## Calculus 1

## Chapter 3. Derivatives

3.2. The Derivative as a Function-Examples and Proofs


## Table of contents

(1) Exercise 3.2.10
(2) Example 3.2.3
(3) Exercise 3.2.14
(4) Exercise 3.2.24
(5) Exercise 3.2.30
(6) Exercise 3.2.44
(7) Theorem 3.1. Differentiability Implies Continuity
(8) Exercise 3.2.50
(9) Exercise 3.2.56

## Exercise 3.2.10

Exercise 3.2.10. Find the derivative $\frac{d v}{d t}$ where $v=t-\frac{1}{t}$. Solution. By the definition of derivative we have

$$
\begin{aligned}
\frac{d v}{d t} & =\lim _{h \rightarrow 0} \frac{v(t+h)-v(t)}{h}=\lim _{h \rightarrow 0} \frac{\left((t+h)-\frac{1}{(t+h)}\right)-\left(t-\frac{1}{t}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\left(\frac{-1}{t+h}+\frac{1}{t}\right)\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\frac{-t}{t(t+h)}+\frac{t+h}{t(t+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\frac{h}{t(t+h)}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(h\left(1+\frac{1}{t(t+h)}\right)\right) \\
& =\lim _{h \rightarrow 0}\left(1+\frac{1}{t(t+h)}\right)=1+\frac{1}{t(t+(0))}=1+\frac{1}{t^{2}} .
\end{aligned}
$$

## Exercise 3.2.10

Exercise 3.2.10. Find the derivative $\frac{d v}{d t}$ where $v=t-\frac{1}{t}$.
Solution. By the definition of derivative we have

$$
\begin{aligned}
\frac{d v}{d t} & =\lim _{h \rightarrow 0} \frac{v(t+h)-v(t)}{h}=\lim _{h \rightarrow 0} \frac{\left((t+h)-\frac{1}{(t+h)}\right)-\left(t-\frac{1}{t}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\left(\frac{-1}{t+h}+\frac{1}{t}\right)\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\frac{-t}{t(t+h)}+\frac{t+h}{t(t+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h+\frac{h}{t(t+h)}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(h\left(1+\frac{1}{t(t+h)}\right)\right) \\
& =\lim _{h \rightarrow 0}\left(1+\frac{1}{t(t+h)}\right)=1+\frac{1}{t(t+(0))}=1+\frac{1}{t^{2}} .
\end{aligned}
$$

## Example 3.2.3

Example 3.2.3. Consider the graphs of $y=f(x)$ and $y=f^{\prime}(x)$ :



At point $A$ the slope of $f$ is 0 , so at point $A^{\prime}$ (with the same $x$-value as point $A$ ) the value of $f^{\prime}$ is 0 . At point $B$ the slope of $f$ is -1 , so at point $B^{\prime}$ the value of $f^{\prime}$ is -1 . At point $C$ the slope of $f$ is $-4 / 3$, so at point $C^{\prime}$ the value of $f^{\prime}$ is $-4 / 3$. At point $D$ the slope of $f$ is 0 , so at point $D^{\prime}$ the value of $f^{\prime}$ is 0 . At point $E$ the slope of $f$ is $\approx 2$, so at point $E^{\prime}$ the value of $f^{\prime}$ is $\approx 2$.

## Example 3.2.3

Example 3.2.3. Consider the graphs of $y=f(x)$ and $y=f^{\prime}(x)$ :



At point $A$ the slope of $f$ is 0 , so at point $A^{\prime}$ (with the same $x$-value as point $A$ ) the value of $f^{\prime}$ is 0 . At point $B$ the slope of $f$ is -1 , so at point $B^{\prime}$ the value of $f^{\prime}$ is -1 . At point $C$ the slope of $f$ is $-4 / 3$, so at point $C^{\prime}$ the value of $f^{\prime}$ is $-4 / 3$. At point $D$ the slope of $f$ is 0 , so at point $D^{\prime}$ the value of $f^{\prime}$ is 0 . At point $E$ the slope of $f$ is $\approx 2$, so at point $E^{\prime}$ the value of $f^{\prime}$ is $\approx 2$.

