Exercise 3.8.8. Let \(f(x) = x^2 - 4x - 5, x > 2 \). Find the value of \(df^{-1}/dx \) at the point \(x = 0 = f(5) \).

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

\[
\frac{df^{-1}}{dx}
\bigg|_{x=b} = \frac{1}{\frac{df}{dx}
\bigg|_{x=f^{-1}(b)}}.
\]

Here, \(b = 0, f^{-1}(b) = f^{-1}(0) = 5 \), and \(\frac{df}{dx} = 2x - 4 \). So we have

\[
\frac{df^{-1}}{dx}
\bigg|_{x=0} = \frac{1}{2x-4}
\bigg|_{x=f^{-1}(b)=f^{-1}(0)=5} = \frac{1}{2(5)-4} = \frac{1}{6}.
\]

\[\square \]

Theorem 3.3. The Derivative Rule for Inverses

If \(f \) has an interval \(I \) as its domain and \(f'(x) \) exists and is never zero on \(I \), then \(f^{-1} \) is differentiable at every point in its domain. The value of \((f^{-1})' \) at a point \(b \) in the domain of \(f^{-1} \) is the reciprocal of the value of \(f' \) at the point \(a = f^{-1}(b) \):

\[
\frac{df^{-1}}{dx}
\bigg|_{x=b} = \frac{1}{\frac{df}{dx}
\bigg|_{x=f^{-1}(b)}}.
\]

Proof. By definition of inverse function, \(f^{-1}(f(x)) = x \) for all \(x \in I \). Differentiating this equation, we have by the Chain Rule (Theorem 3.2):

\[
\frac{d}{dx} [f^{-1}(f(x))] = \frac{d}{dx} [x] \text{ or } f^{-1}'(f(x))^2 = 1 \text{ or } f^{-1}'(f(x)) = \frac{1}{f'(x)}.
\]

Plugging in \(x = f^{-1}(b) \) we get \(f^{-1}'(f^{-1}(b)) = \frac{1}{f'(f^{-1}(b))} \), as claimed.

\[\square \]

Theorem 3.8.A

3.8.A. For \(x > 0 \) we have

\[
\frac{d}{dx} [\ln x] = \frac{1}{x}.
\]

If \(u = u(x) \) is a differentiable function of \(x \), then for all \(x \) such that \(u(x) > 0 \) we have

\[
\frac{d}{dx} [\ln u] = \frac{d}{dx} [\ln u(x)] = \frac{1}{u(x)} \frac{du}{dx}.
\]

Proof. We know that \(f(x) = e^x \) is differentiable for all \(x \), so we can apply Theorem 3.3 to find the derivative of \(f^{-1}(x) = \ln x \):

\[
\frac{d}{dx} [\ln x] = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{f^{-1}(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x},
\]

as claimed.
Theorem 3.8.A (continued)

Theorem 3.8.A. For $x > 0$ we have

$$\frac{d}{dx} \ln x = \frac{1}{x}.$$

If $u = u(x)$ is a differentiable function of x, then for all x such that $u(x) > 0$ we have

$$\frac{d}{dx} \ln u = \frac{d}{dx} \ln u(x) = \frac{1}{u} \left[\frac{du}{dx} \right] = \frac{1}{u(x)} \left[u'(x) \right].$$

Proof (continued). By the Chain Rule (Theorem 3.2),

$$\frac{d}{dx} \ln u(x) = \frac{d}{du} \ln u \left[\frac{du}{dx} \right] = \frac{1}{u} \left[\frac{du}{dx} \right],$$

as claimed.

Exercise 3.8.16

Exercise 3.8.16. Find $\frac{dy}{dx}$ when $y = \ln(\sin x)$.

Solution. By Theorem 3.8.A,

$$\frac{dy}{dx} = \frac{d}{dx} \ln(\sin x) = \frac{1}{\sin x} \cos x = \frac{\cos x}{\sin x} = \cot x.$$

Exercise 3.8.30

Exercise 3.8.30. Find $\frac{dy}{dx}$ when $y = \ln(\ln(x))$.

