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Example 2.6.1(a)

Example 2.6.1(a)

Example 2.6.1(a). Prove that lim
x→∞

1

x
= 0.

Proof. First, notice that with P = 0 we have
that the domain of f contains the
interval (P,∞) = (0,∞).

Let ε > 0 be given.
[We must find a number M such that for all

x > M implies

∣∣∣∣1x − 0

∣∣∣∣ = ∣∣∣∣1x
∣∣∣∣ < ε. The

implication will hold if M = 1/ε or any larger
positive number (see Figure 2.50).]
Suppose x > M = 1/ε (notice then that x is
positive). This implies 0 < 1/x < 1/M = ε,
or 0 < 1

x =
∣∣ 1
x − 0

∣∣ = |f (x)− L| < ε.

Therefore lim
x→∞

1

x
= 0, as claimed.

Figure 2.50
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Exercise 2.6.14

Exercise 2.6.14

Exercise 2.6.14. For the rational function f (x) =
2x3 + 7

x3 − x2 + x + 7
, find

the limit as (a) x →∞, and (b) x → −∞. Justify your computations with
Theorem 2.12.

Solution. We can evaluate both limits by the same process. We have

lim
x→±∞

f (x) = lim
x→±∞

2x3 + 7

x3 − x2 + x + 7
by the definition of f

= lim
x→±∞

2x3 + 7

x3 − x2 + x + 7

(
1/x3

1/x3

)
dividing the numerator and

denominator by the highest power of x in the denominator

= lim
x→±∞

(2x3 + 7)/x3

(x3 − x2 + x + 7)/x3

= lim
x→±∞

2x3/x3 + 7/x3

x3/x3 − x2/x3 + x/x3 + 7/x3
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Exercise 2.6.14

Exercise 2.6.14 (continued 1)

Solution (continued).

lim
x→±∞

f (x) = lim
x→±∞

2x3/x3 + 7/x3

x3/x3 − x2/x3 + x/x3 + 7/x3

= lim
x→±∞

2 + 7/x3

1− 1/x + 1/x2 + 7/x3
since x → ±∞ then we

can assume that x 6= 0

=
limx→±∞(2 + 7/x3)

limx→±∞(1− 1/x + 1/x2 + 7/x3)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

=
limx→±∞ 2 + limx→±∞ 7/x3

limx→±∞ 1− limx→±∞ 1/x + limx→±∞ 1/x2 + limx→±∞ 7/x3)
by

the Sum and Difference Rules (Theorem 2.12(1 and 2))

=
limx→±∞ 2 + 7 limx→±∞ 1/x3

limx→±∞ 1− limx→±∞ 1/x + limx→±∞ 1/x2 + 7 limx→±∞ 1/x3)
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Exercise 2.6.14

Exercise 2.6.14 (continued 2)

Solution (continued).

=
limx→±∞ 2 + 7 limx→±∞ 1/x3

limx→±∞ 1− limx→±∞ 1/x + limx→±∞ 1/x2 + 7 limx→±∞ 1/x3

by the Constant Multiple Rule (Theorem 2.12(4))

=
limx→±∞ 2 + 7 (limx→±∞ 1/x)3

limx→±∞ 1− limx→±∞ 1/x + (limx→±∞ 1/x)2 + 7 (limx→∞ 1/x)3

by the Power Rule (Theorem 2.12(6))

=
(2) + 7(0)3

(1)− (0) + (0)2 + 7(0)3
by Example 2.6.1

=
2

1
= 2 . �
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= 2 . �
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Exercise 2.6.36

Exercise 2.6.36

Exercise 2.6.36. Evaluate lim
x→−∞

4− 3x3

√
x6 + 9

by dividing the numerator and

denominator by the (effective) highest power of x in the denominator.
Justify your computations with Theorem 2.12.

Solution. We have a square root of x6 in the denominator, so the
“effective” highest power of x in the denominator is 3 (think what
happens when x is really large: x6 + 9 is about the same size as x6 and√

x6 + 9 is about the same size as x3).

We have

lim
x→−∞

4− 3x3

√
x6 + 9

= lim
x→−∞

4− 3x3

√
x6 + 9

(
1/x3

1/x3

)
dividing the numerator and

denominator by the effective highest power

of x in the denominator

= lim
x→−∞

(4− 3x3)/x3

(
√

x6 + 9)/x3
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Exercise 2.6.36

Exercise 2.6.36 (continued 1)

Solution (continued).

= lim
x→−∞

(4− 3x3)/x3

(
√

x6 + 9)/x3
= lim

x→−∞

(4− 3x3)/x3

(
√

x6 + 9)/(−
√

x6)

since
√

x6 = |x3| = −x3 for x negative

= lim
x→−∞

(4− 3x3)/x3

−
√

(x6 + 9)/x6
= lim

x→−∞

4/x3 − 3x3/x3

−
√

x6/x6 + 9/x6

= lim
x→−∞

4/x3 − 3

−
√

1 + 9/x6
since x → −∞ then we

can assume that x 6= 0

=
limx→−∞(4/x3 − 3)

limx→−∞(−
√

1 + 9/x6)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

() Calculus 1 July 25, 2020 8 / 50



Exercise 2.6.36
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Exercise 2.6.36

Exercise 2.6.36 (continued 2)

Solution (continued).

