Chapter 3. Derivatives
3.1. Tangent Lines and the Derivative at a Point—Examples and Proofs
Table of contents

1. Exercise 3.1.7
2. Exercise 3.1.12.
3. Exercise 3.1.28
4. Exercise 3.1.30
5. Exercise 3.1.42
Exercise 3.1.7. Find an equation for the tangent line to the curve \(y = 2\sqrt{x} \) at the point \((1, 2)\). Then sketch the curve and tangent line together.

Solution. With \(y = f(x) = 2\sqrt{x} \) and \(P(x_0, f(x_0)) = (1, 2) \), we have the slope of the curve \(y = f(x) \) as

\[
m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{2\sqrt{1 + h} - 2\sqrt{1}}{h} = \lim_{h \to 0} \frac{2\sqrt{1 + h} - 2}{h}
\]

\[
= \lim_{h \to 0} \frac{2\sqrt{1 + h} - 2}{h} \left(\frac{2\sqrt{1 + h} + 2}{2\sqrt{1 + h} + 2} \right) \text{ multiplying by a form of 1 involving the conjugate}
\]
Exercise 3.1.7

Exercise 3.1.7. Find an equation for the tangent line to the curve \(y = 2\sqrt{x} \) at the point \((1, 2)\). Then sketch the curve and tangent line together.

Solution. With \(y = f(x) = 2\sqrt{x} \) and \(P(x_0, f(x_0)) = (1, 2) \), we have the slope of the curve \(y = f(x) \) as

\[
m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{2\sqrt{1+h} - 2\sqrt{1}}{h} = \lim_{h \to 0} \frac{2\sqrt{1+h} - 2}{h}
\]

\[
= \lim_{h \to 0} \frac{2\sqrt{1+h} - 2}{h} \left(\frac{2\sqrt{1+h} + 2}{2\sqrt{1+h} + 2} \right) \text{ multiplying by a form of } 1 \text{ involving the conjugate}
\]

\[
= \lim_{h \to 0} \frac{(2\sqrt{1+h} - 2)(2\sqrt{1+h} + 2)}{h(2\sqrt{1+h} + 2)} = \lim_{h \to 0} \frac{(2\sqrt{1+h})^2 - (2)^2}{h(2\sqrt{1+h} + 2)}
\]

\[
= \lim_{h \to 0} \frac{4(1+h) - 4}{h(2\sqrt{1+h} + 2)} = \lim_{h \to 0} \frac{4h}{h(2\sqrt{1+h} + 2)}
\]
Exercise 3.1.7

Exercise 3.1.7. Find an equation for the tangent line to the curve $y = 2\sqrt{x}$ at the point $(1, 2)$. Then sketch the curve and tangent line together.

Solution. With $y = f(x) = 2\sqrt{x}$ and $P(x_0, f(x_0)) = (1, 2)$, we have the slope of the curve $y = f(x)$ as

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{2\sqrt{1+h} - 2\sqrt{1}}{h} = \lim_{h \to 0} \frac{2\sqrt{1+h} - 2}{h}$$

$$= \lim_{h \to 0} \frac{2\sqrt{1+h} - 2}{h} \left(\frac{2\sqrt{1+h} + 2}{2\sqrt{1+h} + 2} \right) \text{ multiplying by a form of 1 involving the conjugate}$$

$$= \lim_{h \to 0} \frac{(2\sqrt{1+h} - 2)(2\sqrt{1+h} + 2)}{h(2\sqrt{1+h} + 2)} = \lim_{h \to 0} \frac{(2\sqrt{1+h})^2 - (2)^2}{h(2\sqrt{1+h} + 2)}$$

$$= \lim_{h \to 0} \frac{4(1+h) - 4}{h(2\sqrt{1+h} + 2)} = \lim_{h \to 0} \frac{4h}{h(2\sqrt{1+h} + 2)}$$
Exercise 3.1.7 (continued 1)

Solution (continued).

