Example 2.6.1(a)

Example 2.6.1(a). Prove that \(\lim_{x \to \infty} \frac{1}{x} = 0 \).

Proof. First, notice that with \(P = \infty \) we have that the domain of \(f \) contains the interval \((P, \infty) = (0, \infty) \). Let \(\varepsilon > 0 \) be given. [We must find a number \(M \) such that for all \(x > M \) implies \(\left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \varepsilon \). The implication will hold if \(M = 1/\varepsilon \) or any larger positive number (see Figure 2.50).]

Suppose \(x > M = 1/\varepsilon \) (notice then that \(x \) is positive). This implies \(0 < 1/x < 1/M = \varepsilon \), or \(0 < \frac{1}{x} = \frac{1}{x} - 0 = |f(x) - L| < \varepsilon \).

Therefore \(\lim_{x \to \infty} \frac{1}{x} = 0 \), as claimed.

![Figure 2.50](image)

Exercise 2.6.14

Exercise 2.6.14. For the rational function \(f(x) = \frac{2x^3 + 7}{x^3 - x^2 + x + 7} \), find the limit as (a) \(x \to \infty \), and (b) \(x \to -\infty \). Justify your computations with Theorem 2.12.

Solution. We can evaluate both limits by the same process. We have

\[
\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7}
\]

by the definition of \(f \)

\[
= \lim_{x \to \pm \infty} \frac{2x^3 + 7}{x^3 - x^2 + x + 7}(x^3)^{-1}
\]

dividing the numerator and denominator by the highest power of \(x \) in the denominator

\[
= \lim_{x \to \pm \infty} \frac{(2x^3 + 7)/x^3}{(x^3 - x^2 + x + 7)/x^3}
\]

\[
= \lim_{x \to \pm \infty} \frac{2x^3/x^3 + 7/x^3}{x^3/x^3 - x^2/x^3 + x/x^3 + 7/x^3}
\]

Solution (continued).

\[
\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x^3/x^3 + 7/x^3}{x^3/x^3 - x^2/x^3 + x/x^3 + 7/x^3}
\]

\[
= \lim_{x \to \pm \infty} \frac{2 + 7/x^3}{-1 + 1/x + 1/x^2 + 7/x^3}
\]

since \(x \to \pm \infty \) then we can assume that \(x \neq 0 \)

\[
= \lim_{x \to \pm \infty} \frac{2 + 7/x^3}{-1 + 1/x + 1/x^2 + 7/x^3}
\]

by the Quotient Rule (Theorem 2.12(5)), assuming the denominator is not 0

\[
= \lim_{x \to \pm \infty} \frac{2 + lim_{x \to \pm \infty} 7/x^3}{lim_{x \to \pm \infty} 1 - lim_{x \to \pm \infty} 1/x + lim_{x \to \pm \infty} 1/x^2 + lim_{x \to \pm \infty} 7/x^3}
\]

by the Sum and Difference Rules (Theorem 2.12(1 and 2))

\[
= \lim_{x \to \pm \infty} \frac{2 + 7 lim_{x \to \pm \infty} 1/x^3}{lim_{x \to \pm \infty} 1 - lim_{x \to \pm \infty} 1/x + lim_{x \to \pm \infty} 1/x^2 + 7 lim_{x \to \pm \infty} 1/x^3}
\]

Exercise 2.6.14 (continued 1)
Exercise 2.6.36

Evaluate \(\lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} \) by dividing the numerator and denominator by the (effective) highest power of \(x \) in the denominator. Justify your computations with Theorem 2.12.

Solution. We have a square root of \(x^6 \) in the denominator, so the “effective” highest power of \(x \) in the denominator is 3 (think what happens when \(x \) is really large: \(x^6 + 9 \) is about the same size as \(x^6 \) and \(\sqrt{x^6} + 9 \) is about the same size as \(x^3 \)). We have

\[
\lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} = \lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} \left(\frac{1/x^3}{1/x^3} \right) \text{ by dividing the numerator and denominator by the effective highest power of } x \text{ in the denominator}
\]

\[
= \lim_{x \to \infty} \frac{(4 - 3x^3)/x^3}{(\sqrt{x^6} + 9)/x^6}
\]

Exercise 2.6.36 (continued 1)

Solution (continued).

\[
= \lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} \frac{1/x^3}{x^3} = \lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} \frac{1}{x^6}
\]

since \(\sqrt{x^6} = |x|^3 = -x^3 \) for \(x \) negative

\[
= \lim_{x \to \infty} \frac{4 - 3x^3}{\sqrt{x^6} + 9} \frac{1}{x^6} = \lim_{x \to \infty} \frac{4/x^3 - 3/x^3}{\sqrt{x^6} + 9/x^6}
\]

\[
= \lim_{x \to \infty} \frac{4/x^3 - 3}{\sqrt{1 + 9/x^6}} \text{ since } x \to -\infty \text{ then we can assume that } x \neq 0
\]

\[
= \lim_{x \to -\infty} \frac{4/x^3 - 3}{\sqrt{1 + 9/x^6}} \text{ by the Quotient Rule (Theorem 2.12(5)), assuming the denominator is not 0}
\]

Exercise 2.6.36 (continued 2)

Solution (continued).