## Example 3.2.3 (continued)




Notice that when $f$ is decreasing (which happens between points $A$ and $D)$ that $f^{\prime}$ is negative. When $f$ is increasing (which happens to the right of point $D$ ) then $f^{\prime}$ is positive. When the graph of $f$ "levels off" (which happens at points $A$ and $D$ ) then $f^{\prime}$ has an x-intercept. $\square$

## Example 3.2.3 (continued)




Notice that when $f$ is decreasing (which happens between points $A$ and $D)$ that $f^{\prime}$ is negative. When $f$ is increasing (which happens to the right of point $D$ ) then $f^{\prime}$ is positive. When the graph of $f$ "levels off" (which happens at points $A$ and $D$ ) then $f^{\prime}$ has an $x$-intercept. $\square$

## Exercise 3.2.14

Exercise 3.2.14. Differentiate the function $k(x)=\frac{1}{2+x}$ and find the slope of the tangent line at the value $x=2$.

## Solution. We have

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+(x+h)}-\frac{1}{2+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2+x}{(2+x)(2+x+h)}-\frac{2+x+h}{(2+x)(2+x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)}=\lim _{h \rightarrow 0} \frac{-1}{(2+x)(2+x+h)} \\
& =\frac{-1}{(2+x)(2+x+(0))}=\frac{-1}{(2+x)^{2}} .
\end{aligned}
$$

## Exercise 3.2.14

Exercise 3.2.14. Differentiate the function $k(x)=\frac{1}{2+x}$ and find the slope of the tangent line at the value $x=2$.

Solution. We have

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+(x+h)}-\frac{1}{2+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2+x}{(2+x)(2+x+h)}-\frac{2+x+h}{(2+x)(2+x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)}=\lim _{h \rightarrow 0} \frac{-1}{(2+x)(2+x+h)} \\
& =\frac{-1}{(2+x)(2+x+(0))}=\frac{-1}{(2+x)^{2}} .
\end{aligned}
$$

## Exercise 3.2.14

Exercise 3.2.14. Differentiate the function $k(x)=\frac{1}{2+x}$ and find the slope of the tangent line at the value $x=2$.

Solution. We have

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+(x+h)}-\frac{1}{2+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2+x}{(2+x)(2+x+h)}-\frac{2+x+h}{(2+x)(2+x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{(2+x)(2+x+h)}=\lim _{h \rightarrow 0} \frac{-1}{(2+x)(2+x+h)} \\
& =\frac{-1}{(2+x)(2+x+(0))}=\frac{-1}{(2+x)^{2}} .
\end{aligned}
$$

Now the slope of $k(x)$ at $x=2$ is $m=k^{\prime}(2)=\frac{-1}{(2+(2))^{2}}=\frac{-1}{16} . \square$

## Exercise 3.2.24

Exercise 3.2.24. An alternative formula for the derivative of $f$ at $x$ is

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

Use this formula to find the derivative of $f(x)=x^{2}-3 x+4$.

## Solution. By the alternative formula we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}=\lim _{z \rightarrow x} \frac{\left(z^{2}-3 z+4\right)-\left(x^{2}-3 x+4\right)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\left(z^{2}-x^{2}\right)-3(z-x)}{z-x}=\lim _{z \rightarrow x} \frac{(z-x)(z+x)-3(z-x)}{z-x} \\
& =\lim _{z \rightarrow x}(z+x)-3=((x)+x)-3=2 x-3 .
\end{aligned}
$$

## Exercise 3.2.24

Exercise 3.2.24. An alternative formula for the derivative of $f$ at $x$ is

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

Use this formula to find the derivative of $f(x)=x^{2}-3 x+4$.
Solution. By the alternative formula we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}=\lim _{z \rightarrow x} \frac{\left(z^{2}-3 z+4\right)-\left(x^{2}-3 x+4\right)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\left(z^{2}-x^{2}\right)-3(z-x)}{z-x}=\lim _{z \rightarrow x} \frac{(z-x)(z+x)-3(z-x)}{z-x} \\
& =\lim _{z \rightarrow x}(z+x)-3=((x)+x)-3=2 x-3 .
\end{aligned}
$$

## Exercise 3.2.30

Exercise 3.2.30. Match the given function with the derivative graphed in figures (a)-(d).