\[m = \lim_{h \to 0} \frac{4h}{h(2\sqrt{1 + h + 2})} \]

\[= \lim_{h \to 0} \frac{4}{2\sqrt{1 + h + 2}} = \frac{4}{2\sqrt{1 + (0) + 2}} = \frac{4}{2\sqrt{1 + 2}} = 1. \]

By the Sum Rule, Quotient Rule, and Root Rule of Theorem 2.1, and Theorem 2.2

So the desired tangent line has slope \(m = 1 \) and passes through the point \((x_1, y_1) = (1, 2)\). By the point-slope formula, \(y - y_1 = m(x - x_1) \), the tangent line is \(y - 2 = (1)(x - 1) \) or \(y - 2 = x - 1 \) or \(y = x + 1 \).
Solution (continued).

\[m = \lim_{h \to 0} \frac{4h}{h(2\sqrt{1 + h + 2})} \]

\[= \lim_{h \to 0} \frac{4}{2\sqrt{1 + h + 2}} = \frac{4}{2\sqrt{1 + (0) + 2}} \]

by the Sum Rule, Quotient Rule, and Root Rule of Theorem 2.1, and Theorem 2.2

\[= \frac{4}{2\sqrt{1 + 2}} = 1. \]

So the desired tangent line has slope \(m = 1 \) and passes through the point \((x_1, y_1) = (1, 2)\). By the point-slope formula, \(y - y_1 = m(x - x_1) \), the tangent line is \(y - (2) = (1)(x - (1)) \) or \(y - 2 = x - 1 \) or \(y = x + 1 \).
Exercise 3.1.7 (continued 2)

Exercise 3.1.7. Find an equation for the tangent line to the curve \(y = 2\sqrt{x} \) at the point \((1, 2)\). Then sketch the curve and tangent line together.

Solution (continued). The graphs of \(y = 2\sqrt{x} \) and \(y = x + 1 \) are:
Exercise 3.1.12. Find the slope of the graph of function $f(x) = x - 2x^2$ at the point $(1, -1)$. Then find an equation for the line tangent to the graph there.

Solution. With $y = f(x) = x - 2x^2$ and $P(x_0, f(x_0)) = (1, -1)$, we have the slope of the curve $y = f(x)$ as

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{((1 + h) - 2(1 + h)^2) - ((1) - 2(1)^2)}{h}$$

$$= \lim_{h \to 0} \frac{1 + h - 2(1 + 2h + h^2) - (-1)}{h}$$

$$= \lim_{h \to 0} \frac{1 + h - 2 - 4h - 2h^2 + 1}{h} = \lim_{h \to 0} \frac{-3h - 2h^2}{h} = \lim_{h \to 0} \frac{h(-3 - 2h)}{h}$$

$$= \lim_{h \to 0} (-3 - 2h) = -3 - 2(0) = -3.$$
Exercise 3.1.12. Find the slope of the graph of function \(f(x) = x - 2x^2 \) at the point \((1, -1)\). Then find an equation for the line tangent to the graph there.

Solution. With \(y = f(x) = x - 2x^2 \) and \(P(x_0, f(x_0)) = (1, -1) \), we have the slope of the curve \(y = f(x) \) as

\[
m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{((1 + h) - 2(1 + h)^2) - ((1) - 2(1)^2)}{h}
\]

\[
= \lim_{h \to 0} \frac{1 + h - 2(1 + 2h + h^2) - (-1)}{h}
\]

\[
= \lim_{h \to 0} \frac{1 + h - 2 - 4h - 2h^2 + 1}{h} = \lim_{h \to 0} \frac{-3h - 2h^2}{h} = \lim_{h \to 0} \frac{h(-3 - 2h)}{h}
\]

\[
= \lim_{h \to 0} (-3 - 2h) = -3 - 2(0) = -3.
\]
Exercise 3.1.12 (continued).

Exercise 3.1.12. Find the slope of the graph of function $f(x) = x - 2x^2$ at the point $(1, -1)$. Then find an equation for the line tangent to the graph there.