\[
= \lim_{x \to -\infty} \frac{4/x^3 - 3}{\sqrt{1 + 9/x^6}} - \lim_{x \to -\infty} \frac{1}{\sqrt{1 + 9/x^6}} - \lim_{x \to -\infty} \frac{1}{\sqrt{1 + 9/x^6}} \text{ by the Difference Rule and the Constant Multiple Rule, Theorem 2.12(2 and 4)}
\]

\[
= \lim_{x \to -\infty} \frac{4/x^3 - 3}{\sqrt{1 + 9/x^6}} \text{ by the Root Rule, Theorem 2.12(7)}
\]

\[
= \lim_{x \to -\infty} (4/x^3 - 3) \text{ by the Sum Rule and Constant Multiple Rule, Theorem 2.12(1 and 4)}
\]

\[
= 4 \lim_{x \to -\infty} (1/x^3) - \lim_{x \to -\infty} (1/x^6) \text{ by the Power Rule, Theorem 2.12(6)}
\]
Exercise 2.6.36. Evaluate \(\lim_{x \to \pm\infty} \frac{4 - 3x^3}{\sqrt{x^6 + 9}} \) by dividing the numerator and denominator by the (effective) highest power of \(x \) in the denominator.

Solution (continued).
\[
\lim_{x \to \pm\infty} \frac{4 - 3x^3}{\sqrt{x^6 + 9}} = \frac{4 \lim_{x \to \pm\infty} \frac{1}{x^3} - 3}{\sqrt{\lim_{x \to \pm\infty} (1) + 9 \lim_{x \to \pm\infty} \frac{1}{x^6}}} = \frac{4(0)^3 - (3)}{-\sqrt{(1) + 9(0)^6}} = \frac{-3}{1} = -3.
\]

Exercise 2.6.68

Exercise 2.6.68. Find the horizontal asymptote(s) of the graph of \(y = \frac{2x}{x + 1} \). Justify your computations with Theorem 2.12.

Solution. By definition of horizontal asymptote, we are led to consider \(\lim_{x \to \pm\infty} \frac{2x}{x + 1} \). We have
\[
\lim_{x \to \pm\infty} \frac{2x}{x + 1} = \lim_{x \to \pm\infty} 2 \left(\frac{1}{x} \right) \text{ dividing the numerator and denominator by the highest power of } x \text{ in the denominator}
\]
\[
= \lim_{x \to \pm\infty} \frac{(2x)(1/x)}{(x + 1)(1/x)} = \lim_{x \to \pm\infty} \frac{2x}{x + 1/x}.
\]
Since \(x \to \pm\infty \) then we can assume that \(x \neq 0 \).

Exercise 2.6.68 (continued)

Solution (continued).
\[
\lim_{x \to \pm\infty} \frac{2x}{x + 1} = \lim_{x \to \pm\infty} \frac{2}{1 + 1/x}
= \lim_{x \to \pm\infty} \frac{2}{\frac{1}{x} + 1/x} \text{ by the Quotient Rule}
\]
(\text{Theorem 2.12(5)}, \text{ assuming the denominator is not 0})
\[
= \frac{2}{\lim_{x \to \pm\infty} (1) + \lim_{x \to \pm\infty} (1/x)} \text{ by the Sum Rule,}
\]
\text{Theorem 2.12(1)}
\[
= \frac{2}{(1) + (0)} = 2 \text{ by Example 2.6.1.}
\]
Since \(\lim_{x \to \pm\infty} \frac{2x}{x + 1} = 2 \), then \(y = 2 \) is a horizontal asymptote of the graph of \(y = \frac{2x}{x + 1} \).

Example 2.6.4

Example 2.6.4. Find the horizontal asymptote(s) of the graph of \(y = \frac{x^3 - 2}{|x|^3 + 1} \). Justify your computations with Theorem 2.12.

Solution. A rational function can have only one horizontal asymptote. Since we are not given a rational function (because of the presence of the absolute value), then we consider \(x \to \infty \) and \(x \to -\infty \) separately. We divide the numerator and denominator by the highest (effective) power of \(x \) in the denominator. We have
\[
\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} \left(\frac{1/x^3}{1/x^3} \right)
= \lim_{x \to \infty} \frac{(x^3 - 2)(1/x^3)}{(|x|^3 + 1)(1/x^3)} = \lim_{x \to \infty} \frac{x^3/x^3 - 2/x^3}{x^3/x^3 + 1/x^3} \text{ since } x \to \infty \text{ then we can assume that } x \text{ is positive so that } |x|^3 = x^3.
\]
Example 2.6.4 (continued 1)

Solution (continued).
\[
\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3/x^3 - 2/x^3}{x^3/x^3 + 1/x^3}
\]
\[
= \lim_{x \to \infty} \frac{1 - 2/x^3}{1 + 1/x^3} \quad \text{since } x \to \infty \text{ then we can assume that } x \neq 0
\]
\[
= \lim_{x \to \infty} (1 - 2/x^3) \cdot \lim_{x \to \infty} (1 + 1/x^3)
\]
\[
= \lim_{x \to \infty} (1 - 2/x^3) \quad \text{by the Quotient Rule}
\]
\[
= \lim_{x \to \infty} (1 + 1/x^3)
\]
\[
(\text{Theorem 2.12(5)), assuming the denominator is not 0}
\]
\[
= \lim_{x \to \infty} (1) - \lim_{x \to \infty} (2/x^3) \quad \text{by the Sum Rule}
\]
\[
= \lim_{x \to \infty} (1) + \lim_{x \to \infty} (1/x^3)
\]
\[
\text{and the Difference Rule, Theorem 2.12(1 and 2)}
\]