=
limx→−∞(4/x3)− limx→−∞ 3

− limx→−∞(
√

1 + 9/x6)
by the Difference Rule

and the Constant Multiple Rule, Theorem 2.12(2 and 4)

=
limx→−∞(4/x3)− limx→−∞ 3

−
√

limx→−∞(1 + 9/x6)
by the Root Rule, Theorem 2.12(7)

=
4 limx→−∞(1/x3)− limx→−∞ 3

−
√

limx→−∞(1) + 9 limx→−∞(1/x6)
by the Sum Rule and

Constant Multiple Rule, Theorem 2.12(1 and 4)

=
4 (limx→−∞ 1/x)3 − limx→−∞ 3

−
√

limx→−∞(1) + 9 (limx→−∞ 1/x)6
by the Power Rule,

Theorem 2.12(6)
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Exercise 2.6.36
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Solution (continued).
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Exercise 2.6.36

Exercise 2.6.36 (continued 3)

Exercise 2.6.36. Evaluate lim
x→−∞

4− 3x3

√
x6 + 9

by dividing the numerator and

denominator by the (effective) highest power of x in the denominator.
Justify your computations with Theorem 2.12.

Solution (continued).

lim
x→−∞

4− 3x3

√
x6 + 9

=
4 (limx→−∞ 1/x)3 − limx→−∞ 3

−
√

limx→−∞(1) + 9 (limx→−∞ 1/x)6

=
4(0)3 − (3)

−
√

(1) + 9(0)6
by Example 2.6.1

=
−3

−1
= 3 . �
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Exercise 2.6.68

Exercise 2.6.68

Exercise 2.6.68. Find the horizontal asymptote(s) of the graph of

y =
2x

x + 1
. Justify your computations with Theorem 2.12.

Solution. By definition of horizontal asymptote, we are led to consider

consider lim
x→±∞

2x

x + 1
. We have

lim
x→±∞

2x

x + 1
= lim

x→±∞

2x

x + 1

(
1/x

1/x

)
dividing the numerator and

denominator by the highest

power of x in the denominator

= lim
x→±∞

(2x)(1/x)

(x + 1)(1/x)
= lim

x→±∞

(2x/x)

(x/x + 1/x)

= lim
x→±∞

2

1 + 1/x
since x → ±∞ then we

can assume that x 6= 0
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Exercise 2.6.68

Exercise 2.6.68 (continued)

Solution (continued).

lim
x→±∞

2x

x + 1
= lim

x→±∞

2

1 + 1/x

=
limx→±∞ 2

limx→±∞(1 + 1/x)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

=
limx→±∞ 2

limx→±∞(1) + limx→±∞(1/x)
by the Sum Rule,

Theorem 2.12(1)

=
(2)

(1) + (0)
= 2 by Example 2.6.1.

Since lim
x→±∞

2x

x + 1
= 2, then y = 2 is a horizontal asymptote of the

graph of y =
2x

x + 1
. �

() Calculus 1 July 25, 2020 12 / 50



Exercise 2.6.68

Exercise 2.6.68 (continued)

Solution (continued).
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Example 2.6.4

Example 2.6.4

Example 2.6.4. Find the horizontal asymptote(s) of the graph of

y =
x3 − 2

|x |3 + 1
. Justify your computations with Theorem 2.12.

Solution. A rational function can have only one horizontal asymptote.
Since we are not given a rational function (because of the presence of the
absolute value), then we consider x →∞ and x → −∞ separately. We
divide the numerator and denominator by the highest (effective) power of
x in the denominator.

We have

lim
x→∞

x3 − 2

|x |3 + 1
= lim

x→∞

x3 − 2

|x |3 + 1

(
1/x3

1/x3

)
= lim

x→∞

(x3 − 2)(1/x3)

(|x |3 + 1)(1/x3)
= lim

x→∞

x3/x3 − 2/x3

x3/x3 + 1/x3
since

x →∞ then we can assume that x is positive

so that |x |3 = x3
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Example 2.6.4

Example 2.6.4 (continued 1)

Solution (continued).

lim
x→∞

x3 − 2

|x |3 + 1
= lim

x→∞

x3/x3 − 2/x3

x3/x3 + 1/x3

= lim
x→∞

1− 2/x3

1 + 1/x3
since x →∞ then we

can assume that x 6= 0

=
limx→∞(1− 2/x3)

limx→∞(1 + 1/x3)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

=
limx→∞(1)− limx→∞(2/x3)

limx→∞(1) + limx→∞(1/x3)
by the Sum Rule

and the Difference Rule, Theorem 2.12(1 and 2)
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Example 2.6.4

Example 2.6.4 (continued 2)

Solution (continued).

lim
x→∞

x3 − 2

|x |3 + 1
=

limx→∞(1)− 2 (limx→∞(1/x))3

limx→∞(1) + (limx→∞(1/x))3
by the Constant Mult.

Rule and the Power Rule, Theorem 2.12(4 and 6)

=
(1)− 2(0)3

(1) + (0)3
= 1 by Example 2.6.1(a).

So the graph of y =
x3 − 2

|x |3 + 1
has a

horizontal asymptote of y = 1 as x →∞ .
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Example 2.6.4

Example 2.6.4 (continued 3)

Solution (continued). The computation is similar for x → −∞, except
that for x negative we have |x |3 = −x3. We have

lim
x→−∞

x3 − 2

|x |3 + 1
= lim

x→−∞

x3 − 2

|x |3 + 1

(
1/x3

1/x3

)
= lim

x→−∞

(x3 − 2)(1/x3)

(|x |3 + 1)(1/x3)
= lim

x→−∞

x3/x3 − 2/x3

−x3/x3 + 1/x3
since

x → −∞ then we can assume that x is negative

so that |x |3 = −x3

= lim
x→−∞

1− 2/x3

−1 + 1/x3
since x → −∞ then we

can assume that x 6= 0

=
limx→−∞(1− 2/x3)

limx→−∞(−1 + 1/x3)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0
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Example 2.6.4

Example 2.6.4 (continued 4)

Solution (continued).

lim
x→−∞

x3 − 2

|x |3 + 1
=

limx→−∞(1)− limx→−∞(2/x3)

limx→−∞(−1) + limx→−∞(1/x3)
by the Sum Rule

and the Difference Rule, Theorem 2.12(1 and 2)

=
limx→−∞(1)− 2 (limx→−∞(1/x))3

limx→−∞(−1) + (limx→−∞(1/x))3
by Const. Mult.