(a)

(c)

(b)

(d)

Solution. Since $y=f_{4}(x)$ has horizontal tangents at three points, then the graph of $y=f_{4}^{\prime}(x)$ must have three $x$-intercepts. So the derivative must be graphed in (c).

## Exercise 3.2.30

Exercise 3.2.30. Match the given function with the derivative graphed in figures (a)-(d).


(a)

(c)

(b)

(d)

Solution. Since $y=f_{4}(x)$ has horizontal tangents at three points, then the graph of $y=f_{4}^{\prime}(x)$ must have three $x$-intercepts. So the derivative must be graphed in (c).

## Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of $y=f_{4}(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of $y^{\prime}$ is negative over

the corresponding $x$ values (where the intercept indicated by the left-most red arrow corresponds to this minimum of $f_{4}$ ).

## Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of $y=f_{4}(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of $y^{\prime}$ is negative over


(c) the corresponding $x$ values (where the intercept indicated by the left-most red arrow corresponds to this minimum of $f_{4}$ ). The graph of $y=f_{4}(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of $y^{\prime}$ is positive over the corresponding $x$ values (where the intercept indicated by the center red arrow corresponds to this maximum of $f_{4}$ ).

## Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of $y=f_{4}(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of $y^{\prime}$ is negative over


(c) the corresponding $x$ values (where the intercept indicated by the left-most red arrow corresponds to this minimum of $f_{4}$ ). The graph of $y=f_{4}(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of $y^{\prime}$ is positive over the corresponding $x$ values (where the intercept indicated by the center red arrow corresponds to this maximum of $f_{4}$ ). Next, the graph of $y=f_{4}(x)$ is decreasing between the origin and the right-most blue arrow and the graph of $y^{\prime}$ is negative over the corresponding $x$ values (between the origin and the right-most red arrow).

## Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of $y=f_{4}(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of $y^{\prime}$ is negative over
 the corresponding $x$ values (where the intercept indicated by the left-most red arrow corresponds to this minimum of $f_{4}$ ). The graph of $y=f_{4}(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of $y^{\prime}$ is positive over the corresponding $x$ values (where the intercept indicated by the center red arrow corresponds to this maximum of $f_{4}$ ). Next, the graph of $y=f_{4}(x)$ is decreasing between the origin and the right-most blue arrow and the graph of $y^{\prime}$ is negative over the corresponding $x$ values (between the origin and the right-most red arrow). Finally, the graph of $y=f_{4}(x)$ is increasing to the right of the right-most blue arrow and the graph of $y^{\prime}$ is positive over the corresponding $x$ values (to the right of the right-most red arrow). $\square$

## Exercise 3.2.30 (continued)

Solution (continued). Notice that the graph of $y=f_{4}(x)$ is decreasing until it reaches a minimum (indicated by the left-most blue arrow) and that the graph of $y^{\prime}$ is negative over
 the corresponding $x$ values (where the intercept indicated by the left-most red arrow corresponds to this minimum of $f_{4}$ ). The graph of $y=f_{4}(x)$ is increasing until it reaches a maximum (indicated by the center blue arrow) and that the graph of $y^{\prime}$ is positive over the corresponding $x$ values (where the intercept indicated by the center red arrow corresponds to this maximum of $f_{4}$ ). Next, the graph of $y=f_{4}(x)$ is decreasing between the origin and the right-most blue arrow and the graph of $y^{\prime}$ is negative over the corresponding $x$ values (between the origin and the right-most red arrow). Finally, the graph of $y=f_{4}(x)$ is increasing to the right of the right-most blue arrow and the graph of $y^{\prime}$ is positive over the corresponding $x$ values (to the right of the right-most red arrow). $\square$

## Exercise 3.2.44

Exercise 3.2.44. Determine if the piecewise defined function $g$ is differentiable at the origin:

$$
g(x)=\left\{\begin{array}{cc}
2 x-x^{3}-1, & x \geq 0 \\
x-\frac{1}{x+1}, & x<0
\end{array}\right.
$$

Solution. Since $g$ is piecewise defined, we consider left- and right-hand derivatives at 0 . First, the right-hand derivative at 0 is:

$$
\lim _{h \rightarrow 0^{+}} \frac{g(0+h)-g(0)}{h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{\left(2(0+h)-(0+h)^{3}-1\right)-\left(2(0)-(0)^{3}-1\right)}{h} \text { since } 0+h>0,
$$

we use the $2 x-x^{3}-1$ part of $g$
$=\lim _{h \rightarrow 0^{+}} \frac{2 h-h^{3}-1+1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h\left(2-h^{2}\right)}{h}$

