Calculus 1

Chapter 3. Derivatives 3.2. The Derivative as a Function—Examples and Proofs

Table of contents

- 1 Exercise 3.2.10
- 2 Example 3.2.3
- 3 Exercise 3.2.14
- 4 Exercise 3.2.24
- 5 Exercise 3.2.30
- 6 Exercise 3.2.44
- Theorem 3.1. Differentiability Implies Continuity
- 8 Exercise 3.2.50
 - Exercise 3.2.56

Exercise 3.2.10. Find the derivative $\frac{dv}{dt}$ where $v = t - \frac{1}{t}$.

Solution. By the definition of derivative we have

 $\frac{dv}{dt} = \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} = \lim_{h \to 0} \frac{\left((t+h) - \frac{1}{(t+h)}\right) - \left(t - \frac{1}{t}\right)}{h} \\
= \lim_{h \to 0} \frac{1}{h} \left(h + \left(\frac{-1}{t+h} + \frac{1}{t}\right)\right) = \lim_{h \to 0} \frac{1}{h} \left(h + \frac{-t}{t(t+h)} + \frac{t+h}{t(t+h)}\right) \\
= \lim_{h \to 0} \frac{1}{h} \left(h + \frac{h}{t(t+h)}\right) = \lim_{h \to 0} \frac{1}{h} \left(h \left(1 + \frac{1}{t(t+h)}\right)\right) \\
= \lim_{h \to 0} \left(1 + \frac{1}{t(t+h)}\right) = 1 + \frac{1}{t(t+(0))} = \left[1 + \frac{1}{t^2}\right]. \quad \Box$

Exercise 3.2.10. Find the derivative $\frac{dv}{dt}$ where $v = t - \frac{1}{t}$.

Solution. By the definition of derivative we have

 $\begin{aligned} \frac{dv}{dt} &= \lim_{h \to 0} \frac{v(t+h) - v(t)}{h} = \lim_{h \to 0} \frac{\left((t+h) - \frac{1}{(t+h)}\right) - \left(t - \frac{1}{t}\right)}{h} \\ &= \lim_{h \to 0} \frac{1}{h} \left(h + \left(\frac{-1}{t+h} + \frac{1}{t}\right)\right) = \lim_{h \to 0} \frac{1}{h} \left(h + \frac{-t}{t(t+h)} + \frac{t+h}{t(t+h)}\right) \\ &= \lim_{h \to 0} \frac{1}{h} \left(h + \frac{h}{t(t+h)}\right) = \lim_{h \to 0} \frac{1}{h} \left(h \left(1 + \frac{1}{t(t+h)}\right)\right) \\ &= \lim_{h \to 0} \left(1 + \frac{1}{t(t+h)}\right) = 1 + \frac{1}{t(t+(0))} = \left[1 + \frac{1}{t^2}\right]. \quad \Box \end{aligned}$

Example 3.2.3

Example 3.2.3. Consider the graphs of y = f(x) and y = f'(x):

At point A the slope of f is 0, so at point A' (with the same x-value as point A) the value of f' is 0. At point B the slope of f is -1, so at point B' the value of f' is -1. At point C the slope of f is -4/3, so at point C' the value of f' is -4/3. At point D the slope of f is 0, so at point D' the value of f' is 0. At point E the slope of f is ≈ 2 , so at point E' the value of f' is ≈ 2 .

Example 3.2.3

Example 3.2.3. Consider the graphs of y = f(x) and y = f'(x):

At point A the slope of f is 0, so at point A' (with the same x-value as point A) the value of f' is 0. At point B the slope of f is -1, so at point B' the value of f' is -1. At point C the slope of f is -4/3, so at point C' the value of f' is -4/3. At point D the slope of f is 0, so at point D' the value of f' is 0. At point E the slope of f is ≈ 2 , so at point E' the value of f' is ≈ 2 .

