Exercise 3.2.10

Exercise 3.2.10. Find the derivative $\frac{dv}{dt}$ where $v = t - \frac{1}{t}$.

Solution. By the definition of derivative we have

$$\frac{dv}{dt} = \lim_{h \to 0} \frac{v(t + h) - v(t)}{h} = \lim_{h \to 0} \frac{(t + h) - \frac{1}{t + h} - (t - \frac{1}{t})}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(h + \left(\frac{-1}{t + h} + \frac{1}{t} \right) \right) = \lim_{h \to 0} \frac{1}{h} \left(h + \frac{-t}{t(t + h)} + \frac{t + h}{t(t + h)} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(1 + \frac{1}{t(t + h)} \right) = 1 + \frac{1}{t(t + 0)} = 1 + \frac{1}{t^2} \quad \Box$$

Example 3.2.3

Example 3.2.3. Consider the graphs of $y = f(x)$ and $y = f'(x)$:

At point A the slope of f is 0, so at point A' (with the same x-value as point A) the value of f' is 0. At point B the slope of f is -1, so at point B' the value of f' is -1. At point C the slope of f is $-4/3$, so at point C' the value of f' is $-4/3$. At point D the slope of f is 0, so at point D' the value of f' is 0. At point E the slope of f is ≈ 2, so at point E' the value of f' is ≈ 2.

Notice that when f is decreasing (which happens between points A and D) that f' is negative. When f is increasing (which happens to the right of point D) then f' is positive. When the graph of f "levels off" (which happens at points A and D) then f' has an x-intercept. \Box
Exercise 3.2.14

Exercise 3.2.14. Differentiate the function \(k(x) = \frac{1}{2+x} \) and find the slope of the tangent line at the value \(x = 2 \).

Solution. We have

\[
k'(x) = \lim_{h \to 0} \frac{k(x + h) - k(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2+(x+h)} - \frac{1}{2+x}}{h}
= \lim_{h \to 0} \frac{1}{h} \left(\frac{2 + x}{(2+x)(2+x+h)} - \frac{2 + x + h}{(2+x)(2+x+h)} \right)
= \lim_{h \to 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)} = \lim_{h \to 0} \frac{-1}{(2+x)(2+x+h)}
= \frac{-1}{(2+x)(2+x+0)} = \frac{-1}{(2+2)^2} = \frac{-1}{16} \quad \square
\]

Now the slope of \(k(x) \) at \(x = 2 \) is \(m = k'(2) = \frac{-1}{(2+2)^2} = \frac{-1}{16} \quad \square \]

Exercise 3.2.24

Exercise 3.2.24. An alternative formula for the derivative of \(f \) at \(x \) is

\[
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.
\]

Use this formula to find the derivative of \(f(x) = x^2 - 3x + 4 \).

Solution. By the alternative formula we have

\[
f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{(z^2 - 3z + 4) - (x^2 - 3x + 4)}{z - x}
= \lim_{z \to x} \frac{(z^2 - x^2) - 3(z - x)}{z - x} = \lim_{z \to x} \frac{(z - x)(z + x) - 3(z - x)}{z - x}
= \lim_{z \to x} (z + x) - 3 = ((x) + x) - 3 = 2x - 3.
\]

\(\square \)

Exercise 3.2.30

Exercise 3.2.30. Match the given function with the derivative graphed in figures (a)–(d).

\[
\text{Solution. Since } y = f_4(x) \text{ has horizontal tangents at three points, then the graph of } y = f'_4(x) \text{ must have three } x \text{-intercepts. So the derivative must be graphed in (c).}
\]

Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of \(y = f_4(x) \) is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of \(y' \) is negative over the corresponding \(x \) values (where the intercept indicated by the left-most red arrow corresponds to this minimum of \(f_4 \)). The graph of \(y = f_4(x) \) is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of \(y' \) is positive over the corresponding \(x \) values (where the intercept indicated by the center red arrow corresponds to this maximum of \(f_4 \)). Next, the graph of \(y = f_4(x) \) is decreasing between the origin and the right-most blue arrow and the graph of \(y' \) is negative over the corresponding \(x \) values (between the origin and the right-most red arrow). Finally, the graph of \(y = f_4(x) \) is increasing to the right of the right-most blue arrow and the graph of \(y' \) is positive over the corresponding \(x \) values (to the right of the right-most red arrow). \(\square \)
Exercise 3.2.44

Exercise 3.2.44. Determine if the piecewise defined function \(g \) is differentiable at the origin:

\[
g(x) = \begin{cases}
2x - x^3 - 1, & x \geq 0 \\
\frac{x}{1-x^2}, & x < 0
\end{cases}
\]

Solution. Since \(g \) is piecewise defined, we consider left- and right-hand derivatives at 0. First, the right-hand derivative at 0 is:

\[
\lim_{h \to 0^+} \frac{g(0+h) - g(0)}{h}
\]

\[
= \lim_{h \to 0^+} \frac{(2(0+h) - (0+h)^3 - 1) - (2(0) - (0)^3 - 1)}{h} \quad \text{since } 0 + h > 0,
\]

we use the \(2x - x^3 - 1 \) part of \(g \)

\[
= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{2h - h^3}{h} = \frac{2 - h^2}{h}
\]