Rule and the Power Rule, Theorem 2.12(4 and 6)

=
(1)− 2(0)3

(−1) + (0)3
= −1 by Example 2.6.1(b).

So the graph of y =
x3 − 2

|x |3 + 1
has a

horizontal asymptote of y = −1 as x → −∞ . �
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Solution (continued).
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Example 2.6.5

Example 2.6.5

Example 2.6.5. Use the formal definition to prove lim
x→−∞

ex = 0. Notice

that this implies that y = 0 is a horizontal asymptote of y = ex .

Proof. First, the domain of f (x) = ex is all of the real numbers R, so it is
defined on an interval of the form (−∞,P) (for any P). Next, let ε > 0.
Choose N = ln ε.

If x < N = ln ε then ex < e ln ε = ε since ex is an
increasing function on the real numbers.
That is, if x < N then
|f (x)− 0| = |ex − 0| = ex < ε.
Therefore, by definition,
limx→−∞ f (x) = limx→−∞ ex = 0,
as claimed. �

Note. The choice of N = ln ε makes
sense if we consider the graph of y = ex :
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Example 2.6.A

Example 2.6.A

Example 2.6.A. Evaluate limx→∞ cos(1/x).

Solution. By Example 2.6.1(a) we have limx→∞ 1/x = 0, and by Exercise
2.5.72 we have that cos x is continuous at all points (in particular, it is
continuous at 0). So by Theorem 2.6.A,

lim
x→∞

cos(1/x) = cos
(

lim
x→∞

1/x
)

= cos 0 = 1 .

�
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Example 2.6.A

Example 2.6.A. Evaluate limx→∞ cos(1/x).

Solution. By Example 2.6.1(a) we have limx→∞ 1/x = 0, and by Exercise
2.5.72 we have that cos x is continuous at all points (in particular, it is
continuous at 0). So by Theorem 2.6.A,

lim
x→∞

cos(1/x) = cos
(

lim
x→∞
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)

= cos 0 = 1 .
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Example 2.6.8

Example 2.6.8

Example 2.6.8. Use the Sandwich Theorem to find the horizontal

asymptote of the curve y = 2 +
sin x

x
.

Solution. First, −1 ≤ sin x ≤ 1 for all real numbers. Let g(x) = 2− 1/x ,

f (x) = 2 +
sin x

x
, and h(x) = 2 + 1/x . Then g(x) ≤ f (x) ≤ h(x) for all

real numbers, except 0, and so these inequalities hold on
(−∞,P) = (−∞, 0) and (P,∞) = (0,∞).

Now
limx→±∞ g(x) = limx→±∞(2− 1/x) = 2− (0) = 2 = L and
limx→±∞ h(x) = limx→±∞(2 + 1/x) = 2 + (0) = 2 = L, by Example 2.6.1.

So by Theorem 2.6.B, lim
x→±∞

f (x) = lim
x→±∞

2 +
sin x

x
= 2. Therefore,

y = 2 is a horizontal asymptote of the graph of y = 2 +
sin x

x
. �
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Exercise 2.6.92

Exercise 2.6.92

Exercise 2.6.92. Evaluate (carefully!) lim
x→∞

(√
x2 + x −

√
x2 − x

)
.

Justify your computations.

Solution. We multiply by the conjugate of the given expression divided by
itself (which is defined for x “sufficiently large,” namely x ≥ 1) in order to
produce a quotient and try to use some of the techniques already
introduced.

We have

lim
x→∞

(√
x2 + x −

√
x2 − x

)
= lim

x→∞

(√
x2 + x −

√
x2 − x

)(√x2 + x +
√

x2 − x√
x2 + x +

√
x2 − x

)

= lim
x→∞

(
√

x2 + x)2 − (
√

x2 − x)2√
x2 + x +

√
x2 − x

= lim
x→∞

(x2 + x)− (x2 − x)√
x2 + x +

√
x2 − x

= lim
x→∞

2x√
x2 + x +

√
x2 − x

() Calculus 1 July 25, 2020 21 / 50



Exercise 2.6.92

Exercise 2.6.92

Exercise 2.6.92. Evaluate (carefully!) lim
x→∞

(√
x2 + x −

√
x2 − x

)
.

Justify your computations.

Solution. We multiply by the conjugate of the given expression divided by
itself (which is defined for x “sufficiently large,” namely x ≥ 1) in order to
produce a quotient and try to use some of the techniques already
introduced. We have

lim
x→∞

(√
x2 + x −

√
x2 − x

)
= lim

x→∞

(√
x2 + x −

√
x2 − x

)(√x2 + x +
√

x2 − x√
x2 + x +

√
x2 − x

)

= lim
x→∞

(
√

x2 + x)2 − (
√

x2 − x)2√
x2 + x +

√
x2 − x

= lim
x→∞

(x2 + x)− (x2 − x)√
x2 + x +

√
x2 − x

= lim
x→∞

2x√
x2 + x +

√
x2 − x

() Calculus 1 July 25, 2020 21 / 50



Exercise 2.6.92

Exercise 2.6.92

Exercise 2.6.92. Evaluate (carefully!) lim
x→∞

(√
x2 + x −

√
x2 − x

)
.