Example 3.2.3 (continued)

Notice that when f is decreasing (which happens between points A and D) that f' is negative. When f is increasing (which happens to the right of point D) then f' is positive. When the graph of f "levels off" (which happens at points A and D) then f' has an x-intercept. \Box

Example 3.2.3 (continued)

Notice that when f is decreasing (which happens between points A and D) that f' is negative. When f is increasing (which happens to the right of point D) then f' is positive. When the graph of f "levels off" (which happens at points A and D) then f' has an x-intercept. \Box

Exercise 3.2.14. Differentiate the function $k(x) = \frac{1}{2+x}$ and find the slope of the tangent line at the value x = 2.

Solution. We have

$$k'(x) = \lim_{h \to 0} \frac{k(x+h) - k(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2+(x+h)} - \frac{1}{2+x}}{h}$$

=
$$\lim_{h \to 0} \frac{1}{h} \left(\frac{2+x}{(2+x)(2+x+h)} - \frac{2+x+h}{(2+x)(2+x+h)} \right)$$

=
$$\lim_{h \to 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)} = \lim_{h \to 0} \frac{-1}{(2+x)(2+x+h)}$$

=
$$\frac{-1}{(2+x)(2+x+(0))} = \boxed{\frac{-1}{(2+x)^2}}.$$

Exercise 3.2.14. Differentiate the function $k(x) = \frac{1}{2+x}$ and find the slope of the tangent line at the value x = 2.

Solution. We have

$$k'(x) = \lim_{h \to 0} \frac{k(x+h) - k(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2+(x+h)} - \frac{1}{2+x}}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{2+x}{(2+x)(2+x+h)} - \frac{2+x+h}{(2+x)(2+x+h)} \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)} = \lim_{h \to 0} \frac{-1}{(2+x)(2+x+h)}$$
$$= \frac{-1}{(2+x)(2+x+(0))} = \left[\frac{-1}{(2+x)^2} \right].$$
Now the slope of $k(x)$ at $x = 2$ is $m = k'(2) = \frac{-1}{(2+(2))^2} = \left[\frac{-1}{16} \right].$

Exercise 3.2.14. Differentiate the function $k(x) = \frac{1}{2+x}$ and find the slope of the tangent line at the value x = 2.

Solution. We have

$$\begin{aligned} k'(x) &= \lim_{h \to 0} \frac{k(x+h) - k(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2 + (x+h)} - \frac{1}{2 + x}}{h} \\ &= \lim_{h \to 0} \frac{1}{h} \left(\frac{2 + x}{(2 + x)(2 + x + h)} - \frac{2 + x + h}{(2 + x)(2 + x + h)} \right) \\ &= \lim_{h \to 0} \frac{1}{h} \frac{-h}{(2 + x)(2 + x + h)} = \lim_{h \to 0} \frac{-1}{(2 + x)(2 + x + h)} \\ &= \frac{-1}{(2 + x)(2 + x + (0))} = \boxed{\frac{-1}{(2 + x)^2}}. \end{aligned}$$

Now the slope of k(x) at x = 2 is $m = k'(2) = \frac{-1}{(2+(2))^2} = \boxed{\frac{-1}{16}}$. \Box

Exercise 3.2.24. An alternative formula for the derivative of f at x is

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

Use this formula to find the derivative of $f(x) = x^2 - 3x + 4$.

Solution. By the alternative formula we have

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{(z^2 - 3z + 4) - (x^2 - 3x + 4)}{z - x}$$
$$= \lim_{z \to x} \frac{(z^2 - x^2) - 3(z - x)}{z - x} = \lim_{z \to x} \frac{(z - x)(z + x) - 3(z - x)}{z - x}$$
$$= \lim_{z \to x} (z + x) - 3 = ((x) + x) - 3 = \boxed{2x - 3}.$$

Exercise 3.2.24. An alternative formula for the derivative of f at x is

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

Use this formula to find the derivative of $f(x) = x^2 - 3x + 4$.