Solution (continued). So the desired tangent line has slope $m = -3$ and passes through the point $(x_1, y_1) = (1, -1)$. By the point-slope formula, $y - y_1 = m(x - x_1)$, the tangent line is $y - (-1) = (-3)(x - (1))$ or $y + 1 = -3x + 3$ or $y = -3x + 2$. □
Exercise 3.1.28

Exercise 3.1.28. Find an equation for the straight line having slope $1/4$ that is tangent to the curve $y = \sqrt{x}$.

Solution. We find the derivative of $y = f(x) = \sqrt{x}$ at point x_0. The derivative gives the slope of the curve at the point $(x_0, f(x_0))$, so we’ll set the derivative equal to the desired slope $1/4$ and determine x_0 from the resulting equation. The derivative of $y = f(x) = \sqrt{x}$ at point x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} \left(\frac{\sqrt{x_0 + h} + \sqrt{x_0}}{\sqrt{x_0 + h} + \sqrt{x_0}} \right)$$
Exercise 3.1.28

Exercise 3.1.28. Find an equation for the straight line having slope $1/4$ that is tangent to the curve $y = \sqrt{x}$.

Solution. We find the derivative of $y = f(x) = \sqrt{x}$ at point x_0. The derivative gives the slope of the curve at the point $(x_0, f(x_0))$, so we’ll set the derivative equal to the desired slope $1/4$ and determine x_0 from the resulting equation. The derivative of $y = f(x) = \sqrt{x}$ at point x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} \left(\frac{\sqrt{x_0 + h} + \sqrt{x_0}}{\sqrt{x_0 + h} + \sqrt{x_0}} \right)$$

$$= \lim_{h \to 0} \frac{(\sqrt{x_0 + h} - \sqrt{x_0})(\sqrt{x_0 + h} + \sqrt{x_0})}{h(\sqrt{x_0 + h} + \sqrt{x_0})}$$

$$= \lim_{h \to 0} \frac{(\sqrt{x_0 + h})^2 - (\sqrt{x_0})^2}{h(\sqrt{x_0 + h} + \sqrt{x_0})} = \lim_{h \to 0} \frac{(x_0 + h) - (x_0)}{h(\sqrt{x_0 + h} + \sqrt{x_0})}.$$
Exercise 3.1.28

Exercise 3.1.28. Find an equation for the straight line having slope $1/4$ that is tangent to the curve $y = \sqrt{x}$.

Solution. We find the derivative of $y = f(x) = \sqrt{x}$ at point x_0. The derivative gives the slope of the curve at the point $(x_0, f(x_0))$, so we’ll set the derivative equal to the desired slope $1/4$ and determine x_0 from the resulting equation. The derivative of $y = f(x) = \sqrt{x}$ at point x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} \cdot \frac{\sqrt{x_0 + h} + \sqrt{x_0}}{\sqrt{x_0 + h} + \sqrt{x_0}}$$

$$= \lim_{h \to 0} \frac{(\sqrt{x_0 + h} - \sqrt{x_0})(\sqrt{x_0 + h} + \sqrt{x_0})}{h(\sqrt{x_0 + h} + \sqrt{x_0})}$$

$$= \lim_{h \to 0} \frac{(\sqrt{x_0 + h})^2 - (\sqrt{x_0})^2}{h(\sqrt{x_0 + h} + \sqrt{x_0})} = \lim_{h \to 0} \frac{(x_0 + h) - (x_0)}{h(\sqrt{x_0 + h} + \sqrt{x_0})}$$.

Exercise 3.1.28 (continued)

Exercise 3.1.28. Find an equation for the straight line having slope 1/4 that is tangent to the curve \(y = \sqrt{x} \).