## Exercise 3.2.44

Exercise 3.2.44. Determine if the piecewise defined function $g$ is differentiable at the origin:

$$
g(x)=\left\{\begin{array}{cc}
2 x-x^{3}-1, & x \geq 0 \\
x-\frac{1}{x+1}, & x<0
\end{array}\right.
$$

Solution. Since $g$ is piecewise defined, we consider left- and right-hand derivatives at 0 . First, the right-hand derivative at 0 is:

$$
\begin{aligned}
& \quad \lim _{h \rightarrow 0^{+}} \frac{g(0+h)-g(0)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\left(2(0+h)-(0+h)^{3}-1\right)-\left(2(0)-(0)^{3}-1\right)}{h} \text { since } 0+h>0, \\
& \quad=\lim _{h \rightarrow 0^{+}} \frac{2 h-h^{3}-1+1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h\left(2-h^{2}\right)}{h}
\end{aligned}
$$

## Exercise 3.2.44 (continued 1)

Solution (continued). ...

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}} \frac{2 h-h^{3}-1+1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h\left(2-h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}}\left(2-h^{2}\right)=2-(0)^{2}=2 .
\end{aligned}
$$

Next, the left-hand derivative at 0 is:

$$
\begin{gathered}
\lim _{h \rightarrow 0^{-}} \frac{g(0+h)-g(0)}{h} \\
=\lim _{h \rightarrow 0^{-}} \frac{\left((0+h)-\frac{1}{(0+h)+1}\right)-\left(2(0)-(0)^{3}-1\right)}{h} \text { since } 0+h<0,
\end{gathered}
$$

$$
\text { we use the } x-\frac{1}{x+1} \text { part of } g
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\left(h-\frac{1}{h+1}\right)+(1)\right)=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h(h+1)-1+(h+1)}{h+1}\right)
$$

## Exercise 3.2.44 (continued 1)

## Solution (continued). ...

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}} \frac{2 h-h^{3}-1+1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h\left(2-h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}}\left(2-h^{2}\right)=2-(0)^{2}=2 .
\end{aligned}
$$

Next, the left-hand derivative at 0 is:

$$
\begin{gathered}
\lim _{h \rightarrow 0^{-}} \frac{g(0+h)-g(0)}{h} \\
=\lim _{h \rightarrow 0^{-}} \frac{\left((0+h)-\frac{1}{(0+h)+1}\right)-\left(2(0)-(0)^{3}-1\right)}{h} \text { since } 0+h<0,
\end{gathered}
$$

we use the $x-\frac{1}{x+1}$ part of $g$
$=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\left(h-\frac{1}{h+1}\right)+(1)\right)=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h(h+1)-1+(h+1)}{h+1}\right)$

## Exercise 3.2.44 (continued 2)

Solution (continued). ...

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h(h+1)-1+(h+1)}{h+1}\right)=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h^{2}+h-1+h+1}{h+1}\right) \\
& =\lim _{h \rightarrow 0^{-}} \frac{1}{h} \frac{h^{2}+2 h}{h+1}=\lim _{h \rightarrow 0^{-}} \frac{1}{h} \frac{h(h+2)}{h+1} \\
& =\lim _{h \rightarrow 0^{-}} \frac{h+2}{h+1}=\frac{(0)+2}{(0)+1}=2 .
\end{aligned}
$$

Since the left- and right-hand derivatives exist and are equal, then by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the (two-sided) derivative exists and is 2 . $\square$

## Exercise 3.2.44 (continued 2)

Solution (continued). ...