Solution. By the alternative formula we have

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{(z^2 - 3z + 4) - (x^2 - 3x + 4)}{z - x}$$
$$= \lim_{z \to x} \frac{(z^2 - x^2) - 3(z - x)}{z - x} = \lim_{z \to x} \frac{(z - x)(z + x) - 3(z - x)}{z - x}$$
$$= \lim_{z \to x} (z + x) - 3 = ((x) + x) - 3 = \boxed{2x - 3}.$$

Exercise 3.2.30. Match the given function with the derivative graphed in figures (a)-(d).

Solution. Since $y = f_4(x)$ has horizontal tangents at three points, then the graph of $y = f'_4(x)$ must have three x-intercepts. So the derivative must be graphed in (c).

Exercise 3.2.30. Match the given function with the derivative graphed in figures (a)-(d).

Solution. Since $y = f_4(x)$ has horizontal tangents at three points, then the graph of $y = f'_4(x)$ must have three *x*-intercepts. So the derivative must be graphed in (c).

Solution (continued). Notice that the graph of $y = f_4(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of y' is negative over

the corresponding x values (where the intercept indicated by the left-most red arrow corresponds to this minimum of f_4).

Solution (continued). Notice that the graph of $y = f_4(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of y' is negative over

the corresponding x values (where the intercept indicated by the left-most red arrow corresponds to this minimum of f_4). The graph of $y = f_4(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of y' is positive over the corresponding x values (where the intercept indicated by the center red arrow corresponds to this maximum of f_4).

Solution (continued). Notice that the graph of $y = f_4(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of y' is negative over

the corresponding x values (where the intercept indicated by the left-most red arrow corresponds to this minimum of f_4). The graph of $y = f_4(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of y' is positive over the corresponding x values (where the intercept indicated by the center red arrow corresponds to this maximum of f_4). Next, the graph of $y = f_4(x)$ is decreasing between the origin and the right-most blue arrow and the graph of y' is negative over the corresponding x values (between the origin and the right-most red arrow).

Solution (continued). Notice that the graph of $y = f_4(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of y' is negative over

the corresponding x values (where the intercept indicated by the left-most red arrow corresponds to this minimum of f_4). The graph of $y = f_4(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of y' is positive over the corresponding x values (where the intercept indicated by the center red arrow corresponds to this maximum of f_4). Next, the graph of $y = f_4(x)$ is decreasing between the origin and the right-most blue arrow and the graph of v' is negative over the corresponding x values (between the origin and the right-most red arrow). Finally, the graph of $y = f_4(x)$ is increasing to the right of the right-most blue arrow and the graph of y' is positive over the corresponding x values (to the right of the right-most red arrow). \Box

Solution (continued). Notice that the graph of $y = f_4(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of y' is negative over

the corresponding x values (where the intercept indicated by the left-most red arrow corresponds to this minimum of f_4). The graph of $y = f_4(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of y' is positive over the corresponding x values (where the intercept indicated by the center red arrow corresponds to this maximum of f_4). Next, the graph of $y = f_4(x)$ is decreasing between the origin and the right-most blue arrow and the graph of y' is negative over the corresponding x values (between the origin and the right-most red arrow). Finally, the graph of $y = f_4(x)$ is increasing to the right of the right-most blue arrow and the graph of y' is positive over the corresponding x values (to the right of the right-most red arrow). \Box

Exercise 3.2.44. Determine if the piecewise defined function g is differentiable at the origin:

$$g(x) = \begin{cases} 2x - x^3 - 1, & x \ge 0\\ x - \frac{1}{x+1}, & x < 0 \end{cases}$$

Solution. Since g is piecewise defined, we consider left- and right-hand derivatives at 0. First, the right-hand derivative at 0 is:

$$\lim_{h\to 0^+} \frac{g(0+h) - g(0)}{h}$$

$$= \lim_{h \to 0^+} \frac{(2(0+h) - (0+h)^3 - 1) - (2(0) - (0)^3 - 1)}{h} \text{ since } 0 + h > 0,$$

we use the $2x - x^3 - 1$ part of g
$$= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{h(2 - h^2)}{h}$$