Justify your computations.

Solution. We multiply by the conjugate of the given expression divided by
itself (which is defined for x “sufficiently large,” namely x ≥ 1) in order to
produce a quotient and try to use some of the techniques already
introduced. We have

lim
x→∞

(√
x2 + x −

√
x2 − x

)
= lim

x→∞

(√
x2 + x −

√
x2 − x

)(√x2 + x +
√

x2 − x√
x2 + x +

√
x2 − x

)

= lim
x→∞

(
√

x2 + x)2 − (
√

x2 − x)2√
x2 + x +

√
x2 − x

= lim
x→∞

(x2 + x)− (x2 − x)√
x2 + x +

√
x2 − x

= lim
x→∞

2x√
x2 + x +

√
x2 − x

() Calculus 1 July 25, 2020 21 / 50



Exercise 2.6.92

Exercise 2.6.92 (continued 1)

Solution (continued).

= lim
x→∞

2x√
x2 + x +

√
x2 − x

= lim
x→∞

2x√
x2 + x +

√
x2 − x

(
1/x

1/x

)
dividing the numerator and

denominator by the effective highest power

of x in the denominator

= lim
x→∞

(2x)/x

(
√

x2 + x +
√

x2 − x)/x
= lim

x→∞

(2x)/x

(
√

x2 + x +
√

x2 − x)/
√

x2

since x →∞ then we can assume that x is positive

so that
√

x2 = |x | = x

= lim
x→∞

(2x)/x
√

x2 + x/
√

x2 +
√

x2 − x/
√

x2
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Exercise 2.6.92

Exercise 2.6.92 (continued 1)

Solution (continued).
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Exercise 2.6.92

Exercise 2.6.92 (continued 2)

Solution (continued).

= lim
x→∞

(2x)/x√
(x2 + x)/x2 +

√
(x2 − x)/x2

= lim
x→∞

(2x)/x√
x2/x2 + x/x2 +

√
x2/x2 − x/x2

= lim
x→∞

2√
1 + 1/x +

√
1− 1/x

since x →∞ then we

can assume that x 6= 0

=
limx→∞ 2

limx→∞(
√

1 + 1/x +
√

1− 1/x)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

=
limx→∞ 2

limx→∞
√

1 + 1/x + limx→∞
√

1− 1/x)
by the Sum Rule,

Theorem 2.12(1)
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Exercise 2.6.92

Exercise 2.6.92 (continued 3)

Solution (continued).
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√
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2

1 + 1
= 1 . �
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Exercise 2.6.108

Exercise 2.6.108

Exercise 2.6.108. Consider the rational function y =
x2 − 1

2x + 4
. Find the

oblique asymptote.

Solution. First, we perform long division to get:

So y =
x2 − 1

2x + 4
=

x

2
− 1 +

3

2x + 4
where x/2− 1 is a linear term. If we

show that limx→±∞ 3/(2x +4) = 0 then we can conclude that y = x/2− 1
is the oblique asymptote for the graph of y = (x2 − 1)/(2x + 4).
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Exercise 2.6.108

Exercise 2.6.108 (continued 1)

Solution (continued). Next,

lim
x→±∞

3

2x + 4
= lim

x→±∞

3

2x + 4

(
1/x

1/x

)
dividing the numerator and

denominator by the highest power

of x in the denominator

= lim
x→±∞

(3)(1/x)

(2x + 4)(1/x)
= lim

x→±∞

3/x

2x/x + 4/x

= lim
x→±∞

3/x

2 + 4/x
since x → ±∞ then we

can assume that x 6= 0

=
3 limx→±∞ 1/x

limx→±∞ 2 + 4 limx→±∞ 1/x
by the Sum, Constant,

Multiple and Quotient Rules, Theorem 2.12(1, 4, & 5)

=
3(0)

(2) + 4(0)
= 0 by Example 2.6.1.
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Exercise 2.6.108

Exercise 2.6.108 (continued 2)

Exercise 2.6.108. Consider the rational function y =
x2 − 1

2x + 4
. Find the

oblique asymptote.

Solution (continued). Since y =
x2 − 1

2x + 4
=

x

2
− 1 +

3

2x + 4
and

lim
x→±∞

3

2x + 4
= 0, then y =

x

2
− 1 is an oblique asymptote of the graph

of y =
x2 − 1

2x + 4
. Notice that the function f (x) =

x2 − 1

2x + 4
is not defined at

x = −2. With y =
x2 − 1

2x + 4
=

x

2
− 1 +

3

2x + 4
, the term

3

2x + 4
is positive

for x large and positive, and is negative for x large and negative. So the

graph of y =
x2 − 1

2x + 4
lies above the oblique asymptote y =

x

2
− 1 for x

large and positive, and lies below the oblique asymptote for x large and
negative.
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Exercise 2.6.108

Exercise 2.6.108 (continued 3)

Solution (continued). A crude graph of y =
x2 − 1

2x + 4
which reflects the

oblique asymptote (but does not reflect other subtle details of the graph)
is as follows (we’ll explore the graph in more detail later):

�
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Example 2.6.B

Example 2.6.B

Example 2.6.B. For n a positive even integer, prove that lim
x→0

1

xn
=∞.