Example 2.6.4 (continued 2)

Solution (continued).
\[
\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} (1) - 2 (\lim_{x \to \infty} (1/x))^3 \quad \text{by the Constant Mult. Rule and the Power Rule, Theorem 2.12(4 and 6)}
\]
\[
= \frac{(1) - 2(0)^3}{(1) + (0)^3} = 1 \quad \text{by Example 2.6.1(a)}.
\]

So the graph of \(y = \frac{x^3 - 2}{|x|^3 + 1} \) has a \[\text{horizontal asymptote of } y = 1 \text{ as } x \to \infty. \]

Example 2.6.4 (continued 3)

Solution (continued). The computation is similar for \(x \to -\infty \), except that for \(x \) negative we have \(|x|^3 = -x^3 \). We have
\[
\lim_{x \to -\infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to -\infty} \frac{x^3 - 2}{|x|^3 + 1 (1/x^3)}
\]
\[
= \lim_{x \to -\infty} \frac{(x^3 - 2)(1/x^3)}{|x|^3 + 1 (1/x^3)} = \lim_{x \to -\infty} \frac{x^3/x^3 - 2/x^3}{|x|^3 + 1/x^3} \quad \text{since}
\]
\[
\lim_{x \to -\infty} x \to -\infty \text{ then we can assume that } x \text{ is negative}
\]
\[
\text{so that } |x|^3 = -x^3
\]
\[
= \lim_{x \to -\infty} \frac{1 - 2/x^3}{1 + 1/x^3} \quad \text{since } x \to -\infty \text{ then we can assume that } x \neq 0
\]
\[
= \lim_{x \to -\infty} (1 - 2/x^3) \quad \text{by the Quotient Rule}
\]
\[
= \lim_{x \to -\infty} (1 + 1/x^3)
\]
\[
(\text{Theorem 2.12(5)), assuming the denominator is not 0}
\]

Example 2.6.4 (continued 4)

Solution (continued).
\[
\lim_{x \to -\infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to -\infty} (1) - \lim_{x \to -\infty} (2/x^3) \quad \text{by the Sum Rule}
\]
\[
= \lim_{x \to -\infty} (1) - 2 (\lim_{x \to -\infty} (1/x))^3 \quad \text{by the Sum Rule}
\]
\[
= \lim_{x \to -\infty} (1) + \lim_{x \to -\infty} (1/x^3)
\]
\[
\text{and the Difference Rule, Theorem 2.12(1 and 2)}
\]
\[
= \frac{(1) - 2(0)^3}{(-1) + (0)^3} = -1 \quad \text{by Example 2.6.1(b)}.
\]

So the graph of \(y = \frac{x^3 - 2}{|x|^3 + 1} \) has a \[\text{horizontal asymptote of } y = -1 \text{ as } x \to -\infty. \]
Example 2.6.5

Example 2.6.5. Use the formal definition to prove \(\lim_{x \to -\infty} e^x = 0 \). Notice that this implies that \(y = 0 \) is a horizontal asymptote of \(y = e^x \).

Proof. First, the domain of \(f(x) = e^x \) is all of the real numbers \(\mathbb{R} \), so it is defined on an interval of the form \((-\infty, P)\) (for any \(P \)). Next, let \(\varepsilon > 0 \). Choose \(N = \ln \varepsilon \). If \(x < N = \ln \varepsilon \) then \(e^x < e^{\ln \varepsilon} = \varepsilon \) since \(e^x \) is an increasing function on the real numbers.
That is, if \(x < N \) then
\[
|f(x) - 0| = |e^x - 0| = e^x < \varepsilon.
\]
Therefore, by definition,
\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x = 0,
\]
as claimed. \(\Box \)

Note. The choice of \(N = \ln \varepsilon \) makes sense if we consider the graph of \(y = e^x \):

Example 2.6.8

Example 2.6.8. Use the Sandwich Theorem to find the horizontal asymptote of the curve \(y = 2 + \frac{\sin x}{x} \).

Solution. First, \(-1 \leq \sin x \leq 1\) for all real numbers. Let \(g(x) = 2 - 1/x \), \(f(x) = 2 + \frac{\sin x}{x} \), and \(h(x) = 2 + 1/x \). Then \(g(x) \leq f(x) \leq h(x) \) for all real numbers, except 0, and so these inequalities hold on \((-\infty, P) = (-\infty, 0)\) and \((P, \infty) = (0, \infty)\). Now
\[
\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (2 - 1/x) = 2 - 0 = 2 = L
\]
and
\[
\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} (2 + 1/x) = 2 + 0 = 2 = L, \text{ by Example 2.6.1.}
\]
So by Theorem 2.6.2,
\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(2 + \frac{\sin x}{x} \right) = 2. \text{ Therefore,}
\]
\[
y = 2 \text{ is a horizontal asymptote of the graph of } y = 2 + \frac{\sin x}{x}. \Box
\]

Exercise 2.6.92

Exercise 2.6.92. Evaluate (carefully!) \(\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \frac{\sqrt{x^2 - x}}{x} \right) \).
Justify your computations.