Solution. We have three “levels” of functions, a natural logarithm inside a natural logarithm inside another natural logarithm. So we will have to use the Chain Rule (Theorem 3.2) twice. We have

$$\frac{dy}{dx} = \frac{d}{dx} \ln(\ln x) = \frac{1}{\ln x} \left[\frac{1}{x} \right] = \frac{1}{x \ln(x) \ln(x)}.$$
Exercise 3.8.52

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x + 1)^{10}}{(2x + 1)^5}}$.

Solution. First, we have

$$
\ln y = \ln \left(\sqrt{\frac{(x + 1)^{10}}{(2x + 1)^5}} \right) = \ln \left(\frac{(x + 1)^{10}}{(2x + 1)^5} \right)^{1/2} = \frac{1}{2} \ln \left(\frac{(x + 1)^{10}}{(2x + 1)^5} \right)
$$

$$
= \frac{1}{2} \ln(x + 1)^{10} - \frac{1}{2} \ln(2x + 1)^5 = \frac{1}{2} \left(10 \ln(x + 1) - 5 \ln(2x + 1) \right)
$$

$$
= 5 \ln(x + 1) - \frac{5}{2} \ln(2x + 1).
$$

Now we differentiate implicitly:

$$
\frac{d}{dx} [\ln y] = \frac{d}{dx} \left[5 \ln(x + 1) - \frac{5}{2} \ln(2x + 1) \right]
$$

Exercise 3.8.52 (continued 2)

Exercise 3.8.52. Find y' by first taking a natural logarithm and then differentiating implicitly: $y = \sqrt{\frac{(x + 1)^{10}}{(2x + 1)^5}}$.

Solution. ...

$$
\frac{d}{dx} [\ln y] = \frac{1}{y} \left[\frac{dy}{dx} \right] = \frac{5}{x + 1} - \frac{5}{2x + 1},
$$

and hence

$$
\frac{dy}{dx} = y \left(\frac{5}{x + 1} - \frac{5}{2x + 1} \right) = \sqrt{\frac{(x + 1)^{10}}{(2x + 1)^5}} \left(\frac{5}{x + 1} - \frac{5}{2x + 1} \right).
$$

Theorem 3.8.B

Theorem 3.8.B. If $a > 0$ and u is a differentiable function of x, then a^u is a differentiable function of x and

$$
\frac{d}{dx} [a^u] = (\ln a) a^u \left[\frac{du}{dx} \right].
$$

Proof. First

$$
\frac{d}{dx} [a^x] = \frac{d}{dx} [e^{x \ln a}] = e^{x \ln a} \left[\frac{d}{dx} [x \ln a] \right] = a^x \ln a = (\ln a) a^x.
$$

Then be the Chain Rule (Theorem 3.2),

$$
\frac{d}{dx} [a^u] = \frac{da^u}{du} \left[\frac{du}{dx} \right] = (\ln a) a^u \left[\frac{du}{dx} \right],
$$

as claimed.

Exercise 3.8.70

Exercise 3.8.70. Find \(dy/dx \) when \(y = 2^{(x^2)} \).

Solution. By Theorem 3.8.8 (with \(a = 2 \) and \(u(x) = x^2 \)), we have:

\[
\frac{d}{dx}[y] = \frac{dy}{dx} = \frac{d}{dx}[2^{(x^2)}] = (\ln 2)2^{(x^2)}[2x] = (2\ln 2)x2^{(x^2)}
\]

\(\square \)

Exercise 3.8.80

Exercise 3.8.80. Find \(dy/d\theta \) when \(y = \log_5\left(\frac{7x}{3x+2}\right)^{\ln 5} \).

Solution. We first apply some properties of logarithms:

\[
y = \log_5\left(\frac{7x}{3x+2}\right)^{\ln 5} = \log_5\left(\frac{7x}{3x+2}\right)^{(\ln 5)/2} = \frac{\ln 5}{2} \log_5\left(\frac{7x}{3x+2}\right)
\]

So by Theorem 3.8.C (with \(a = 5 \), \(u(x) = 7x \), and \(u_2(x) = 3x + 2 \)) we have

\[
\frac{dy}{dx} = \frac{d}{dx}\left[\frac{\ln 5}{2} \left(\log_5(7x) - \log_5(3x + 2)\right)\right]
\]

\(= \frac{\ln 5}{2} \left(\frac{d}{dx}\log_5(7x) - \frac{d}{dx}\log_5(3x + 2)\right)\)

\(\square \)
Exercise 3.8.80. Find dy/dx when $y = \log_5 \sqrt[\ln 5]{\frac{7x}{3x + 2}}$.