Solution. First, f (x) = 1/xn is defined for all
x except 0, so there is an open interval
containing c = 0 on which f is defined,
except at c = 0 itself (say the interval (−1, 1)).
Let B be a positive real number.
Choose δ = 1/B1/n.

Then for
0 < |x − c | = |x − 0| = |x | < δ = 1/B1/n,
we have 1/|x | > B1/n (since the function 1/x
is decreasing for x > 0) and so 1/|x |n > B
(since the function xn is increasing for x ≥ 0). Since n is even, then
|x |n = xn and so we have f (x) = 1/xn = 1/|x |n > B. So, by definition,

lim
x→0

1

xn
=∞, as claimed.
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Exercise 2.6.54

Exercise 2.6.54

Exercise 2.6.54. Consider f (x) =
x

x2 − 1
. Find (a) limx→1+ f (x),

(b) limx→1− f (x), (c) limx→−1+ f (x), and (d) limx→−1− f (x).

Solution. First, f (x) =
x

x2 − 1
is a rational function of the form

f (x) = p(x)/q(x) where p(x) = x and q(x) = x2 − 1.

(a) We have limx→1+ p(x) = limx→1+ x = 1 6= 0 and
limx→1+ q(x) = limx→1+(x2 − 1) = (1)2 − 1 = 0, by Theorem 2.2 for
one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,

lim
x→1+

p(x)

q(x)
= lim

x→1+

x

x2 − 1
= ±∞; we just need to determine if the limit is

+∞ or −∞. We do so by analyzing the sign of
x

x2 − 1
=

x

(x − 1)(x + 1)
for “appropriate” x (since x → 1+, then appropriate x are close to 1 and
slightly greater than 1). For such x , we have x is positive (in fact, x is
“close to” 1), x − 1 is positive (since x is greater than 1; so x − 1 is
positive and “close to” 0), and x + 1 is positive (in fact, x is “close to” 2).
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Exercise 2.6.54

Exercise 2.6.54 (continued 1)

Solution (continued). Combining the factors we can conclude the
following little sign diagram (not an actual equation):

x

x2 − 1
=

x

(x − 1)(x + 1)
⇒ (+)

(+)(+)
= +. Since we know

lim
x→1+

x

x2 − 1
= ±∞ and we know for x close to 1 and slightly greater than

1 that
x

x2 − 1
is positive, then we conclude that lim

x→1+

x

x2 − 1
=∞ . �

(b) We have limx→1− p(x) = limx→1− x = 1 6= 0 and
limx→1− q(x) = limx→1−(x2 − 1) = (1)2 − 1 = 0, by Theorem 2.2 for
one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,

lim
x→1−

p(x)

q(x)
= lim

x→1−

x

x2 − 1
= ±∞; we just need to determine if the limit is

+∞ or −∞.

We do so, again, by analyzing the sign of
x

x2 − 1
=

x

(x − 1)(x + 1)
for “appropriate” x (since x → 1−, then

appropriate x are close to 1 and slightly less than 1).
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Exercise 2.6.54
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Exercise 2.6.54

Exercise 2.6.54 (continued 2)

Solution (continued). For such x , we have x is positive (in fact, x is
“close to” 1), x − 1 is negative (since x is less than 1; so x − 1 is negative
and “close to” 0), and x + 1 is positive (in fact, x is “close to” 2).
Combining the factors we can again conclude the following little sign

diagram:
x

x2 − 1
=

x

(x − 1)(x + 1)
⇒ (+)

(−)(+)
= −. Since we know

lim
x→1−

x

x2 − 1
= ±∞ and we know for x close to 1 and slightly less than 1

that
x

x2 − 1
is negative, then we conclude that lim

x→1−

x

x2 − 1
= −∞ . �

(c) We have limx→−1+ p(x) = limx→−1+ x = −1 6= 0 and
limx→−1+ q(x) = limx→−1+(x2 − 1) = (−1)2 − 1 = 0, by Theorem 2.2 for
one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,

lim
x→−1+

p(x)

q(x)
= lim

x→−1+

x

x2 − 1
= ±∞; we just need to determine if the limit

is +∞ or −∞.
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Exercise 2.6.54

Exercise 2.6.54 (continued 2)
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= ±∞; we just need to determine if the limit
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Exercise 2.6.54

Exercise 2.6.54 (continued 3)

Solution (continued). We analyze the sign of
x

x2 − 1
=

x

(x − 1)(x + 1)
for “appropriate” x (since x → −1+, then appropriate x are close to −1
and slightly greater than −1). For such x , we have x is negative (in fact,
x is “close to” −1), x − 1 is negative (in fact, x − 1 is “close to” −2), and
x + 1 is positive (since x is greater than −1; so x + 1 is positive and “close
to” 0). Combining the factors we get the sign diagram:

x

x2 − 1
=

x

(x − 1)(x + 1)
⇒ (−)

(−)(+)
= +. Since we know

lim
x→1−

x

x2 − 1
= ±∞ and we know for x close to −1 and slightly greater

than −1 that
x

x2 − 1
is positive, then we conclude that

lim
x→−1+

x

x2 − 1
=∞ . �
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Exercise 2.6.54

Exercise 2.6.54 (continued 3)

Solution (continued). We analyze the sign of
x
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Exercise 2.6.54

Exercise 2.6.54 (continued 4)

Solution (continued). (d) We have

limx→−1− p(x) = limx→−1− x = −1 6= 0 and
limx→−1− q(x) = limx→−1−(x2 − 1) = (−1)2 − 1 = 0, by Theorem 2.2 for
one-sided limits. So by Dr. Bob’s Infinite Limits Theorem,

lim
x→−1−

p(x)

q(x)
= lim

x→−1−

x

x2 − 1
= ±∞; we just need to determine if the

limit is +∞ or −∞.