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h(h+1)-1+(h+1)}{h+1}\right)=\lim _{h \rightarrow 0^{-}} \frac{1}{h}\left(\frac{h^{2}+h-1+h+1}{h+1}\right) \\
& =\lim _{h \rightarrow 0^{-}} \frac{1}{h} \frac{h^{2}+2 h}{h+1}=\lim _{h \rightarrow 0^{-}} \frac{1}{h} \frac{h(h+2)}{h+1} \\
& =\lim _{h \rightarrow 0^{-}} \frac{h+2}{h+1}=\frac{(0)+2}{(0)+1}=2 .
\end{aligned}
$$

Since the left- and right-hand derivatives exist and are equal, then by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the (two-sided) derivative exists and is 2 . $\square$

## Theorem 3.1

Theorem 3.1. Differentiability Implies Continuity
If $f$ has a derivative at $x=c$, then $f$ is continuous at $x=c$.
Proof. By the definition of continuity, we need to show that $\lim _{x \rightarrow c} f(x)=f(c)$, or equivalently (see Exercise 2.5.71) that
$\lim _{h \rightarrow 0} f(c+h)=f(c)$.

## Theorem 3.1

## Theorem 3.1. Differentiability Implies Continuity

If $f$ has a derivative at $x=c$, then $f$ is continuous at $x=c$.
Proof. By the definition of continuity, we need to show that $\lim _{x \rightarrow c} f(x)=f(c)$, or equivalently (see Exercise 2.5.71) that $\lim _{h \rightarrow 0} f(c+h)=f(c)$.


## Theorem 3.1

## Theorem 3.1. Differentiability Implies Continuity

If $f$ has a derivative at $x=c$, then $f$ is continuous at $x=c$.
Proof. By the definition of continuity, we need to show that $\lim _{x \rightarrow c} f(x)=f(c)$, or equivalently (see Exercise 2.5.71) that $\lim _{h \rightarrow 0} f(c+h)=f(c)$. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} f(c+h) & =\lim _{h \rightarrow 0}\left(f(c)+\frac{f(c+h)-f(c)}{h} h\right) \\
& =\lim _{h \rightarrow 0} f(c)+\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \lim _{h \rightarrow 0} h \\
& =f(c)+f^{\prime}(c)(0) \\
& =f(c) .
\end{aligned}
$$

Therefore $f$ is continuous at $x=c$.

## Exercise 3.2.50

Exercise 3.2.50. Consider function $f$ with domain $D=[-3,3]$ graphed below. At what domain points does the function appear to be (a) differentiable, (b) continuous but not differentiable, (c) neither continuous nor differentiable?


Solution. (a) The graph indicates that $f$ has a right-hand derivative at -3 and a left-hand derivative at 3. The graph is "smooth" for all other $x \in(-3,3)$, except for $x= \pm 2$ where the graph has a corner. So $f$ is differentiable on $[-3,-2) \cup(-2,2) \cup(2,3]$. $\square$

## Exercise 3.2.50

Exercise 3.2.50. Consider function $f$ with domain $D=[-3,3]$ graphed below. At what domain points does the function appear to be (a) differentiable, (b) continuous but not differentiable, (c) neither continuous nor differentiable?


Solution. (a) The graph indicates that $f$ has a right-hand derivative at -3 and a left-hand derivative at 3. The graph is "smooth" for all other $x \in(-3,3)$, except for $x= \pm 2$ where the graph has a corner. So $f$ is differentiable on $[-3,-2) \cup(-2,2) \cup(2,3] . \square$

## Exercise 3.2.50 (continued 1)



Solution. (b) The graph indicates that $f$ is continuous on $[-3,3]$ (by Dr. Bob's anthropomorphic idea of continuity, if you like). So $f$ is continuous but not differentiable at $\pm 2$. $\square$
(c) There are no points where $f$ is neither continuous nor differentiable since $f$ is continuous on $[-3,3]$. $\square$

## Exercise 3.2.50 (continued 1)



Solution. (b) The graph indicates that $f$ is continuous on $[-3,3]$ (by Dr. Bob's anthropomorphic idea of continuity, if you like). So $f$ is continuous but not differentiable at $\pm 2$
(c) There are no points where $f$ is neither continuous nor differentiable since $f$ is continuous on $[-3,3]$.

## Exercise 3.2.56

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope $m$ which has $x$ intercept $x_{1}=-1$ is of the form $y=m\left(x-x_{1}\right)=m(x-(-1))=m(x+1)$ by the slope-intercept form of a line.

