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Theorem 3.2. The Chain Rule (Proof of a Special Case)

Theorem 3.2

Theorem 3.2. The Chain Rule. (Proof of a Special Case.)
If f (u) is differentiable at the point u = g(x) and g(x) is differentiable at
x , AND there is some ε > 0 such that ∆u = g(x + ∆x)− g(x) 6= 0 for all
x in the domain of g and for all ∆x < ε THEN the composite function
(f ◦ g)(x) = f (g(x)) is differentiable at x , and

(f ◦ g)′(x) = f ′(g(x))[g ′(x)].

In Leibniz’s notation, if y = f (u) and u = g(x), then

dy

dx
=

dy

du

du

dx
,

where dy/du is evaluated at u = g(x).

Proof. Let ε > 0. Let 0 < ∆x < ε. Let ∆u be the change in u when x
changes by ∆x < ε, so that ∆u = g(x + ∆x)− g(x) and ∆u 6= 0 (by the
choice of ∆x and the “special case” hypotheses).
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Theorem 3.2. The Chain Rule (Proof of a Special Case)

Theorem 3.2 (continued 1)

Proof (continued). Since y is a function of u, then the change in y that
results when x changes by an amount ∆x is ∆y = f (u + ∆u)− f (u).
Since ∆u 6= 0 (this is where we use the special case hypotheses) then we

can write the fraction ∆y/∆x as
∆y

∆x
=

∆y

∆u

∆u

∆x
. Now ∆y/∆x is a

difference quotient for function y with increment ∆x . So
dy

dx
= lim

∆x→0

∆y

∆x
.

Notice that u is hypothesized to be differentiable at x , so by Theorem 3.1
(Differentiability Implies Continuity), u is continuous at x and so

lim
∆x→0

∆u = lim
∆x→0

g(x + ∆x)− g(x)

= g

(
lim

∆x→0
(x + ∆x)

)
− g(x) = g(x + 0)− g(x) = 0

(by Theorem 2.10. Limits of Continuous Functions). That is, ∆u → 0 as
∆x → 0.
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Theorem 3.2. The Chain Rule (Proof of a Special Case)

Theorem 3.2 (continued 2)

Proof (continued). Therefore

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x

= lim
∆x→0

(
∆y

∆u

)
lim

∆x→0

(
∆u

∆x

)
= lim

∆u→0

(
∆y

∆u

)
lim

∆x→0

(
∆u

∆x

)
since ∆u → 0 as ∆x → 0,

as shown above

=
dy

du

du

dx
,

as claimed.
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Exercise 3.6.8

Exercise 3.6.8

Exercise 3.6.8. Given y = − sec u and u = g(x) =
1

x
+ 7x , find

dy

dx
= f ′(g(x))g ′(x). Use the square bracket and little arrow notation.

Solution. By the Chain Rule (Theorem 3.2),
dy

dx
=

y
dy

du

[
du

dx

]
. Now

dy

du
=

d

du
[− sec u] = −[sec u tan u] = − sec u tan u and

du

dx
=

d

dx

[
1

x
+ 7x

]
=

d

dx
[x−1 + 7x ] = [−x−2 + 7].

So

dy

dx
=

y
dy

du

[
du

dx

]
=

y
− sec u tan u

[
−x−2 + 7

]

=

y

− sec

(
1

x
+ 7x

)
tan

(
1

x
+ 7x

) [
− 1

x2
+ 7

]
. �

() Calculus 1 August 11, 2020 6 / 12



Exercise 3.6.8

Exercise 3.6.8

Exercise 3.6.8. Given y = − sec u and u = g(x) =
1

x
+ 7x , find

dy

dx
= f ′(g(x))g ′(x). Use the square bracket and little arrow notation.

Solution. By the Chain Rule (Theorem 3.2),
dy

dx
=

y
dy

du

[
du

dx

]
. Now

dy

du
=

d

du
[− sec u] = −[sec u tan u] = − sec u tan u and

du

dx
=

d

dx

[
1

x
+ 7x

]
=

d

dx
[x−1 + 7x ] = [−x−2 + 7]. So

dy

dx
=

y
dy

du

[
du

dx

]
=

y
− sec u tan u

[
−x−2 + 7

]

=

y

− sec

(
1

x
+ 7x

)
tan

(
1

x
+ 7x

) [
− 1

x2
+ 7

]
. �

() Calculus 1 August 11, 2020 6 / 12



Exercise 3.6.8

Exercise 3.6.8

Exercise 3.6.8. Given y = − sec u and u = g(x) =
1

x
+ 7x , find

dy

dx
= f ′(g(x))g ′(x). Use the square bracket and little arrow notation.