We analyze the sign of
x

x2 − 1
=

x

(x − 1)(x + 1)
for

“appropriate” x (since x → −1−, then appropriate x are close to −1 and
slightly less than −1). For such x , we have x is negative (in fact, x is
“close to” −1), x − 1 is negative (in fact, x − 1 is “close to” −2), and
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to” 0). Combining the factors we get the sign diagram:

x

x2 − 1
=

x

(x − 1)(x + 1)
⇒ (−)

(−)(−)
= −.
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Exercise 2.6.54

Exercise 2.6.54 (continued 4)
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Exercise 2.6.54

Exercise 2.6.54 (continued 5)

Solution (continued). Since we know lim
x→1−

x

x2 − 1
= ±∞ and we know

for x close to −1 and slightly less than −1 that
x

x2 − 1
is negative, then

we conclude that lim
x→−1−

x

x2 − 1
= −∞ . �

Note. We know a lot about
f (x) =

x

x2 − 1
and can get

a reasonable graph of y = f (x)
by graphing its vertical asymptotes
(notice also that f (0) = 0; we did
not explore what happens
for |x | “large”):
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Exercise 2.6.54

Exercise 2.6.54 (continued 5)
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Exercise 2.6.70

Exercise 2.6.70

Exercise 2.6.70. Consider y = f (x) =
2x

x2 − 1
. Find the domain,

horizontal asymptote(s), vertical asymptotes, graph y = f (x) in such a
way as to reflect the asymptotic behavior, and find the range of f .

Solution. First, the domain of y = f (x) =
2x

x2 − 1
=

2x

(x + 1)(x − 1)
is all

real x except for −1 and 1; the domain is (−∞,−1) ∪ (−1, 1) ∪ (1,∞) .

For the horizontal asymptote(s), we consider limx→±∞ f (x). We have

lim
x→±∞

f (x) = lim
x→±∞

2x

x2 − 1

= lim
x→±∞

2x

x2 − 1

(
1/x2

1/x2

)
dividing the numerator and

denominator by the highest power

of x in the denominator
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Exercise 2.6.70

Exercise 2.6.70 (continued 1)

Solution (continued).

lim
x→±∞

f (x) = lim
x→±∞

(2x)/x2

(x2 − 1)/x2
= lim

x→±∞

2/x

1− 1/x2
since x →∞

then we can assume that x 6= 0

=
limx→±∞ 2/x

limx→±∞(1− 1/x2)
by the Quotient Rule

(Theorem 2.12(5)), assuming the denominator is not 0

=
2 limx→±∞ 1/x

limx→±∞ 1− (limx→±∞ 1/x)2
by the Difference,

Constant Mult., and Power Rules, Theorem 2.12(2, 4, 6)

=
2(0)

1− (0)2
=

0

1
= 0 by Example 2.6.1.

So y = 0 is a horizontal asymptote of y =
2x

x2 − 1
.
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Exercise 2.6.70

Exercise 2.6.70 (continued 2)

Solution (continued). Now f (x) =
2x

x2 − 1
=

2x

(x + 1)(x − 1)
is a

rational function with limx→−1 2x = −2 6= 0, limx→−1 x2 − 1 = 0, and
limx→1 x2 − 1 = 0 (each by Theorem 2.2), so by Dr. Bob’s Infinite Limits
Theorem (applied to rational functions)

f has vertical asymptotes at x = −1 and x = 1 . We explore the vertical
asymptotes by taking one-sided limits to determine if the limit is +∞ or

−∞. We analyze the sign of
2x

x2 − 1
=

2x

(x − 1)(x + 1)
for “appropriate” x

in each case. For x → −1+, the appropriate x are close to −1 and slightly
greater than −1. For such x , we have 2x is negative (in fact, 2x is “close
to” −2), x − 1 is negative (in fact, x − 1 is “close to” −2), and x + 1 is
positive (since x is greater than −1; so x + 1 is positive and “close to” 0).
Combining the factors we get the sign diagram:

2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (−)

(−)(+)
= +. So limx→−1+ f (x) =∞ .
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Exercise 2.6.70

Exercise 2.6.70 (continued 2)

Solution (continued). Now f (x) =
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Exercise 2.6.70

Exercise 2.6.70 (continued 3)

Solution (continued). For x → −1−, the appropriate x are close to −1
and slightly less than −1. For such x , we have 2x is negative (2x is “close
to” −2), x − 1 is negative (x − 1 is “close to” −2), and x + 1 is negative
(since x is less than −1; so x + 1 is negative and “close to” 0). Combining
the factors we get the sign diagram:

2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (−)

(−)(−)
= −. So limx→−1− f (x) = −∞ .

For x → 1+, the appropriate x are close to 1 and slightly greater than 1.
For such x , we have 2x is positive (2x is “close to” 2), x − 1 is positive
(since x is greater than 1; so x − 1 is positive and “close to” 0), and x + 1
is positive (x + 1 is “close to” 2). Combining the factors we get the sign

diagram:
2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (+)

(+)(+)
= +. So

limx→1+ f (x) =∞ .
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Exercise 2.6.70

Exercise 2.6.70 (continued 3)

Solution (continued). For x → −1−, the appropriate x are close to −1
and slightly less than −1. For such x , we have 2x is negative (2x is “close
to” −2), x − 1 is negative (x − 1 is “close to” −2), and x + 1 is negative
(since x is less than −1; so x + 1 is negative and “close to” 0). Combining
the factors we get the sign diagram:

2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (−)

(−)(−)
= −. So limx→−1− f (x) = −∞ .