Exercise 3.2.44. Determine if the piecewise defined function g is differentiable at the origin:

$$g(x) = \begin{cases} 2x - x^3 - 1, & x \ge 0\\ x - \frac{1}{x+1}, & x < 0 \end{cases}$$

Solution. Since g is piecewise defined, we consider left- and right-hand derivatives at 0. First, the right-hand derivative at 0 is:

$$\lim_{h \to 0^+} \frac{g(0+n) - g(0)}{h}$$

$$= \lim_{h \to 0^+} \frac{(2(0+h) - (0+h)^3 - 1) - (2(0) - (0)^3 - 1)}{h} \text{ since } 0 + h > 0,$$
we use the $2x - x^3 - 1$ part of g

$$= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{h(2-h^2)}{h}$$

 $\alpha(0 \mid b) = \alpha(0)$

Exercise 3.2.44 (continued 1)

Solution (continued). ...

$$= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{h(2 - h^2)}{h}$$
$$= \lim_{h \to 0^+} (2 - h^2) = 2 - (0)^2 = 2.$$

Next, the left-hand derivative at 0 is:

$$\lim_{h \to 0^{-}} \frac{g(0+h) - g(0)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{\left((0+h) - \frac{1}{(0+h)+1}\right) - (2(0) - (0)^{3} - 1)}{h} \text{ since } 0 + h < 0,$$
we use the $x - \frac{1}{x+1}$ part of g

$$= \lim_{h \to 0^{-}} \frac{1}{h} \left(\left(h - \frac{1}{h+1}\right) + (1) \right) = \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h(h+1) - 1 + (h+1)}{h+1} \right)$$

Exercise 3.2.44 (continued 1)

Solution (continued). ...

$$= \lim_{h \to 0^+} \frac{2h - h^3 - 1 + 1}{h} = \lim_{h \to 0^+} \frac{h(2 - h^2)}{h}$$
$$= \lim_{h \to 0^+} (2 - h^2) = 2 - (0)^2 = 2.$$

Next, the left-hand derivative at 0 is:

$$\lim_{h \to 0^{-}} \frac{g(0+h) - g(0)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{\left((0+h) - \frac{1}{(0+h)+1}\right) - (2(0) - (0)^{3} - 1)}{h} \text{ since } 0 + h < 0,$$
we use the $x - \frac{1}{x+1}$ part of g

$$= \lim_{h \to 0^{-}} \frac{1}{h} \left(\left(h - \frac{1}{h+1}\right) + (1) \right) = \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h(h+1) - 1 + (h+1)}{h+1} \right)$$

Exercise 3.2.44 (continued 2)

Solution (continued). ...

$$= \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h(h+1) - 1 + (h+1)}{h+1} \right) = \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h^{2} + h - 1 + h + 1}{h+1} \right)$$
$$= \lim_{h \to 0^{-}} \frac{1}{h} \frac{h^{2} + 2h}{h+1} = \lim_{h \to 0^{-}} \frac{1}{h} \frac{h(h+2)}{h+1}$$
$$= \lim_{h \to 0^{-}} \frac{h+2}{h+1} = \frac{(0) + 2}{(0) + 1} = 2.$$

Since the left- and right-hand derivatives exist and are equal, then by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the (two-sided) derivative exists and is 2. \Box

Exercise 3.2.44 (continued 2)

Solution (continued). ...

$$= \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h(h+1) - 1 + (h+1)}{h+1} \right) = \lim_{h \to 0^{-}} \frac{1}{h} \left(\frac{h^{2} + h - 1 + h + 1}{h+1} \right)$$
$$= \lim_{h \to 0^{-}} \frac{1}{h} \frac{h^{2} + 2h}{h+1} = \lim_{h \to 0^{-}} \frac{1}{h} \frac{h(h+2)}{h+1}$$
$$= \lim_{h \to 0^{-}} \frac{h+2}{h+1} = \frac{(0) + 2}{(0) + 1} = 2.$$

Since the left- and right-hand derivatives exist and are equal, then by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the (two-sided) derivative exists and is 2. \Box

Theorem 3.1

Theorem 3.1. Differentiability Implies Continuity If *f* has a derivative at x = c, then *f* is continuous at x = c.