Solution. We multiply by the conjugate of the given expression divided by itself (which is defined for \(x \) “sufficiently large,” namely \(x \geq 1 \)) in order to produce a quotient and try to use some of the techniques already introduced. We have
\[
\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \frac{\sqrt{x^2 - x}}{x} \right) = \lim_{x \to \infty} \frac{\sqrt{x^2 + x} - \frac{\sqrt{x^2 - x}}{x}}{\sqrt{x^2 + x} - \frac{\sqrt{x^2 - x}}{x}}
\]
\[
= \lim_{x \to \infty} \frac{(\sqrt{x^2 + x})^2 - (\sqrt{x^2 - x})^2}{\sqrt{x^2 + x} + \frac{\sqrt{x^2 - x}}{x}} = \lim_{x \to \infty} \frac{x^2 + x - (x^2 - x)}{\sqrt{x^2 + x} + \frac{\sqrt{x^2 - x}}{x}}
\]
\[
= \lim_{x \to \infty} \frac{x^2 + x}{\sqrt{x^2 + x} + \frac{\sqrt{x^2 - x}}{x}}.
\]
Exercise 2.6.92 (continued 1)

Solution (continued).

\[
\lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} \left(\frac{1/x}{1/x} \right) \text{ dividing the numerator and denominator by the effective highest power of } x \text{ in the denominator}
\]

\[
= \lim_{x \to \infty} \frac{(2x)/x}{\sqrt{x^2 + x} + \sqrt{x^2 - x} / x} = \lim_{x \to \infty} \frac{(2x)/x}{\sqrt{x^2 + x} + \sqrt{x^2 - x} / \sqrt{x^2}}
\]

since \(x \to \infty \) then we can assume that \(x \neq 0 \)

so that \(\sqrt{x^2} = |x| = x \)

\[
= \lim_{x \to \infty} \frac{(2x)/x}{\sqrt{x^2 + x} / \sqrt{x^2} + \sqrt{x^2 - x} / \sqrt{x^2} / \sqrt{x^2}}
\]

Exercise 2.6.92 (continued 2)

Solution (continued).

\[
\lim_{x \to \infty} \frac{(2x)/x}{\sqrt{(x^2 + x)/x^2} + \sqrt{(x^2 - x)/x^2}} = \lim_{x \to \infty} \frac{(2x)/x}{\sqrt{x^2/x^2 + x/x^2} + \sqrt{x^2/x^2 - x/x^2}}
\]

\[
= \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \sqrt{1 - 1/x}} / \sqrt{1 - 1/x}} \text{ since } x \to \infty \text{ then we can assume that } x \neq 0
\]

\[
= \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \sqrt{1 - 1/x}}} \text{ by the Quotient Rule}
\]

Theorem 2.12(5), assuming the denominator is not 0

\[
= \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \lim_{x \to \infty} \sqrt{1 - 1/x}}} \text{ by the Sum Rule, Theorem 2.12(1)}
\]

Exercise 2.6.92 (continued 3)

Solution (continued).

\[
= \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \sqrt{1 - 1/x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \sqrt{1 - 1/x}}}
\]

Theorem 2.12(7) (notice that both \(1 + 1/x \) and \(1 - 1/x \) are nonnegative for \(x \geq 1 \))

\[
= \lim_{x \to \infty} \frac{2}{\sqrt{1 + 1/x + \sqrt{1 - 1/x} + \sqrt{1 - 1/x}}}
\]

by the Sum and Difference Rules, Theorem 2.12(1 and 2)

\[
= \frac{2}{\sqrt{1 + 0} + \sqrt{1 - 0}} = \frac{2}{1 + 1} = 1.
\]

Exercise 2.6.108

Exercise 2.6.108. Consider the rational function \(y = \frac{x^2 - 1}{2x + 4} \). Find the oblique asymptote.

Solution. First, we perform long division to get:

\[
\begin{array}{c|ccccc}
2x+4 & x^2 & -1 \\
\hline
 & x^2 & +2x \\
 & -2x & -1 \\
 & -2x & -4 \\
\end{array}
\]

So \(y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2 - 1 + \frac{3}{2x + 4}} \) where \(x/2 - 1 \) is a linear term. If we show that \(\lim_{x \to \pm \infty} \frac{3}{2x + 4} = 0 \) then we can conclude that \(y = x/2 - 1 \) is the oblique asymptote for the graph of \(y = (x^2 - 1)/(2x + 4) \).
Exercise 2.6.108 (continued 1)

Solution (continued). Next,
\[
\lim_{x \to \pm \infty} \frac{3}{2x + 4} = \lim_{x \to \pm \infty} \frac{3}{2x + 4} \left(\frac{1}{x} \right) \text{ dividing the numerator and denominator by the highest power of } x \text{ in the denominator}
\]
\[
= \lim_{x \to \pm \infty} \frac{3}{(2x + 4)(1/x)} = \lim_{x \to \pm \infty} \frac{3/x}{2x/x + 4/x}
\]
\[
= \lim_{x \to \pm \infty} \frac{3/x}{2 + 4/x} \text{ since } x \to \pm \infty \text{ then we can assume that } x \neq 0
\]
\[
= \frac{3}{2 \cdot 4} \text{ by the Sum, Constant, Multiple and Quotient Rules, Theorem 2.12(1, 4, & 5)}
\]
\[
= \frac{3(0)}{(2) + 4(0)} = 0 \text{ by Example 2.6.1.}
\]

Exercise 2.6.108 (continued 2)

Exercise 2.6.108. Consider the rational function \(y = \frac{x^2 - 1}{2x + 4} \). Find the oblique asymptote.