Exercise 3.2.44 (continued 1)

Solution (continued). . .

\[
= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{h(2 - h^2)}{h}
\]

\[
= \lim_{h \to 0^+} (2 - h^2) = 2 - (0)^2 = 2.
\]

Next, the left-hand derivative at 0 is:

\[
\lim_{h \to 0^-} \frac{g(0+h) - g(0)}{h}
\]

\[
= \lim_{h \to 0^-} \frac{((0+h) - \frac{1}{(0+h)+1}) - (2(0) - (0)^3 - 1)}{h} \quad \text{since } 0 + h < 0,
\]

we use the \(x - \frac{1}{x+1} \) part of \(g \)

\[
= \lim_{h \to 0^-} \frac{1}{h} \left(\left(h - \frac{1}{h+1} \right) + 1 \right) = \lim_{h \to 0^-} \frac{1}{h} \left(h + 1 + (h+1) \right)
\]

Exercise 3.2.44 (continued 2)

Solution (continued). . .

\[
= \lim_{h \to 0^-} \frac{1}{h} \left(\frac{h(h+1) - 1 + (h+1)}{h+1} \right) = \lim_{h \to 0^-} \frac{1}{h} \left(\frac{h^2 + h - 1 + h + 1}{h+1} \right)
\]

\[
= \lim_{h \to 0^-} \frac{1}{h} \left(h^2 + 2h \right) = \lim_{h \to 0^-} \frac{1}{h} \left(h \right) \quad \text{since } h + 2 = 0 + 2 = 2,
\]

\[
= \lim_{h \to 0^-} \frac{h + 1}{h} = 0 + 1 = 2.
\]

Since the left- and right-hand derivatives exist and are equal, then by Theorem 2.6, “Relation Between One-Sided and Two-Sided Limits,” the (two-sided) derivative exists and is 2. □

Theorem 3.1

Theorem 3.1. Differentiability Implies Continuity

If \(f \) has a derivative at \(x = c \), then \(f \) is continuous at \(x = c \).

Proof. By the definition of continuity, we need to show that

\[
\lim_{{x \to c}} f(x) = f(c), \quad \text{or equivalently (see Exercise 2.5.71) that}
\]

\[
\lim_{{h \to 0}} f(c + h) = f(c).
\]

Then

\[
\lim_{{h \to 0}} f(c + h) = \lim_{{h \to 0}} \left(f(c) + \frac{f(c + h) - f(c)}{h} \right)
\]

\[
= \lim_{{h \to 0}} f(c) + \lim_{{h \to 0}} \frac{f(c + h) - f(c)}{h} \lim_{{h \to 0}} h
\]

\[
= f(c) + f'(c)(0)
\]

\[
= f(c).
\]

Therefore \(f \) is continuous at \(x = c \). □
Exercise 3.2.50

Exercise 3.2.50. Consider function \(f \) with domain \(D = [-3, 3] \) graphed below. At what domain points does the function appear to be (a) differentiable, (b) continuous but not differentiable, (c) neither continuous nor differentiable?

![Graph of f(x)](image)

Solution. (a) The graph indicates that \(f \) has a right-hand derivative at \(-3\) and a left-hand derivative at \(3\). The graph is "smooth" for all other \(x \in (-3, 3) \), except for \(x = \pm 2 \) where the graph has a corner. So \(f \) is differentiable on \([-3, -2) \cup (-2, 2) \cup (2, 3]\). □

Exercise 3.2.56

Exercise 3.2.56. Does any tangent line to the curve \(y = \sqrt{x} \) cross the \(x \)-axis at \(x = -1 \)? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope \(m \) which has \(x \) intercept \(x_1 = -1 \) is of the form \(y = m(x - x_1) = m(x - (-1)) = m(x + 1) \) by the slope-intercept form of a line. Now the derivative of \(y = f(x) = \sqrt{x} \) is

\[
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}.
\]

So the slope of \(y = f(x) = \sqrt{x} \) at \(x = x_0 \) is \(f'(x_0) = \frac{1}{2\sqrt{x_0}} \).

We now need \(x_0 \) such that \(y = m(x + 1) = \frac{1}{2\sqrt{x_0}} (x + 1) \) and we need this line to contain the point \((x_0, \sqrt{x_0})\). So we must have \((x_0, \sqrt{x_0}) = (x_0, y_0) = \left(x_0, \frac{1}{2\sqrt{x_0}} (x_0 + 1) \right) \), or \(\sqrt{x_0} = \frac{1}{2\sqrt{x_0}} (x_0 + 1) \) or \(2(\sqrt{x_0})^2 = x_0 + 1 \) and \(2x_0 = x_0 + 1 \) (where \(x_0 \geq 0 \) or \(x_0 = 1 \). When \(x_0 = 1 \) then \(y_0 = 1 \) and \(m = 1/(2\sqrt{1}) = 1/2 \). Therefore, \(y = (1/2)(x + 1) \) and the point of tangency to \(y = \sqrt{x} \) is \((x_0, y_0) = (1, 1)\). □