Solution. ...

\[
\frac{dy}{dx} = \frac{\ln 5}{2} \left(\frac{d}{dx} \left[\log_5(7x) \right] - \frac{d}{dx} \left[\log_5(3x + 2) \right] \right) = \frac{\ln 5}{2} \left(\frac{1}{\ln 5} \frac{1}{7x} - \frac{1}{\ln 5} \frac{1}{3x + 2} \right) = \frac{1}{2} \left(\frac{1}{x} - \frac{3}{3x + 2} \right).
\]

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx: $y = x^{x+1}$.

Solution. Notice that y has x in both the base and the exponent, so that it is neither an exponential function nor a power of x. We must take a logarithm and use logarithmic differentiation. First, we have

\[
\ln y = \ln x^{x+1} = (x + 1) \ln x.
\]

Then

\[
\frac{d}{dx} \left[\ln y \right] = \frac{d}{dx} \left[(x + 1) \ln x \right]
\]

or

\[
\frac{1}{y} \frac{dy}{dx} = (x + 1) \left(\frac{1}{x} \right) \ln x + \frac{x}{x + 1}.
\]

so

\[
\frac{dy}{dx} = x^{x+1} \left(\frac{\ln x + \frac{x}{x + 1}}{x} \right).
\]
Example 3.8.72. Differentiate $y = t^{1-e}$.

Solution. This is an easy problem computationally, but we do it at this time because the exponent $1 - e$ is irrational. By Theorem 3.3.C/3.8.D, “General Power Rule for Derivatives,” we have

$$\frac{dy}{dt} = \frac{d}{dt}[t^{1-e}] = (1-e)t^{(1-e)-1} = (1-e)t^{-e}.$$

\[\square \]

Theorem 3.4. The Number e as a Limit

We can find e as a limit:

$$e = \lim_{x \to 0} (1 + x)^{1/x}.$$

Proof. Let $f(x) = \ln x$. Then $f'(x) = 1/x$ and $f'(1) = 1$. Now by the definition of derivative:

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x).$$

$$= \ln \left(\lim_{x \to 0} (1 + x)^{1/x} \right) \text{ since } \ln x \text{ is continuous.}$$

Exercise 3.8.102

Exercise 3.8.102. Show that $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ for any $x > 0$.

Solution. As in the proof of Theorem 3.4, “The Number e as a Limit,” we let $f(x) = \ln x$ (this is where we need $x > 0$) so that $f'(x) = 1/x$ and by the definition of derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}. $$

Now the exponential function is continuous at all real numbers, so

$$e^{1/x} = e^{\lim_{h \to 0} (\ln(x+h) - \ln x)/h} = \lim_{h \to 0} e^{\ln((x+h)/x) - \ln x/h} = \lim_{h \to 0} e^{(1/h)\ln((x+h)/x)}$$

$$= \lim_{h \to 0} e^{\ln((x+h)/x)/h} = \lim_{h \to 0} \left(\frac{x+h}{x}\right)^{1/h} = \lim_{h \to 0} \left(1 + \frac{h}{x}\right)^{1/h}. $$
Exercise 3.8.102. Show that \(\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \) for any \(x > 0 \).

Solution (continued). \(e^{1/x} = \lim_{h \to 0} \left(1 + \frac{h}{x} \right)^{1/h} \). In particular, we have \(e^{1/x} = \lim_{h \to 0^+} \left(1 + \frac{h}{x} \right)^{1/h} \). Replacing \(h \) with \(1/n \) and noting that \(h \to 0^+ \) if and only if \(n \to \infty \), we then have \(e^{1/x} = \lim_{n \to \infty} \left(1 + \frac{1}{nx} \right)^n \). Now replacing \(x \) with \(1/x \) we get \(e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \), as claimed. \(\square \)