## Exercise 3.2.56

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope $m$ which has $x$ intercept $x_{1}=-1$ is of the form $y=m\left(x-x_{1}\right)=m(x-(-1))=m(x+1)$ by the slope-intercept form of a line. Now the derivative of $y=f(x)=\sqrt{x}$ is


## Exercise 3.2.56

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. First, a line with slope $m$ which has $x$ intercept $x_{1}=-1$ is of the form $y=m\left(x-x_{1}\right)=m(x-(-1))=m(x+1)$ by the slope-intercept form of a line. Now the derivative of $y=f(x)=\sqrt{x}$ is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}\left(\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h})^{2}-(\sqrt{x})^{2}}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-(x)}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x+(0)}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

## Exercise 3.2.56 (continued)

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. So the slope of $y=f(x)=\sqrt{x}$ at $x=x_{0}$ is $f^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{x_{0}}}$. We now need $x_{0}$ such that $y=m(x+1)=\frac{1}{2 \sqrt{x_{0}}}(x+1)$ and we need this line to contain the point $\left(x_{0}, \sqrt{x_{0}}\right)$. So we must have

$$
\begin{aligned}
& \left(x_{0}, \sqrt{x_{0}}\right)=\left(x_{0}, y_{0}\right)=\left(x_{0}, \frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right)\right), \text { or } \sqrt{x_{0}}=\frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right) \text { or } \\
& 2\left(\sqrt{x_{0}}\right)^{2}=x_{0}+1 \text { or } 2 x_{0}=x_{0}+1\left(\text { where } x_{0} \geq 0\right) \text { or } x_{0}=1 \text {. When } x_{0}=1 \\
& \text { then } y_{0}=1 \text { and } m=1 /(2 \sqrt{1})=1 / 2 .
\end{aligned}
$$

## Exercise 3.2.56 (continued)

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?

Solution. So the slope of $y=f(x)=\sqrt{x}$ at $x=x_{0}$ is $f^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{x_{0}}}$. We now need $x_{0}$ such that $y=m(x+1)=\frac{1}{2 \sqrt{x_{0}}}(x+1)$ and we need this line to contain the point $\left(x_{0}, \sqrt{x_{0}}\right)$. So we must have $\left(x_{0}, \sqrt{x_{0}}\right)=\left(x_{0}, y_{0}\right)=\left(x_{0}, \frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right)\right)$, or $\sqrt{x_{0}}=\frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right)$ or $2\left(\sqrt{x_{0}}\right)^{2}=x_{0}+1$ or $2 x_{0}=x_{0}+1\left(\right.$ where $\left.x_{0} \geq 0\right)$ or $x_{0}=1$. When $x_{0}=1$ then $y_{0}=1$ and $m=1 /(2 \sqrt{1})=1 / 2$. Therefore yes, there is such a line it has equation $y=(1 / 2)(x+1)$ and the
point of tangency to $y=\sqrt{x}$ is $\left(x_{0}, y_{0}\right)=(1,1) . \square$

## Exercise 3.2.56 (continued)

Exercise 3.2.56. Does any tangent line to the curve $y=\sqrt{x}$ cross the $x$-axis at $x=-1$ ? If so, find an equation for the line and the point of tangency. If not, why not?
Solution. So the slope of $y=f(x)=\sqrt{x}$ at $x=x_{0}$ is $f^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{x_{0}}}$. We now need $x_{0}$ such that $y=m(x+1)=\frac{1}{2 \sqrt{x_{0}}}(x+1)$ and we need this line to contain the point $\left(x_{0}, \sqrt{x_{0}}\right)$. So we must have $\left(x_{0}, \sqrt{x_{0}}\right)=\left(x_{0}, y_{0}\right)=\left(x_{0}, \frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right)\right)$, or $\sqrt{x_{0}}=\frac{1}{2 \sqrt{x_{0}}}\left(x_{0}+1\right)$ or $2\left(\sqrt{x_{0}}\right)^{2}=x_{0}+1$ or $2 x_{0}=x_{0}+1\left(\right.$ where $\left.x_{0} \geq 0\right)$ or $x_{0}=1$. When $x_{0}=1$ then $y_{0}=1$ and $m=1 /(2 \sqrt{1})=1 / 2$. Therefore yes, there is such a line, it has equation $y=(1 / 2)(x+1)$ and the
point of tangency to $y=\sqrt{x}$ is $\left(x_{0}, y_{0}\right)=(1,1)$. $\square$

