v/d < ¢, or § < €2. In order to

keep | = (4 — 6,4) a subset of the domain of f, we take |§ = min{g2, 4} |.

Caleulus 1 September 7, 2020 18 / 18



Exercise 2.4.52

Exercise 2.4.52. Given ¢ > 0, find § > 0 where | = (4 — 4, 4) is such that
if x liesin /, then /4 — x < e. What limit is being verified and what is its
value?

Solution. We let ¢ =4 and f(x) = v/4 — x. We want

x € (c—4d,¢c)=(4—-6,4) to imply

|f(x) — L =]v4—x—0] =+v4—x <e. So we take L =0. Now
x€(@d—06,4) meansd—J<x<dor—0<x—4<0or0<4—x<9.
The implies v/0 < v/4 — x < v/3 since the square root function is an
increasing function. Therefore we need v/d < ¢, or § < €2. In order to
keep | = (4 — 6,4) a subset of the domain of f, we take |§ = min{g2, 4} |.
We have f(x) =4 — x, ¢ =4, and L = 0. Since we consider x such that
4 — § < x < 4, then we are considering a limit from the negative side as x

approaches ¢ = 4. So the limit being verified is | lim,_4- V4 —x=0| [
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