Calculus 1

Chapter 3. Derivatives

3.7. Implicit Differentiation—Examples and Proofs

Calculus 1

October 4, 2020

October 4, 2020

Example 3.7.A (continued)

Solution (continued).

Since $x^2 + y^2 = 1$ does not determine a single function (it fails the vertical line test), then to find the slope of a tangent to the graph of the equation, we need both an x value and a y for the point of tangency. \square

Example 3.7.A

Example 3.7.A. Find the slope of the line tangent to $x^2 + y^2 = 1$ at $(x,y)=(\sqrt{2}/2,\sqrt{2}/2)$. Do the same for the point $(x, y) = (\sqrt{2}/2, -\sqrt{2}/2).$

Solution. We have just seen that implicit differentiation gives dy/dx = -x/y. So at $(\sqrt{2}/2, \sqrt{2}/2)$, the slope of a line tangent to $x^2 + y^2 = 1$ is

$$\left. \frac{dy}{dx} \right|_{(x,y)=(\sqrt{2}/2,\sqrt{2}/2)} = -\frac{(\sqrt{2}/2)}{(\sqrt{2}/2)} = \boxed{-1}.$$

At $(\sqrt{2}/2, -\sqrt{2}/2)$, the slope of a line tangent to $x^2 + y^2 = 1$ is

$$\left. \frac{dy}{dx} \right|_{(x,y)=(\sqrt{2}/2,-\sqrt{2}/2)} = -\frac{(\sqrt{2}/2)}{(-\sqrt{2}/2)} = \boxed{1}.$$

Exercise 3.7.16

Exercise 3.7.16. Find dy/dx for y an implicit function of x given by the equation $e^{x^2y} = 2x + 2y$.

Solution. Differentiating implicitly, $\frac{d}{dy}[e^{x^2y}] = \frac{d}{dx}[2x + 2y]$ or

 $e^{x^2y}[[2x](y) + (x^2)[dy/dx]] = 2[1] + 2[dy/dx]$ (notice that since y is a function of x then we must use the Derivative Product Rule to differentiate (x^2y) . Solving for dy/dx we get $e^{x^2y}(2xy+x^2(dy/dx))=2+2(dy/dx)$ or $2xye^{x^2y} + x^2e^{x^2y}(dy/dx) = 2 + 2(dy/dx)$ or

$$x^2 e^{x^2 y} (dy/dx) - 2(dy/dx) = -2xy e^{x^2 y} + 2 \text{ or } \left[\frac{dy}{dx} = \frac{-2xy e^{x^2 y} + 2}{x^2 e^{x^2 y} - 2} \right]. \square$$

Calculus 1

October 4, 2020 4 / 19

Exercise 3.7.40

Exercise 3.7.20. Find $dr/d\theta$ for r an implicit function of θ given by the equation $\cos r + \cot \theta = e^{r\theta}$.

Solution. Differentiating implicitly, $\frac{d}{d\theta}[\cos r + \cot \theta] = \frac{d}{d\theta}[e^{r\theta}]$ or $-\sin r[dr/d\theta] - \csc^2 \theta = e^{r\theta}[[dr/d\theta](\theta) + (r)[1]]$ (notice that since r is a function of θ then we must use the Derivative Product Rule to differentiate $r\theta$) or $-\sin r(dr/d\theta) - \csc^2 \theta = \theta e^{r\theta}(dr/d\theta) + re^{r\theta}$. Solving for $dr/d\theta$ we get $(-\sin r - \theta e^{r\theta})\frac{dr}{d\theta} = re^{r\theta} + \csc^2 \theta$ or $\frac{dr}{d\theta} = \frac{re^{r\theta} + \csc^2 \theta}{-\sin r - \theta e^{r\theta}}$. \Box

get
$$(-\sin r - \theta e^{r\theta})\frac{dr}{d\theta} = re^{r\theta} + \csc^2 \theta$$
 or $\left[\frac{dr}{d\theta} = \frac{re^{r\theta} + \csc^2 \theta}{-\sin r - \theta e^{r\theta}}\right]$. \Box

Calculus 1

October 4, 2020

October 4, 2020 7 / 19

Exercise 3.7.40 (continued 1)

Exercise 3.7.40. Verify that the point $(\pi/4, \pi/2)$ is on the curve $x \sin 2y = y \cos 2x$ and find the equations of the lines that are (a) tangent and **(b)** normal to the curve at $(\pi/4, \pi/2)$.