Solution (continued). Since \(y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4} \) and
\[
\lim_{x \to \pm \infty} \frac{3}{2x + 4} = 0, \text{ then } y = \frac{x}{2} - 1 \text{ is an oblique asymptote of the graph of } y = \frac{x^2 - 1}{2x + 4}. \text{ Notice that the function } f(x) = \frac{x^2 - 1}{2x + 4} \text{ is not defined at } x = -2. \text{ With } y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4}, \text{ the term } \frac{3}{2x + 4} \text{ is positive for } x \text{ large and positive, and is negative for } x \text{ large and negative. So the graph of } y = \frac{x^2 - 1}{2x + 4} \text{ lies above the oblique asymptote } y = \frac{x}{2} - 1 \text{ for } x \text{ large and positive, and lies below the oblique asymptote for } x \text{ large and negative.}

Exercise 2.6.108 (continued 3)

Solution (continued). A crude graph of \(y = \frac{x^2 - 1}{2x + 4} \) which reflects the oblique asymptote (but does not reflect other subtle details of the graph) is as follows (we’ll explore the graph in more detail later):

Example 2.6.B

Example 2.6.B. For \(n \) a positive even integer, prove that \(\lim_{x \to 0} \frac{1}{x^n} = \infty. \)

Solution. First, \(f(x) = 1/x^n \) is defined for all \(x \) except 0, so there is an open interval containing \(c = 0 \) on which \(f \) is defined, except at \(c = 0 \) itself (say the interval \((-1, 1))\). Let \(B \) be a positive real number.

Choose \(\delta = 1/B^{1/n} \). Then for
\[0 < |x - c| = |x| < \delta = 1/B^{1/n} \text{ we have } \frac{1}{|x|} > B^{1/n} \text{ (since the function } 1/x \text{ is decreasing for } x > 0 \text{ and so } 1/|x|^n > B \text{ (since the function } x^n \text{ is increasing for } x \geq 0 \text{). Since } n \text{ is even, then } |x|^n = x^n \text{ and so we have } f(x) = 1/x^n = 1/|x|^n > B. \text{ So, by definition, } \lim_{x \to 0} \frac{1}{x^n} = \infty, \text{ as claimed.} \]
Exercise 2.6.54

Exercise 2.6.54. Consider \(f(x) = \frac{x}{x^2 - 1} \). Find (a) \(\lim_{x \to 1^+} f(x) \), (b) \(\lim_{x \to -1} f(x) \), (c) \(\lim_{x \to 1^+} f(x) \), and (d) \(\lim_{x \to -1} f(x) \).

Solution. First, \(f(x) = \frac{x}{x^2 - 1} \) is a rational function of the form \(f(x) = \frac{p(x)}{q(x)} \) where \(p(x) = x \) and \(q(x) = x^2 - 1 \).

(a) We have \(\lim_{x \to 1^+} p(x) = \lim_{x \to 1^+} x = 1 \neq 0 \) and \(\lim_{x \to 1^+} q(x) = \lim_{x \to 1^+} (x^2 - 1) = (1)^2 - 1 = 0 \), by Theorem 2.2 for one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,
\[
\lim_{x \to 1^+} \frac{p(x)}{q(x)} = \lim_{x \to 1^+} \frac{x}{x^2 - 1} = \pm \infty; \text{ we just need to determine if the limit is } +\infty \text{ or } -\infty.\]
We do so by analyzing the sign of \(\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \) for “appropriate” \(x \) (since \(x \to 1^+ \), then appropriate \(x \) are close to 1 and slightly greater than 1). For such \(x \), we have \(x \) is positive (in fact, \(x \) is “close to” 1), \(x - 1 \) is positive (since \(x \) is greater than 1; so \(x - 1 \) is positive and “close to” 0), and \(x + 1 \) is positive (in fact, \(x \) is “close to” 2).

Solution (continued). Combining the factors we can conclude the following little sign diagram (not an actual equation):
\[
\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \begin{cases} (+) & \text{if } \frac{x}{x^2 - 1} > 0 \\ (-)(+) & \text{if } \frac{x}{x^2 - 1} < 0 \end{cases}
\]
Since we know
\[
\lim_{x \to 1^+} \frac{x}{x^2 - 1} = +\infty \text{ and we know for } x \text{ close to 1 and slightly less than 1 that } \frac{x}{x^2 - 1} \text{ is negative, then we conclude that } \lim_{x \to 1^+} \frac{x}{x^2 - 1} = -\infty. \square
\]

(b) We have \(\lim_{x \to 1^-} p(x) = \lim_{x \to 1^-} x = 1 \neq 0 \) and \(\lim_{x \to 1^-} q(x) = \lim_{x \to 1^-} (x^2 - 1) = (1)^2 - 1 = 0 \), by Theorem 2.2 for one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,
\[
\lim_{x \to 1^-} \frac{p(x)}{q(x)} = \lim_{x \to 1^-} \frac{x}{x^2 - 1} = \pm \infty; \text{ we just need to determine if the limit is } +\infty \text{ or } -\infty.\]
We do so, again, by analyzing the sign of \(\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \) for “appropriate” \(x \) (since \(x \to 1^- \), then appropriate \(x \) are close to 1 and slightly less than 1).