Solution (continued).

\[
\begin{align*}
 f'(x_0) &= \lim_{h \to 0} \frac{(x_0 + h) - (x_0)}{h(\sqrt{x_0 + h} + \sqrt{x_0})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x_0 + h} + \sqrt{x_0})} \\
 &= \lim_{h \to 0} \frac{1}{\sqrt{x_0 + h} + \sqrt{x_0}} = \frac{1}{\sqrt{x_0} + 0 + \sqrt{x_0}} \\
 &= \frac{1}{2\sqrt{x_0}}.
\end{align*}
\]

So we set \(1/4 = 1/(2\sqrt{x_0}) \) to get \(x_0 = 4 \). So the desired tangent line has slope \(m = 1/4 \) and passes through the point \((x_0, f(x_0)) = (4, \sqrt{4}) = (4, 2) = (x_1, y_1) \). By the point-slope formula, \(y - y_1 = m(x - x_1) \), the tangent line is \(y - 2 = (1/4)(x - 4) \) or \(y - 2 = x/4 - 1 \) or \(\boxed{y = x/4 + 1} \). \(\square \)
Exercise 3.1.28. Find an equation for the straight line having slope $1/4$ that is tangent to the curve $y = \sqrt{x}$.

Solution (continued). . .

\[
\begin{align*}
\frac{f'(x_0)}{} &= \lim_{h \to 0} \frac{(x_0 + h) - (x_0)}{h(\sqrt{x_0} + h + \sqrt{x_0})} \\
&= \lim_{h \to 0} \frac{1}{h(\sqrt{x_0} + h + \sqrt{x_0})} = \lim_{h \to 0} \frac{1}{h(\sqrt{x_0} + 0 + \sqrt{x_0})} \\
&= \frac{1}{2\sqrt{x_0}}.
\end{align*}
\]

So we set $1/4 = 1/(2\sqrt{x_0})$ to get $x_0 = 4$. So the desired tangent line has slope $m = 1/4$ and passes through the point $(x_0, f(x_0)) = (4, \sqrt{4}) = (4, 2) = (x_1, y_1)$. By the point-slope formula, $y - y_1 = m(x - x_1)$, the tangent line is $y - (2) = (1/4)(x - (4))$ or $y - 2 = x/4 - 1$ or $y = x/4 + 1$. □
Exercise 3.1.30. Speed of a rocket. At t sec after liftoff, the height of a rocket is $3t^2$ ft. How fast is the rocket climbing 10 sec after liftoff?

Solution. The instantaneous velocity at time $t = t_0$ is

$$f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h} = \lim_{h \to 0} \frac{3(t_0 + h)^2 - 3(t_0)^2}{h}$$

$$= \lim_{h \to 0} \frac{3(t_0^2 + 2t_0h + h^2) - 3t_0^2}{h} = \lim_{h \to 0} \frac{3t_0^2 + 6t_0h + 3h^2 - 3t_0^2}{h}$$

$$= \lim_{h \to 0} \frac{6t_0h + 3h^2}{h} = \lim_{h \to 0} \frac{h(6t_0 + 3h)}{h}$$

$$= \lim_{h \to 0} (6t_0 + 3h) = 6t_0 + 3(0) = 6t_0 \text{ ft/sec}.$$
Exercise 3.1.30

Exercise 3.1.30. Speed of a rocket. At t sec after liftoff, the height of a rocket is $3t^2$ ft. How fast is the rocket climbing 10 sec after liftoff?

Solution. The instantaneous velocity at time $t = t_0$ is

$$f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h} = \lim_{h \to 0} \frac{3(t_0 + h)^2 - 3(t_0)^2}{h}$$

$$= \lim_{h \to 0} \frac{3(t_0^2 + 2t_0h + h^2) - 3t_0^2}{h} = \lim_{h \to 0} \frac{3t_0^2 + 6t_0h + 3h^2 - 3t_0^2}{h}$$

$$= \lim_{h \to 0} \frac{6t_0h + 3h^2}{h} = \lim_{h \to 0} \frac{h(6t_0 + 3h)}{h}$$

$$= \lim_{h \to 0} (6t_0 + 3h) = 6t_0 + 3(0) = 6t_0 \text{ ft/sec}.$$

So 10 sec after liftoff when $t_0 = 10$ sec, the rocket has velocity $f'(10) = 6(10) = 60 \text{ ft/sec}$. □
Exercise 3.1.30

Exercise 3.1.30. Speed of a rocket. At t sec after liftoff, the height of a rocket is $3t^2$ ft. How fast is the rocket climbing 10 sec after liftoff?