Solution. By the Chain Rule (Theorem 3.2),
dy

dx
=

y
dy

du

[
du

dx

]
. Now

dy

du
=

d

du
[− sec u] = −[sec u tan u] = − sec u tan u and

du

dx
=

d

dx

[
1

x
+ 7x

]
=

d

dx
[x−1 + 7x ] = [−x−2 + 7]. So

dy

dx
=

y
dy

du

[
du

dx

]
=

y
− sec u tan u

[
−x−2 + 7

]

=

y

− sec

(
1

x
+ 7x

)
tan

(
1

x
+ 7x

) [
− 1

x2
+ 7

]
. �

() Calculus 1 August 11, 2020 6 / 12



Exercise 3.6.48

Exercise 3.6.48

Exercise 3.6.48. Find the derivative of q = cot

(
sin t

t

)
. Use the square

bracket and little arrow notation.

Solution. Since the derivative of cot x is − csc2 x , then by the Chain Rule
(Theorem 3.2) and the Derivative Quotient Rule (Theorem 3.3.H) we have

dq

dt
=

d

dt

[
cot

(
sin t

t

)]
=

y

− csc2

(
sin t

t

) [
[cos t](t)− (sin t)[1]

(t)2

]
.

�
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Exercise 3.6.64

Exercise 3.6.64

Exercise 3.6.64. Find dy/dt when y =
1

6
(1 + cos2(7t))3. Use the square

bracket and little arrow notation.

Solution. We have four “levels” of functions. The 7t function is inside
the cosine function, the cosine function is inside the squaring function
(plus 1), and this is inside the cubing function (times 1/6). So we will
have to use the Chain Rule (Theorem 3.2) three times.

We have

dy

dt
=

d

dt

[
1

6
(1 + cos2(7t))3

]
=

1

6
[3(1+

y
cos2(7t))2[0+

y
2 cos(7t)[

y
− sin(7t)[7]]]]

= −7(1 + cos2(7t)) cos(7t) sin(7t) .

�
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Exercise 3.6.88

Exercise 3.6.88

Exercise 3.6.88. If r = sin(f (t)), f (0) = π/3, and f ′(0) = 4, then what
is dr/dt at t = 0?

Solution. By the Chain Rule (Theorem 3.2),
dr

dt
=

d

dt
[sin(f (t))] =

y
cos(f (t))[f ′(t)]. So when t = 0, we have

dr

dt

∣∣∣∣
t=0

= cos(f (0))(f ′(0)) = cos(π/3)(4) =

(
1

2

)
(4) = 2 .

�
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Exercise 3.6.96

Exercise 3.6.96

Exercise 3.6.96. Find the equation of the line tangent to
y =

√
x2 − x + 7 at x = 2.

Solution. The slope of the line is the derivative dy/dx evaluated at
x = 2. We have

dy

dx
=

d

dx

[√
x2 − x + 7

]
=

d

dx

[
(x2 − x + 7)1/2

]
=

1

2

y
(x2 − x + 7)−1/2[2x − 1] =

2x − 1

2
√

x2 − x + 7
.

So the slope of the desired line is

m =
dy

dx

∣∣∣∣
x=2

=
2(2)− 1

2
√

(2)2 − (2) + 7
=

3

2
√

9
=

1

2
.

Since the line contains

the point (x1, y1) = (2,
√

(2)2 − (2) + 7) = (2, 3), then by the point slope
formula for a line, the desired line is y − y1 = m(x − x1) or

y − (3) = (1/2)(x − 2) or y = (1/2)x + 2 . �
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Exercise 3.6.58

Exercise 3.6.58

Exercise 3.6.58. Find dy/dt when y =
(
esin(t/2)

)3
. Use the square

bracket and little arrow notation.

Solution. We have four “levels” of functions. The t/2 function is inside
the sine function, the sine function is inside the exponential function, and
this is inside the cubing function. So we will have to use the Chain Rule
(Theorem 3.2) three times.

We have

dy

dx
=

d

dx

[(
esin(t/2)

)3
]

=

y

3
(
esin(t/2)

)2
[

y
esin(t/2)[

y
cos(t/2)[1/2]]]

=
3

2

(
esin(t/2)

)3
cos(t/2) .

�
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Exercise 3.6.104. Particle Acceleration

Exercise 3.6.104

Exercise 3.6.104. Particle Acceleration.
A particle moves along the x-axis with velocity dx/dt = f (x). Show that
the particle’s acceleration is f (x)f ′(x).

Solution. The acceleration is the derivative of velocity with respect to
time, so

a =
d

dt

[
dx

dt

]
=

d

dt
[f (x)] =

y
d

dx
[f (x)]

[
dx

dt

]
= f ′(x)

dx

dt
= f ′(x)f (x) = f (x)f ′(x).

as claimed. �
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