Proof. By the definition of continuity, we need to show that $\lim_{x\to c} f(x) = f(c)$, or equivalently (see Exercise 2.5.71) that $\lim_{h\to 0} f(c+h) = f(c)$.

Theorem 3.1

Theorem 3.1. Differentiability Implies Continuity If *f* has a derivative at x = c, then *f* is continuous at x = c.

Proof. By the definition of continuity, we need to show that $\lim_{x\to c} f(x) = f(c)$, or equivalently (see Exercise 2.5.71) that $\lim_{h\to 0} f(c+h) = f(c)$. Then

$$\lim_{h \to 0} f(c+h) = \lim_{h \to 0} \left(f(c) + \frac{f(c+h) - f(c)}{h} h \right)$$

=
$$\lim_{h \to 0} f(c) + \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \lim_{h \to 0} h$$

=
$$f(c) + f'(c)(0)$$

=
$$f(c).$$

Therefore f is continuous at x = c.

Theorem 3.1

Theorem 3.1. Differentiability Implies Continuity If *f* has a derivative at x = c, then *f* is continuous at x = c.

Proof. By the definition of continuity, we need to show that $\lim_{x\to c} f(x) = f(c)$, or equivalently (see Exercise 2.5.71) that $\lim_{h\to 0} f(c+h) = f(c)$. Then

$$\lim_{h \to 0} f(c+h) = \lim_{h \to 0} \left(f(c) + \frac{f(c+h) - f(c)}{h} h \right)$$

=
$$\lim_{h \to 0} f(c) + \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \lim_{h \to 0} h$$

=
$$f(c) + f'(c)(0)$$

=
$$f(c).$$

Therefore f is continuous at x = c.

Exercise 3.2.50. Consider function f with domain D = [-3,3] graphed below. At what domain points does the function appear to be (a) differentiable, (b) continuous but not differentiable, (c) neither continuous nor differentiable?

Solution. (a) The graph indicates that f has a right-hand derivative at -3 and a left-hand derivative at 3. The graph is "smooth" for all other $x \in (-3, 3)$, except for $x = \pm 2$ where the graph has a corner. So f is differentiable on $[-3, -2) \cup (-2, 2) \cup (2, 3]$. \Box

Exercise 3.2.50. Consider function f with domain D = [-3,3] graphed below. At what domain points does the function appear to be (a) differentiable, (b) continuous but not differentiable, (c) neither continuous nor differentiable?

Solution. (a) The graph indicates that f has a right-hand derivative at -3 and a left-hand derivative at 3. The graph is "smooth" for all other $x \in (-3, 3)$, except for $x = \pm 2$ where the graph has a corner. So f is differentiable on $[-3, -2) \cup (-2, 2) \cup (2, 3]$. \Box

Exercise 3.2.50 (continued 1)

Solution. (b) The graph indicates that f is continuous on [-3, 3] (by Dr. Bob's anthropomorphic idea of continuity, if you like). So f is

continuous but not differentiable at ± 2 . \Box

(c) There are no points where f is neither continuous nor differentiable since f is continuous on [-3,3]. \Box

Exercise 3.2.50 (continued 1)

Solution. (b) The graph indicates that f is continuous on [-3, 3] (by Dr. Bob's anthropomorphic idea of continuity, if you like). So f is

continuous but not differentiable at ± 2 . \Box

(c) There are no points where f is neither continuous nor differentiable since f is continuous on [-3,3]. \Box

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope *m* which has *x* intercept $x_1 = -1$ is of the form $y = m(x - x_1) = m(x - (-1)) = m(x + 1)$ by the slope-intercept form of a line.