Solution (continued).

 $...\sin 2y + 2x(\cos 2y)(dy/dx) = (\cos 2x)(dy/dx) - 2y\sin 2x$. Solving for dy/dx we get $(2x\cos 2y - \cos 2x)(dy/dx) = -2y\sin 2x - \sin 2y$ or $\frac{dy}{dx} = \frac{-2y\sin 2x - \sin 2y}{2x\cos 2y - \cos 2x}.$ So at $(\pi/4, \pi/2)$ we have the slope of the tangent line as

$$m = \frac{dy}{dx} \Big|_{(x,y)=(\pi/4,\pi/2)} = \frac{-2(\pi/2)\sin 2(\pi/4) - \sin 2(\pi/2)}{2(\pi/4)\cos 2(\pi/2) - \cos 2(\pi/4)} = \frac{-\pi\sin(\pi/2) - \sin\pi}{(\pi/2)\cos\pi - \cos\pi/2} = \frac{-\pi(1) - (0)}{(\pi/2)(-1) - (0)} = \frac{-\pi}{-\pi/2} = 2.$$
 So the equation of the line tangent to the curve at $(x_1,y_1) = (\pi/4,\pi/2)$ is, by the point-slope formula, $y - y_1 = m(x - x_1)$ or $y - (\pi/2) = (2)(x - (\pi/4))$ or $y = 2x - \pi/2 + \pi/2$ or $y = 2x$.

Exercise 3.7.40. Verify that the point $(\pi/4, \pi/2)$ is on the curve $x \sin 2y = y \cos 2x$ and find the equations of the lines that are (a) tangent and **(b)** normal to the curve at $(\pi/4, \pi/2)$.

Solution. First, with $(x, y) = (\pi/4, \pi/2)$ the equation $x \sin 2y = y \cos 2x$ becomes $\left(\frac{\pi}{4}\right) \sin\left(2\left(\frac{\pi}{2}\right)\right) \stackrel{?}{=} \left(\frac{\pi}{2}\right) \cos\left(2\left(\frac{\pi}{4}\right)\right)$ or $\left(\frac{\pi}{4}\right)\sin\pi\stackrel{?}{=}\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)$ or $\left(\frac{\pi}{4}\right)(0)\stackrel{?}{=}\left(\frac{\pi}{2}\right)(0)$ or $0\stackrel{?}{=}0$, which is true and so $(\pi/4, \pi/2)$ is on the curve $x \sin 2y = y \cos 2x$.

(a) We differentiate the equation implicitly to find dy/dx and we get $\frac{d}{dx}[x \sin 2y] = \frac{d}{dx}[y \cos 2x]$ or $[1](\sin 2y) + (x)[\cos(2y)[2dy/dx]] = [dy/dx](\cos 2x) + (y)[-\sin(2x)[2]]$ or $\sin 2y + 2x(\cos 2y)(dy/dx) = (\cos 2x)(dy/dx) - 2y \sin 2x$.

Exercise 3.7.40 (continued 2)

Exercise 3.7.40. Verify that the point $(\pi/4, \pi/2)$ is on the curve $x \sin 2y = y \cos 2x$ and find the equations of the lines that are (a) tangent and **(b)** normal to the curve at $(\pi/4, \pi/2)$.