For x → 1+, the appropriate x are close to 1 and slightly greater than 1.
For such x , we have 2x is positive (2x is “close to” 2), x − 1 is positive
(since x is greater than 1; so x − 1 is positive and “close to” 0), and x + 1
is positive (x + 1 is “close to” 2). Combining the factors we get the sign

diagram:
2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (+)

(+)(+)
= +. So

limx→1+ f (x) =∞ .
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Exercise 2.6.70

Exercise 2.6.70 (continued 4)

Solution (continued). For x → 1−, the appropriate x are close to 1 and
slightly less than 1. For such x , we have 2x is positive (2x is “close to” 2),
x − 1 is negative (since x is less than 1; so x − 1 is negative and “close to”
0), and x + 1 is positive (x + 1 is “close to” 2). Combining the factors we

get the sign diagram:
2x

x2 − 1
=

2x

(x − 1)(x + 1)
⇒ (+)

(−)(+)
= −. So

limx→1− f (x) = −∞ .

We have the graph (notice the

range is all real numbers ):

�
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Exercise 2.6.70
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Exercise 2.6.70

Exercise 2.6.70 (continued 4)
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Example 2.6.20

Example 2.6.20

Example 2.6.20. Let f (x) = 3x4 − 2x3 + 3x2 − 5x + 6 and g(x) = 3x4.
Show that g is a dominant term of f .

Solution. We need to show that lim
x→±∞

f (x)

g(x)
= 1. We have

lim
x→±∞

f (x)

g(x)
= lim

x→±∞

3x4 − 2x3 + 3x2 − 5x + 6

3x4

= lim
x→±∞

(
3x4

3x4
− 2x3

3x4
+

3x2

3x4
− 5x

3x4
+

6

3x4

)
= lim

x→±∞

(
1− 2

3x
+

3

3x2
− 5

3x3
+

6

3x4

)
since x →∞

then we can assume that x 6= 0
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Example 2.6.20

Example 2.6.20 (continued)

Solution (continued).

lim
x→±∞

f (x)

g(x)
= lim

x→±∞

(
1− 2

3x
+

3

3x2
− 5

3x3
+

6

3x4

)
= lim

x→±∞
1− 2

3
lim

x→±∞

1

x
+

(
lim

x→±∞

1

x

)2

− 5

3

(
lim

x→±∞

1

x

)3

+2

(
lim

x→±∞

1

x

)4

by the Sum, Difference,

Constant Multiple, and Power Rules,

Theorem 2.12(1, 2, 4, 6)

= 1− 2

3
(0) + (0)2 − 5

3
(0)3 + 2(0)4 = 1 by Example 2.6.1.

Since the limit is 1, then g is a dominant term of f , as claimed. �
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Exercise 2.6.108 (again)

Exercise 2.6.108 (again)

Exercise 2.6.108 (again). Consider the rational function y =
x2 − 1

2x + 4
.

Find all asymptotes and graph in a way that reflects the asymptotic
behavior.

Solution. We saw above that the graph of y =
x2 − 1

2x + 4
=

x

2
− 1 +

3

2x + 4

has y =
x

2
− 1 as an oblique asymptote as x → ±∞. We now explore

vertical asymptotes.

By the Quotient Rule, Theorem 2.1(5),

lim
x→c

f (x) = lim
x→c

x2 − 1

2x + 4
=

c2 − 1

2c + 4
for c 6= −2. So by definition, f is

continuous on its domain (−∞,−2) ∪ (−2,∞). By Dr. Bob’s Infinite
Limits Theorem (applied to rational function f ), since
limx→−2 x2− 1 = (−2)2− 1 = 3 6= 0 and limx→−2 2x + 4 = x(−2) + 4 = 0
(by Theorem 2.2), we see that limx→−2± f (x) = ±∞ and so the graph has

a vertical asymptote of x = −2 . We explore one-sided limits to see if the
limits are ∞ or −∞.
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Exercise 2.6.108 (again)

Exercise 2.6.108 (again, continued 1)

Solution (continued). For limx→−2+ f (x), we analyze the sign of
x2 − 1

2x + 4
for “appropriate” x (since x → −2+, then appropriate x are close to −2
and slightly greater than −2). For such x , we have x2 − 1 is positive (in
fact, x2 − 1 is “close to” 3) and 2x + 4 is positive (since x is greater than
−2; so 2x + 4 is positive and “close to” 0). Combining the factors we get

the sign diagram:
x2 − 1

2x + 4
⇒ (+)

(+)
= +. So

lim
x→−2+

f (x) = lim
x→−2+

x2 − 1

2x + 4
=∞ .

For limx→−2− f (x), we analyze the sign of
x2 − 1

2x + 4
for “appropriate” x

(since x → −2−, then appropriate x are close to −2 and slightly less than
−2). For such x , we have x2 − 1 is positive (in fact, x2 − 1 is “close to”
3) and 2x + 4 is negative (since x is less than −2; so 2x + 4 is negative
and “close to” 0).
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Exercise 2.6.108 (again)

Exercise 2.6.108 (again, continued 1)

Solution (continued). For limx→−2+ f (x), we analyze the sign of
x2 − 1

2x + 4
for “appropriate” x (since x → −2+, then appropriate x are close to −2
and slightly greater than −2). For such x , we have x2 − 1 is positive (in
fact, x2 − 1 is “close to” 3) and 2x + 4 is positive (since x is greater than
−2; so 2x + 4 is positive and “close to” 0). Combining the factors we get

the sign diagram:
x2 − 1

2x + 4
⇒ (+)

(+)
= +. So

lim
x→−2+

f (x) = lim
x→−2+

x2 − 1

2x + 4
=∞ .