Exercise 2.6.54 (continued 2)

Exercise 2.6.54 (continued 3)

Solution (continued). For such \(x \), we have \(x \) is positive (in fact, \(x \) is “close to” 1), \(x - 1 \) is negative (since \(x \) is less than 1; so \(x - 1 \) is negative and “close to” 0), and \(x + 1 \) is positive (in fact, \(x \) is “close to” 2).

Combining the factors we can again conclude the following little sign diagram:
\[
\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \begin{cases} (+) & \text{if } \frac{x}{x^2 - 1} > 0 \\ (-)(+) & \text{if } \frac{x}{x^2 - 1} < 0 \end{cases}
\]
Since we know
\[
\lim_{x \to 1^-} \frac{x}{x^2 - 1} = -\infty \text{ and we know for } x \text{ close to 1 and slightly less than 1 that } \frac{x}{x^2 - 1} \text{ is negative, then we conclude that } \lim_{x \to 1^-} \frac{x}{x^2 - 1} = -\infty. \square
\]

(c) We have \(\lim_{x \to 1^+} p(x) = \lim_{x \to 1^+} x = -1 \neq 0 \) and \(\lim_{x \to 1^+} q(x) = \lim_{x \to 1^+} (x^2 - 1) = (-1)^2 - 1 = 0 \), by Theorem 2.2 for one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,
\[
\lim_{x \to 1^+} \frac{p(x)}{q(x)} = \lim_{x \to 1^+} \frac{x}{x^2 - 1} = \pm \infty; \text{ we just need to determine if the limit is } +\infty \text{ or } -\infty.
\]

Solution (continued). We analyze the sign of \(\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \) for “appropriate” \(x \) (since \(x \to -1^+ \), then appropriate \(x \) are close to \(-1\) and slightly greater than \(-1\)). For such \(x \), we have \(x \) is negative (in fact, \(x \) is “close to” \(-1\), \(x - 1 \) is negative (in fact, \(x - 1 \) is “close to” \(-2\)), and \(x + 1 \) is positive (since \(x \) is greater than \(-1\); so \(x + 1 \) is positive and “close to” 0). Combining the factors we get the sign diagram:
\[
\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \begin{cases} (-) & \text{if } \frac{x}{x^2 - 1} < 0 \\ (+)(+) & \text{if } \frac{x}{x^2 - 1} > 0 \end{cases}
\]
Since we know
\[
\lim_{x \to -1^-} \frac{x}{x^2 - 1} = +\infty \text{ and we know for } x \text{ close to } -1 \text{ and slightly greater than } -1 \text{ that } \frac{x}{x^2 - 1} \text{ is positive, then we conclude that } \lim_{x \to -1^-} \frac{x}{x^2 - 1} = +\infty. \square
\]
Exercise 2.6.54 (continued 4)

Solution (continued). (d) We have
\[
\lim_{x \to -1^-} p(x) = \lim_{x \to -1^-} x = -1 \neq 0 \quad \text{and} \\
\lim_{x \to -1^-} q(x) = \lim_{x \to -1^-} (x^2 - 1) = (-1)^2 - 1 = 0, \quad \text{by Theorem 2.2 for} \\
\text{one-sided limits. So by Dr. Bob's Infinite Limits Theorem,} \\
\lim_{x \to -1^-} \frac{p(x)}{q(x)} = \lim_{x \to -1^-} \frac{x}{x^2 - 1} = \pm \infty; \quad \text{we just need to determine if the} \\
\text{limit is } +\infty \text{ or } -\infty. \quad \text{We analyze the sign of} \\
\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \quad \text{for} \\
\text{"appropriate" } x \quad (\text{since } x \to -1^-, \text{ then appropriate } x \text{ are close to } -1 \text{ and} \\
\text{slightly less than } -1). \quad \text{For such } x, \text{ we have } x \text{ is negative (in fact, } x \text{ is} \\
\text{"close to" } -1), \quad x - 1 \text{ is negative (in fact, } x - 1 \text{ is "close to" } -2), \text{ and} \\
x + 1 \text{ is negative (since } x \text{ is less than } -1; \text{ so } x + 1 \text{ is positive and "close to" } 0). \quad \text{Combining the factors we get the sign diagram:} \\
\frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)}{(-)(-)} = -. \]

Exercise 2.6.70

Exercise 2.6.70. Consider \(y = f(x) = \frac{2x}{x^2 - 1} \). Find the domain, horizontal asymptote(s), vertical asymptotes, graph \(y = f(x) \) in such a way as to reflect the asymptotic behavior, and find the range of \(f \).

Solution. First, the domain of \(y = f(x) = \frac{2x}{x^2 - 1} = \frac{2x}{(x + 1)(x - 1)} \) is all real \(x \) except for \(-1 \) and \(1 \); the domain is \((-\infty, -1) \cup (-1, 1) \cup (1, \infty)\). For the horizontal asymptote(s), we consider \(\lim_{x \to \pm \infty} f(x) \). We have
\[
\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1} \\
= \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1} \left(\frac{1/x^2}{1/x^2} \right) \quad \text{dividing the numerator and} \\
\text{denominator by the highest power} \\
of \text{ } x \text{ in the denominator}
\]

So \(y = 0 \) is a horizontal asymptote of \(y = \frac{2x}{x^2 - 1} \).
Exercise 2.6.70 (continued 2)