Solution (continued). Since the slope of a tangent line to the curve at $(x_1, y_1) = (\pi/4, \pi/2)$ is 2, then the slope of a line perpendicular (or normal) to the curve at this point is the negative reciprocal of 2, and normal to the curve has slope m = -1/2. So by the point-slope formula, $y-y_1=m(x-x_1)$, the normal line has formula $y - (\pi/2) = (-1/2)(x - (\pi/4))$ or $y = -x/2 + \pi/8 + \pi/2$ or $y = -x/2 + 5\pi/8$.

Exercise 3.7.44

Exercise 3.7.44. Normals Parallel to a Line.

Find the normals to the curve xy + 2x - y = 0 that are parallel to the line 2x + y = 0.

Solution. First we find dy/dx by differentiating implicitly to get: $\frac{d}{dx}[xy+2x-y] = \frac{d}{dx}[0] \text{ or } [1](y)+(x)[dy/dx]+2[1]-[dy/dx]=0 \text{ or } y+2+(x-1)dy/dx=0 \text{ or } \frac{dy}{dx} = \frac{-y-2}{x-1} = \frac{y+2}{1-x}. \text{ So at a point } (x_1,y_1) \text{ on the curve } xy+2x-y=0, \text{ the slope of a normal line is } -1\left/\left(\frac{dy}{dx}\right)\right|_{(x_1,y_1)} = -\frac{1-x_1}{y_1+2}. \text{ Now the slope of line } 2x+y=0 \text{ is } m=-2 \text{ ("}-A/B," \text{ if you like)}. \text{ So we look for a point } (x_1,y_1) \text{ such that } -\frac{1-x_1}{y_1+2} = -2 \text{ or } 1-x_1=2(y_1+2)=2y_1+4 \text{ or } x_1=-2y_1-3.$

Exercise 3.7.22

Exercise 3.7.22. Find dy/dx and d^2y/dx^2 for y an implicit function of x given by the equation $x^{2/3} + y^{2/3} = 1$.

Calculus 1

October 4, 2020

Solution. We differentiate implicitly to get $\frac{d}{dx}[x^{2/3}+y^{2/3}]=\frac{d}{dx}[1]$ or

$$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \left[\frac{dy}{dx} \right] = 0 \text{ or } \frac{2}{3}y^{-1/3} \frac{dy}{dx} = -\frac{2}{3}x^{-1/3} \text{ or } \frac{dy}{dx} = -\frac{x^{-1/3}}{y^{-1/3}}$$
or
$$\frac{dy}{dx} = -\frac{y^{1/3}}{x^{1/3}}.$$

Calculus 1

Next we have, differentiating implicitly again, that

$$\frac{d}{dx} \left[\frac{d}{dx} \right] = \frac{d}{dx} \left[-\frac{y^{1/3}}{x^{1/3}} \right] \text{ or }$$

$$\frac{d^2y}{dx^2} = -\frac{\left[(1/3)y^{-2/3} \left[\frac{dy}{dx} \right] \right] (x^{1/3}) - (y^{1/3}) \left[(1/3)x^{-2/3} \right]}{(x^{1/3})^2} \text{ or } \dots$$

Exercise 3.7.44 Normals Parallel to a Line

Exercise 3.7.44 (continued)

Exercise 3.7.44. Normals Parallel to a Line.

Find the normals to the curve xy + 2x - y = 0 that are parallel to the line 2x + y = 0.

Solution (continued). So we look for a point (x_1, y_1) such that $\dots x_1 = -2y_1 - 3$. Since (x_1, y_1) lies on the curve xy + 2x - y = 0, then we need $(-2y_1 - 3)y_1 + 2(-2y_1 - 3) - y_1 = 0$ or $-2y_1^2 - 3y_1 - 4y_1 - 6 - y_1 = 0$ or $-2y_1^2 - 8y_1 - 6 = 0$ or $y_1^2 + 4y_1 + 3 = 0$ or $(y_1 + 3)(y_1 + 1) = 0$. So we need $y_1 = -3$ or $y_1 = -1$ and then (from xy + 2x - y = 0) we have $x_1(-3) + 2x_1 - (-3) = 0$ and so $x_1 = 3$ or $x_1(-1) + 2x_1 - (-1) = 0$ and so $x_1 = -1$, respectively. That is, the desired normal lines occur at the points (3, -3) and (-1, -1). Since the slope of the normal line is m = -2 then by the point-slope formula the two normal lines are y - (-3) = (-2)(x - 3) or y = -2x + 3 and y - (-1) = (-2)(x - (-1)) or y = -2x - 3. \Box