Solution. The instantaneous velocity at time $t = t_0$ is

$$f'(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) - f(t_0)}{h} = \lim_{h \to 0} \frac{3(t_0 + h)^2 - 3(t_0)^2}{h}$$

$$= \lim_{h \to 0} \frac{3(t_0^2 + 2t_0h + h^2) - 3t_0^2}{h} = \lim_{h \to 0} \frac{3t_0^2 + 6t_0h + 3h^2 - 3t_0^2}{h}$$

$$= \lim_{h \to 0} \frac{6t_0h + 3h^2}{h} = \lim_{h \to 0} \frac{h(6t_0 + 3h)}{h} = \lim_{h \to 0} (6t_0 + 3h) = 6t_0 + 3(0) = 6t_0 \text{ ft/sec.}$$

So 10 sec after liftoff when $t_0 = 10$ sec, the rocket has velocity $f'(10) = 6(10) = 60 \text{ ft/sec}$. □
Exercise 3.1.42

Exercise 3.1.42. Does the graph of \(f(x) = x^{3/5} \) have a vertical tangent line at the origin?

Solution. First, notice that \(f(0) = (0)^{3/5} = 0 \) so that the graph of \(y = f(x) = x^{3/5} \) does actually pass through the origin. We consider a limit of the difference quotient at \(x_0 = 0 \):

\[
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{(0 + h)^{3/5} - (0)^{3/5}}{h} = \lim_{h \to 0} \frac{h^{3/5}}{h} = \lim_{h \to 0} \frac{1}{h^{2/5}}.
\]
Exercise 3.1.42

Exercise 3.1.42. Does the graph of $f(x) = x^{3/5}$ have a vertical tangent line at the origin?

Solution. First, notice that $f(0) = (0)^{3/5} = 0$ so that the graph of $y = f(x) = x^{3/5}$ does actually pass through the origin. We consider a limit of the difference quotient at $x_0 = 0$:

$$
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{(0 + h)^{3/5} - (0)^{3/5}}{h} = \lim_{h \to 0} \frac{h^{3/5}}{h} = \lim_{h \to 0} \frac{1}{h^{2/5}}.
$$

Now $\lim_{h \to 0} 1 = 1 \neq 0$, $\lim_{h \to 0} h^{2/5} = 0$ (by the Root Rule, Theorem 2.1(7), since $h^{2/5} = (h^{1/5})^2 = 1/(\sqrt[5]{h})^2 \geq 0$ for all h), so by Dr. Bob’s Infinite Limits Theorem we have $\lim_{h \to 0 \pm} 1/h^{2/5} = \pm \infty$.
Exercise 3.1.42

Exercise 3.1.42. Does the graph of \(f(x) = x^{3/5} \) have a vertical tangent line at the origin?

Solution. First, notice that \(f(0) = (0)^{3/5} = 0 \) so that the graph of \(y = f(x) = x^{3/5} \) does actually pass through the origin. We consider a limit of the difference quotient at \(x_0 = 0 \):

\[
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{(0 + h)^{3/5} - (0)^{3/5}}{h} = \lim_{h \to 0} \frac{h^{3/5}}{h} = \lim_{h \to 0} \frac{1}{h^{2/5}}.
\]

Now \(\lim_{h \to 0} 1 = 1 \neq 0 \), \(\lim_{h \to 0} h^{2/5} = 0 \) (by the Root Rule, Theorem 2.1(7), since \(h^{2/5} = (h^{1/5})^2 = \frac{1}{(\sqrt[5]{h})^2} \geq 0 \) for all \(h \)), so by Dr. Bob’s Infinite Limits Theorem we have \(\lim_{h \to 0} 1 / h^{2/5} = \pm \infty \). Since 1 > 0 (D’uh!) and \(h^{2/5} = (h^{1/5})^2 = (\sqrt[5]{h})^2 \geq 0 \) for all \(h \), then we have the “sign diagram”: \(1 / h^{2/5} = (+)/(+) = + \). So \(\lim_{h \to 0} 1 / h^{2/5} = +\infty \), and **YES** the graph of \(f(x) = x^{3/5} \) has a vertical tangent line at the origin.