Solution (continued). Now \(f(x) = \frac{2x}{x^2 - 1} = \frac{2x}{(x + 1)(x - 1)} \) is a rational function with \(\lim_{x \to -1^-} 2x = -2 \neq 0 \), \(\lim_{x \to -1^+} 2x = -2 \neq 0 \), and \(\lim_{x \to 1^-} 2x = -2 \neq 0 \) (each by Theorem 2.2), so by Dr. Bob’s Infinite Limits Theorem (applied to rational functions), \(f \) has vertical asymptotes at \(x = -1 \) and \(x = 1 \). We explore the vertical asymptotes by taking one-sided limits to determine if the limit is \(+\infty \) or \(-\infty \). We analyze the sign of \(\frac{2x}{(x - 1)(x + 1)} \) for “appropriate” \(x \) in each case. For \(x \to -1^+ \), the appropriate \(x \) are close to \(-1\) and slightly greater than \(-1\). For such \(x \), we have \(2x \) is negative (in fact, \(2x \) is “close to” \(-2\)), \(x - 1 \) is negative (in fact, \(x - 1 \) is “close to” \(-2\)), and \(x + 1 \) is positive (since \(x \) is greater than \(-1\); so \(x + 1 \) is positive and “close to” \(0\)). Combining the factors we get the sign diagram:

\[
\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)(+)}{(-)(+)} = + \text{. So } \lim_{x \to -1^+} f(x) = \infty.
\]

Exercise 2.6.70 (continued 3)

Solution (continued). For \(x \to -1^- \), the appropriate \(x \) are close to \(-1\) and slightly less than \(-1\). For such \(x \), we have \(2x \) is negative (2x is “close to” \(-2\)), \(x - 1 \) is negative (since \(x \) is less than \(-1\); so \(x - 1 \) is negative and “close to” \(-2\)), and \(x + 1 \) is negative (since \(x \) is less than \(-1\); so \(x + 1 \) is negative and “close to” \(0\)). Combining the factors we get the sign diagram:

\[
\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(-)}{(-)(+)} = - \text{. So } \lim_{x \to -1^-} f(x) = -\infty.
\]

Exercise 2.6.70 (continued 4)

Solution (continued). For \(x \to 1^- \), the appropriate \(x \) are close to \(1 \) and slightly less than \(1 \). For such \(x \), we have \(2x \) is positive (2x is “close to” \(2 \)), \(x - 1 \) is negative (since \(x \) is less than \(1 \); so \(x - 1 \) is negative and “close to” \(0 \)), and \(x + 1 \) is positive (\(x + 1 \) is “close to” \(2 \)). Combining the factors we get the sign diagram:

\[
\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} \Rightarrow \frac{(+)(+)}{(-)(+)} = - \text{. So } \lim_{x \to 1^-} f(x) = -\infty.
\]

We have the graph (notice the range is all real numbers):
Exercise 2.6.108 (again). Consider the rational function \(y = \frac{x^2 - 1}{2x + 4} \). Find all asymptotes and graph in a way that reflects the asymptotic behavior.

Solution. We saw above that the graph of \(y = \frac{x^2 - 1}{2x + 4} = \frac{x}{2} - 1 + \frac{3}{2x + 4} \) has \(y = \frac{x}{2} - 1 \) as an oblique asymptote as \(x \to \pm \infty \). We now explore vertical asymptotes. By the Quotient Rule, Theorem 2.1(5),

\[
\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2 - 1}{2x + 4} = \frac{c^2 - 1}{2c + 4} \quad \text{for} \quad c \neq -2.
\]

So by definition, \(f \) is continuous on its domain \((-\infty, -2) \cup (-2, \infty)\). By Dr. Bob’s Infinite Limits Theorem (applied to rational function \(f \)), since

\[
\lim_{x \to -2} x^2 - 1 = (-2)^2 - 1 = 3 \neq 0 \quad \text{and} \quad \lim_{x \to -2} 2x + 4 = x(-2) + 4 = 4 = 0
\]

(by Theorem 2.2), we see that \(\lim_{x \to -2 \pm} f(x) = \pm \infty \) and so the graph has a \text{vertical asymptote of} \(x = -2 \). We explore one-sided limits to see if the limits are \(\infty \) or \(-\infty \).

Solution (continued). Combining the factors we get the sign diagram:

\[
x^2 - 1 \quad \Rightarrow \quad (+) \quad = \quad -. \quad \text{So} \quad \lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x^2 - 1}{2x + 4} = -\infty.
\]

So the graph is:

![Graph of function](image)

Exercise 2.6.80. Find a function \(g \) that satisfies the conditions

\[
\lim_{x \to \infty} g(x) = 0, \quad \lim_{x \to -3^-} g(x) = -\infty, \quad \text{and} \quad \lim_{x \to -3^+} g(x) = \infty. \]

Graph \(y = g(x) \) in a way that reflects the asymptotic behavior.