October 4, 2020

Evereise 3

Exercise 3.7.22 (continued)

Exercise 3.7.22. Find dy/dx and d^2y/dx^2 for y an implicit function of x given by the equation $x^{2/3} + y^{2/3} = 1$.

Solution. ...
$$\frac{d^2y}{dx^2} = -\frac{[(1/3)y^{-2/3}[dy/dx]](x^{1/3}) - (y^{1/3})[(1/3)x^{-2/3}]}{(x^{1/3})^2} \text{ or }$$

$$\frac{d^2y}{dx^2} = -\frac{(1/3)x^{1/3}y^{-2/3}(dy/dx) - (1/3)x^{-2/3}y^{1/3}}{x^{2/3}} \text{ or }$$

$$\frac{d^2y}{dx^2} = -\frac{x^{1/3}y^{-2/3}(-y^{1/3}/x^{1/3}) - x^{-2/3}y^{1/3}}{3x^{2/3}} \text{ or }$$

$$\boxed{\frac{d^2y}{dx^2} = \frac{y^{-1/3} + x^{-2/3}y^{1/3}}{3x^{2/3}}}. \quad \Box$$

Exercise 3.7.48

Exercise 3.7.48. The Folium of Descartes.

(a) Find the slope of the folium of Descartes $x^3 + y^3 - 9xy = 0$ at the points (4,2) and (2,4). (b) At what point other than the origin does the folium have a horizontal tangent?

(c) Find the coordinates of the point A in Figure 3.29 where the folium has a vertical tangent

Figure 3.29

Solution. (a) Differentiating implicitly we have

$$\frac{d}{dx}[x^3 + y^3 - 9xy] = \frac{d}{dx}[0]$$
 or

$$3x^{2} + 3y^{2} \left[\frac{dy}{dx} \right] - 9 \left[[1](y) + (x) \left[\frac{dy}{dx} \right] \right] = 0 \text{ or } (3y^{2} - 9x) \frac{dy}{dx} = 9y - 3x^{2}$$

()

Calculus 1

October 4, 2020

versice 2.7.49. The Folium of Descarte

Exercise 3.7.48 (continued 2)

(b) At what point other than the origin does the folium have a horizontal tangent?

Solution (continued). (b) If the folium has a horizontal tangent at $(x, y) = (x_1, y_1)$ then

Exercise 3.7.48 (continued 1)

(a) Find the slope of the folium of Descartes $x^3 + y^3 - 9xy = 0$ at the points (4,2) and (2,4).

Solution (continued). ...
$$(3y^2 - 9x)\frac{dy}{dx} = 9y - 3x^2$$
 or $\frac{dy}{dx} = \frac{9y - 3x^2}{3y^2 - 9x}$

if $y^2 \neq 3x$. So the slope of the curve at (4,2) is

$$\frac{dy}{dx}\bigg|_{(x,y)=(4,2)} = \frac{9(2)-3(4)^2}{3(2)^2-9(4)} = \frac{18-48}{12-36} = \frac{-30}{-24} = \boxed{\frac{5}{4}}.$$
 The slope of the

curve at (4,2) is
$$\frac{dy}{dx}\Big|_{(x,y)=(2,4)} = \frac{9(4)-3(2)^2}{3(4)^2-9(2)} = \frac{36-12}{48-18} = \frac{24}{30} = \boxed{\frac{4}{5}}.$$

Exercise 3.7.48 (continued 3)

(c) Find the coordinates of the point A in Figure 3.29 where the folium has a vertical tangent.