For limx→−2− f (x), we analyze the sign of
x2 − 1

2x + 4
for “appropriate” x

(since x → −2−, then appropriate x are close to −2 and slightly less than
−2). For such x , we have x2 − 1 is positive (in fact, x2 − 1 is “close to”
3) and 2x + 4 is negative (since x is less than −2; so 2x + 4 is negative
and “close to” 0).

() Calculus 1 July 25, 2020 44 / 50



Exercise 2.6.108 (again)
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Exercise 2.6.80

Exercise 2.6.80

Exercise 2.6.80. Find a function g that satisfies the conditions
limx→±∞ g(x) = 0, limx→3− g(x) = −∞, and limx→3+ g(x) =∞. Graph
y = g(x) in a way that reflects the asymptotic behavior.

Solution. Since we want limx→±∞ g(x) = 0, then the graph of y = g(x)
will have y = 0 as a horizontal asymptote. Since we want
limx→3− g(x) = −∞ and limx→3+ g(x) =∞, then the graph of y = g(x)
has a vertical asymptote of x = 3.

We try to find a rational function,
g(x) = p(x)/q(x), satisfying these conditions. If we make polynomial p of
degree less than that of polynomial q, then this will give (as we will check)
the horizontal asymptote y = 0. If we have x − 3 in the denominator then
we should get a vertical asymptote of x = 3 (unless we also have a factor
of x − 3 in the numerator, which we will avoid). So we try p(x) = 1 (a
polynomial of degree 0), q(x) = x − 3 (a polynomial of degree 1), and
g(x) = 1/(x − 3) (we may have to adjust the sign of g to get the proper
one sided limits at 3).
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Exercise 2.6.80

Exercise 2.6.80 (continued 1)

Solution (continued). We have

lim
x→±∞

g(x) = lim
x→±∞

1

x − 3
= lim

x→±∞

1

x − 3

(
1/x

1/x

)
dividing the

numerator and denominator by the effective highest

power of x in the denominator

= lim
x→±∞

1/x

(x − 3)/x
= lim

x→±∞

1/x

1− 3/x
since x → ±∞

then we can assume that x 6= 0

=
limx→±∞ 1/x

limx→±∞ 1− 3 limx→±∞ 1/x
by the Difference,

Constant Mult., and Quotient Rules, Theorem 2.12(2,4,5)

=
(0)

1− 3(0)
=

0

1
= 0 by Example 2.6.1.

So y = 0 and a horizontal asymptote of the graph of y = g(x), as desired.
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Exercise 2.6.80

Exercise 2.6.80 (continued 2)

Solution (continued). Since limx→3 1 = 1 6= 0 and limx→3 x − 3 = 0
(both by Theorem 2.2, say), then by Dr. Bob’s Infinite Limits Theorem
(applied to rational functions) limx→3± g(x) = ±∞. We consider
one-sided limits (as required by the question).

For limx→3+ g(x), we analyze the sign of
1

x − 3
for “appropriate” x (since

x → 3+, then appropriate x are close to 3 and slightly greater than 3). For
such x , we have 1 is positive and x − 3 is positive (since x is greater than
3; so x − 3 is positive and “close to” 0). Combining the factors we get the

sign diagram:
1

x − 3
⇒ (+)

(+)
= +. So lim

x→3+
g(x) = lim

x→3+

1

x − 3
=∞ , as

desired.

For limx→3− g(x), we analyze the sign of
1

x − 3
for “appropriate” x (since

x → 3−, then appropriate x are close to 3 and slightly less than 3). For
such x , we have 1 is positive and x − 3 is negative (since x is less than 3;
so x − 3 is negative and “close to” 0).
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Exercise 2.6.80

Exercise 2.6.80 (continued 3)

Exercise 2.6.80. Find a function g that satisfies the conditions
limx→±∞ g(x) = 0, limx→3− g(x) = −∞, and limx→3+ g(x) =∞. Graph
y = g(x) in a way that reflects the asymptotic behavior.

Solution (continued). Combining the factors we get the sign diagram:
1

x − 3
⇒ (+)

(−)
= −. So

lim
x→3−

g(x) = lim
x→3−

1

x − 3
= −∞ ,

as desired.
We then have the graph:

�
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Exercise 2.6.102

Exercise 2.6.102

Exercise 2.6.102. Use the formal definition of an infinite one-sided limit

to prove that lim
x→2−

1

x − 2
= −∞.

Proof. Let f be a function defined on an interval (a, c), where a < c . We
say that f (x) approaches negative infinity as x approaches c from the left,
and we write limx→c− f (x) = −∞, if for every negative real number −B
there exists a corresponding δ > 0 such that for all x

c − δ < x < c implies f (x) < −B.

(This is the solution to Exercise 2.6.99(c).)

Notice that f (x) = 1/(x − 2)
is defined on the interval (−∞, 2) (here, c = 2). Let −B be any negative
real number. Choose δ = 1/B > 0. If 2− δ < x < 2 then −δ < x − 2 < 0
and −1/δ > 1/(x − 2), since 1/x is a decreasing function for negative
input values. Now δ = 1/B so 1/δ = B and −1/δ = −B. So
2− δ < x < 2 implies f (x) = 1/(x − 2) < −B. Therefore, by the
definition above, lim

x→2−
1/(x − 2) = −∞.
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