Solution. Since we want \(\lim_{x \to -3} g(x) = -\infty \), then the graph of \(y = g(x) \) will have \(y = 0 \) as a horizontal asymptote. Since we want \(\lim_{x \to -3} g(x) = -\infty \) and \(\lim_{x \to -3^+} g(x) = \infty \), then the graph of \(y = g(x) \) has a vertical asymptote of \(x = 3 \). We try to find a rational function,

\[
g(x) = \frac{p(x)}{q(x)},
\]

satisfying these conditions. If we make polynomial \(p \) of degree less than that of polynomial \(q \), then this will give (as we will check) the horizontal asymptote \(y = 0 \). If we have \(x - 3 \) in the denominator then we should get a vertical asymptote of \(x = 3 \) (unless we also have a factor of \(x - 3 \) in the numerator, which we will avoid). So we try \(p(x) = 1 \) (a polynomial of degree 0), \(q(x) = x - 3 \) (a polynomial of degree 1), and

\[
g(x) = 1/(x - 3)
\]

(we may have to adjust the sign of \(g \) to get the proper one side limits at 3).
Exercise 2.6.80 (continued 1)

Solution (continued). We have

\[
\lim_{x \to \pm \infty} g(x) = \lim_{x \to \pm \infty} \frac{1}{x - 3} = \lim_{x \to \pm \infty} \frac{1/x}{1/x - 3/x} \quad \text{dividing the numerator and denominator by the effective highest power of } x \text{ in the denominator}
\]

\[
= \lim_{x \to \pm \infty} \frac{1/x}{(x - 3)/x} = \lim_{x \to \pm \infty} \frac{1/x}{1 - 3/x} \quad \text{since } x \to \pm \infty
\]

then we can assume that \(x \neq 0\)

\[
= \lim_{x \to \pm \infty} \frac{1/x}{1 - 3/x} \quad \text{by the Difference, Constant Mult., and Quotient Rules, Theorem 2.12(2,4,5)}
\]

\[
= \frac{0}{1 - 3(0)} = \frac{0}{1} = 0 \quad \text{by Example 2.6.1.}
\]

So \(y = 0\) and a horizontal asymptote of the graph of \(y = g(x)\), as desired.

Exercise 2.6.80 (continued 2)

Solution (continued). Since \(\lim_{x \to 3^{-}} 1 = 1 \neq 0\) and \(\lim_{x \to 3^{+}} x - 3 = 0\) (both by Theorem 2.2, say), then by Dr. Bob’s Infinite Limits Theorem (applied to rational functions) \(\lim_{x \to 3^{\pm}} g(x) = \pm \infty\). We consider one-sided limits (as required by the question).

For \(\lim_{x \to 3^{+}} g(x)\), we analyze the sign of \(\frac{1}{x - 3}\) for “appropriate” \(x\) (since \(x \to 3^{+}\), then appropriate \(x\) are close to 3 and slightly greater than 3). For such \(x\), we have 1 is positive and \(x - 3\) is positive (since \(x\) is greater than 3; so \(x - 3\) is positive and “close to” 0). Combining the factors we get the sign diagram:

\[
\frac{1}{x - 3} \Rightarrow (+) \Rightarrow (+) = +.
\]

So \(\lim_{x \to 3^{+}} g(x) = \lim_{x \to 3^{+}} \frac{1}{x - 3} = \infty\), as desired.

For \(\lim_{x \to 3^{-}} g(x)\), we analyze the sign of \(\frac{1}{x - 3}\) for “appropriate” \(x\) (since \(x \to 3^{-}\), then appropriate \(x\) are close to 3 and slightly less than 3). For such \(x\), we have 1 is positive and \(x - 3\) is negative (since \(x\) is less than 3; so \(x - 3\) is negative and “close to” 0).

Exercise 2.6.80 (continued 3)

Exercise 2.6.80. Find a function \(g\) that satisfies the conditions

\[
\lim_{x \to \pm \infty} g(x) = 0, \quad \lim_{x \to 3^{-}} g(x) = -\infty, \quad \text{and } \lim_{x \to 3^{+}} g(x) = \infty.
\]

Graph \(y = g(x)\) in a way that reflects the asymptotic behavior.

Solution (continued). Combining the factors we get the sign diagram:

\[
\frac{1}{x - 3} \Rightarrow (+) \Rightarrow (-) = -.
\]

So

\[
\lim_{x \to 3^{-}} g(x) = \lim_{x \to 3^{-}} \frac{1}{x - 3} = -\infty,
\]

as desired.

We then have the graph:

Exercise 2.6.102

Exercise 2.6.102. Use the formal definition of an infinite one-sided limit to prove that \(\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty\).

Proof. Let \(f\) be a function defined on an interval \((a, c)\), where \(a < c\). We say that \(f(x)\) approaches negative infinity as \(x\) approaches \(c\) from the left, and we write \(\lim_{x \to c^{-}} f(x) = -\infty\), if for every negative real number \(-B\) there exists a corresponding \(\delta > 0\) such that for all \(x\)

\[
c - \delta < x < c \implies f(x) < -B.
\]

(This is the solution to Exercise 2.6.99(c).) Notice that \(f(x) = 1/((x - 2)\) is defined on the interval \((-\infty, 2)\) (here, \(c = 2\)). Let \(-B\) be any negative real number. Choose \(\delta = 1/B > 0\). If \(2 - \delta < x < 2\) then \(-\delta < x < 2 < 0\) and \(-1/\delta > 1/(x - 2)\), since \(1/x\) is a decreasing function for negative input values. Now \(\delta = 1/B\) so \(1/\delta = B\) and \(-1/\delta = -B\). So \(2 - \delta < x < 2\) implies \(f(x) = 1/(x - 2) < -B\). Therefore, by the definition above, \(\lim_{x \to 2^{-}} 1/(x - 2) = -\infty\). □