Solution (continued). (c) Since $\frac{dy}{dx} = \frac{9y - 3x^2}{3y^2 - 9x}$, then we look for a vertical tangent where the denominator is 0 and the numerator is not (see Dr. Bob's Infinite Limits Theorem in 2.6. Limits Involving Infinity; Asymptotes of Graphs and the definition of vertical tangent line in 3.1. Tangent Lines and the Derivative at a Point). So if the folium has a vertical tangent at (x_1, y_1) then $3y_1^2 - 9x_1 = 0$, or $x_1 = y_1^2/3$. Since (x_1, y_1) also lies on the folium $x^3 + y^3 - 9xy = 0$, then we must have $(y_1^2/3)^3 + y_1^3 - 9(y_1^2/3)y_1 = 0$ or $y_1^6/27 + y_1^3 - 3y_1^3 = 0$ or $y_1^6/27 - 2y_1^3 = 0$ or $y_1^3(y_1^3/27 - 2) = 0$. So we need either $y_1 = 0$ or $y_1 = 3\sqrt[3]{2}$. When $y_1 = 0$ then $x_1 = 0$ so that $(x_1, y_1) = (0, 0)$ and we see that the folium has both a horizontal tangent and a vertical tangent at the origin. When $y_1 = 3\sqrt[3]{2}$ we have $x_1 = (3\sqrt[3]{2})^2/3 = 3\sqrt[3]{2} = 3\sqrt[3]{4}$.

October 4, 2020

Exercise 3.7.48. The Folium of Descartes

Exercise 3.7.48 (continued 4)

(c) Find the coordinates of the point A in Figure 3.29 where the folium has a vertical tangent.

Solution (continued). We see from the graph that the folium has a vertical tangent at point A (where the x coordinate is near 5). We know that *if* the folium has a vertical tangent then it occurs at $(x_1, y_1) = (3\sqrt[3]{4}, 3\sqrt[3]{2})$ (or at the origin $(x_1, y_1) = (0, 0)$), so it must be that $[point \ A \ is \ (3\sqrt[3]{4}, 3\sqrt[3]{2})]$. We have $3\sqrt[3]{4} \approx 4.76$, consistent with the graph. Also notice that the horizontal tangent is at $(3\sqrt[3]{2}, 3\sqrt[3]{4})$ by (b), reflecting the symmetry of the folium with respect to the line y = x. \square

Exercise 3.7.50

Exercise 3.7.50. Power Rule for Rational Exponents.

Let p and q be integers with q > 0. If $y = x^{p/q}$, differentiate the equivalent equation $y^q = x^p$ implicitly and show that, for $y \neq 0$,

$$\frac{d}{dx}[x^{p/q}] = \frac{p}{q}x^{(p/q)-1}.$$

Solution. Now $y = x^{p/q}$ if and only if $y^q = (x^{p/q})^q = x^p$, so differentiating implicitly we have $\frac{d}{dx}[y^q] = \frac{d}{dx}[x^p]$ or (since q > 0 and

$$y \neq 0$$
) $qy^{q-1} \begin{bmatrix} dy \\ dx \end{bmatrix} = px^{p-1}$ or $\frac{dy}{dx} = \frac{px^{p-1}}{qy^{q-1}}$ or, since $y = x^{p/q}$, $\frac{dy}{dx} = \frac{px^{p-1}}{q(x^{p/q})^{q-1}}$ or $\frac{dy}{dx} = \frac{px^{p-1}}{qx^{p-p/q}} = \frac{p}{q}x^{p-1-(p-p/q)}$ or $\frac{dy}{dx} = \frac{p}{q}x^{(p/q)-1}$, as claimed. \square

Calculus 1 October 4, 2020 18 / 19 () Calculus 1 October 4, 2020 19 / 19