(Continued →)
Exercise 3.1.42. Does the graph of $f(x) = x^{3/5}$ have a vertical tangent line at the origin?

Solution. First, notice that $f(0) = (0)^{3/5} = 0$ so that the graph of $y = f(x) = x^{3/5}$ does actually pass through the origin. We consider a limit of the difference quotient at $x_0 = 0$:

$$
\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{(0 + h)^{3/5} - (0)^{3/5}}{h} = \lim_{h \to 0} \frac{h^{3/5}}{h} = \lim_{h \to 0} \frac{1}{h^{2/5}}.
$$

Now $\lim_{h \to 0} 1 = 1 \neq 0$, $\lim_{h \to 0} h^{2/5} = 0$ (by the Root Rule, Theorem 2.1(7), since $h^{2/5} = (h^{1/5})^2 = 1/(\sqrt[5]{x})^2 \geq 0$ for all h), so by Dr. Bob’s Infinite Limits Theorem we have $\lim_{h \to 0 \pm} 1/h^{2/5} = \pm\infty$. Since $1 > 0$ (D’uh!) and $h^{2/5} = (h^{1/5})^2 = (\sqrt[5]{h})^2 \geq 0$ for all h, then we have the “sign diagram”: $1/h^{2/5} = (+)/(+) = +$. So $\lim_{h \to 0} 1/h^{2/5} = +\infty$, and YES the graph of $f(x) = x^{3/5}$ has a vertical tangent line at the origin. (Continued →)
Note. All this stuff with Dr. Bob’s Infinite Limits Theorem and a sign diagram is necessary! In Exercise 3.1.40 we address the existence of a vertical tangent of $y = f(x) = x^{4/5}$ at the origin. In this problem we find that $\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{1}{h^{1/5}}$. We find from the sign diagram that $\lim_{h \to 0^-} \frac{1}{h^{1/5}} = -\infty$ and $\lim_{h \to 0^+} \frac{1}{h^{1/5}} = \infty$. So the two-sided limit does not exist and so the graph of $f(x) = x^{4/5}$ does not have a vertical tangent line at the origin. In fact the graph has a “cusp” at the origin:
Note. All this stuff with Dr. Bob’s Infinite Limits Theorem and a sign diagram is necessary! In Exercise 3.1.40 we address the existence of a vertical tangent of $y = f(x) = x^{4/5}$ at the origin. In this problem we find that

$$\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{1}{h^{1/5}}.$$

We find from the sign diagram that

$$\lim_{h \to 0^-} \frac{1}{h^{1/5}} = -\infty \quad \text{and} \quad \lim_{h \to 0^+} \frac{1}{h^{1/5}} = \infty.$$

So the two-sided limit does not exist and so the graph of $f(x) = x^{4/5}$ does not have a vertical tangent line at the origin. In fact the graph has a “cusp” at the origin:
Exercise 3.1.42 (continued)

Note. All this stuff with Dr. Bob’s Infinite Limits Theorem and a sign diagram is necessary! In Exercise 3.1.40 we address the existence of a vertical tangent of $y = f(x) = x^{4/5}$ at the origin. In this problem we find that

$$\lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{1}{h^{1/5}}.$$

We find from the sign diagram that

$$\lim_{h \to 0^-} \frac{1}{h^{1/5}} = -\infty \text{ and } \lim_{h \to 0^+} \frac{1}{h^{1/5}} = \infty.$$

So the two-sided limit does not exist and so the graph of $f(x) = x^{4/5}$ does not have a vertical tangent line at the origin. In fact the graph has a “cusp” at the origin:

![Graph of $f(x) = x^{4/5}$](image-url)