Calculus 1

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope *m* which has *x* intercept $x_1 = -1$ is of the form $y = m(x - x_1) = m(x - (-1)) = m(x + 1)$ by the slope-intercept form of a line. Now the derivative of $y = f(x) = \sqrt{x}$ is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \left(\frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}\right) = \lim_{h \to 0} \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$
$$= \lim_{h \to 0} \frac{(x+h) - (x)}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$
$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x+(0)} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope *m* which has *x* intercept $x_1 = -1$ is of the form $y = m(x - x_1) = m(x - (-1)) = m(x + 1)$ by the slope-intercept form of a line. Now the derivative of $y = f(x) = \sqrt{x}$ is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

= $\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \left(\frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}\right) = \lim_{h \to 0} \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$
= $\lim_{h \to 0} \frac{(x+h) - (x)}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$
= $\lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x+(0)} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. So the slope of $y = f(x) = \sqrt{x}$ at $x = x_0$ is $f'(x_0) = \frac{1}{2\sqrt{x_0}}$. We now need x_0 such that $y = m(x+1) = \frac{1}{2\sqrt{x_0}}(x+1)$ and we need this line to contain the point $(x_0, \sqrt{x_0})$. So we must have $(x_0, \sqrt{x_0}) = (x_0, y_0) = \left(x_0, \frac{1}{2\sqrt{x_0}}(x_0+1)\right)$, or $\sqrt{x_0} = \frac{1}{2\sqrt{x_0}}(x_0+1)$ or $2(\sqrt{x_0})^2 = x_0 + 1$ or $2x_0 = x_0 + 1$ (where $x_0 \ge 0$) or $x_0 = 1$. When $x_0 = 1$ then $y_0 = 1$ and $m = 1/(2\sqrt{1}) = 1/2$.

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. So the slope of $y = f(x) = \sqrt{x}$ at $x = x_0$ is $f'(x_0) = \frac{1}{2\sqrt{x_0}}$. We now need x_0 such that $y = m(x+1) = \frac{1}{2\sqrt{x_0}}(x+1)$ and we need this line to contain the point $(x_0, \sqrt{x_0})$. So we must have $(x_0, \sqrt{x_0}) = (x_0, y_0) = \left(x_0, \frac{1}{2\sqrt{x_0}}(x_0+1)\right)$, or $\sqrt{x_0} = \frac{1}{2\sqrt{x_0}}(x_0+1)$ or $2(\sqrt{x_0})^2 = x_0 + 1$ or $2x_0 = x_0 + 1$ (where $x_0 \ge 0$) or $x_0 = 1$. When $x_0 = 1$ then $y_0 = 1$ and $m = 1/(2\sqrt{1}) = 1/2$. Therefore yes, there is such a line it has equation y = (1/2)(x+1) and the point of tangency to $y = \sqrt{x}$ is $(x_0, y_0) = (1, 1)$.

Exercise 3.2.56. Does any tangent line to the curve $y = \sqrt{x}$ cross the x-axis at x = -1? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. So the slope of $y = f(x) = \sqrt{x}$ at $x = x_0$ is $f'(x_0) = \frac{1}{2\sqrt{x_0}}$. We now need x_0 such that $y = m(x+1) = \frac{1}{2\sqrt{x_0}}(x+1)$ and we need this line to contain the point $(x_0, \sqrt{x_0})$. So we must have $(x_0, \sqrt{x_0}) = (x_0, y_0) = \left(x_0, \frac{1}{2\sqrt{x_0}}(x_0+1)\right)$, or $\sqrt{x_0} = \frac{1}{2\sqrt{x_0}}(x_0+1)$ or $2(\sqrt{x_0})^2 = x_0 + 1$ or $2x_0 = x_0 + 1$ (where $x_0 \ge 0$) or $x_0 = 1$. When $x_0 = 1$ then $y_0 = 1$ and $m = 1/(2\sqrt{1}) = 1/2$. Therefore yes, there is such a line, it has equation y = (1/2)(x+1) and the point of tangency to $y = \sqrt{x}$ is $(x_0, y_0) = (1, 1)$.