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Theorem 3.3. The Derivative Rule for Inverses

Theorem 3.3

Theorem 3.3. The Derivative Rule for Inverses
If f has an interval I as its domain and f ′(x) exists and is never zero on I ,
then f −1 is differentiable at every point in its domain. The value of (f −1)′

at a point b in the domain of f −1 is the reciprocal of the value of f ′ at the
point a = f −1(b):

df −1

dx

∣∣∣∣
x=b

=
1

df
dx

∣∣
x=f −1(b)

.

Proof. By definition of inverse function, f −1(f (x)) = x for all x ∈ I .
Differentiating this equation, we have by the Chain Rule (Theorem 3.2):

d

dx

[
f −1(f (x))

]
=

d

dx
[x ] or

y
f −1′(f (x))[f ′(x)] = 1 or f −1′(f (x)) =

1

f ′(x)
.

Plugging in x = f −1(b) we get f −1′(f (f −1(b))) =
1

f ′(f −1(b))
, as

claimed.
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Exercise 3.8.8

Exercise 3.8.8

Exercise 3.8.8. Let f (x) = x2 − 4x − 5, x > 2. Find the value of
df −1/dx at the point x = 0 = f (5).

Solution. By Theorem 3.3, The Derivative Rule for Inverses, we have

df −1

dx

∣∣∣∣
x=b

=
1

df
dx

∣∣
x=f −1(b)

.

Here, b = 0, f −1(b) = f −1(0) = 5, and
df

dx
= 2x − 4. So we have

df −1

dx

∣∣∣∣
x=b=0

=
1

2x − 4|x=f −1(b)=f −1(0)=5

=
1

2(5)− 4
=

1

6
.

�
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Theorem 3.8.A

Theorem 3.8.A

Theorem 3.8.A. For x > 0 we have

d

dx
[ln x ] =

1

x
.

If u = u(x) is a differentiable function of x , then for all x such that
u(x) > 0 we have

d

dx
[ln u] =

d

dx
[ln u(x)] =

y
1

u

[
du

dx

]
=

y
1

u(x)

[
u′(x)

]
.

Proof. We know that f (x) = ex is differentiable for all x , so we can apply
Theorem 3.3 to find the derivative of f −1(x) = ln x :

d

dx
[ln x ] = (f −1)′(x) =

1

f ′(f −1(x))
=

1

ef −1(x)
=

1

e ln x
=

1

x
,

as claimed.
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Theorem 3.8.A

Theorem 3.8.A (continued)

Theorem 3.8.A. For x > 0 we have

d

dx
[ln x ] =

1

x
.

If u = u(x) is a differentiable function of x , then for all x such that
u(x) > 0 we have

d

dx
[ln u] =

d

dx
[ln u(x)] =

y
1

u

[
du

dx

]
=

y
1

u(x)

[
u′(x)

]
.

Proof (continued). By the Chain Rule (Theorem 3.2),

d

dx
[ln u(x)] =

y
d

du
[ln u]

[
du

dx

]
=

y
1

u

[
du

dx

]
,

as claimed.
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Exercise 3.8.16

Exercise 3.8.16

Exercise 3.8.16. Find dy/dx when y = ln(sin x).

Solution. By Theorem 3.8.A,

dy

dx
=

d

dx
[ln(sin x)] =

y
1

sin x
[cos x ] =

cos x

sin x
= cot x .

�
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Exercise 3.8.30

Exercise 3.8.30

Exercise 3.8.30. Find dy/dx when y = ln(ln(ln x)).

Solution. We have three “levels” of functions, a natural logarithm inside
a natural logarithm inside another natural logarithm. So we will have to
use the Chain Rule (Theorem 3.2) twice. We have

dy

dx
=

d

dx
[ln(ln(ln x))] =

y

1

ln(ln x)

 y
1

ln x

[
1

x

] =
1

x ln(x) ln(ln(x))
.

�
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Exercise 3.8.38

Exercise 3.8.38

Exercise 3.8.38. Find dy/dθ when y = ln

(√
sin θ cos θ

1 + 2 ln θ

)
.

Solution. First, we use properties of logarithms to modify the form of y :

y = ln

(√
sin θ cos θ

1 + 2 ln θ

)
= ln

√
sin θ cos θ − ln(1 + 2 ln θ)

= ln(sin θ cos θ)1/2 − ln(1 + 2 ln θ) =
1

2
ln(sin θ cos θ)− ln(1 + 2 ln θ)

=
1

2
ln(sin θ) +

1

2
ln(cos θ)− ln(1 + 2 ln θ)

dy

dθ
=

1

2

y
1

sin θ
[cos θ] +

1

2

y
1

cos θ
[− sin θ]−

y
1

1 + 2 ln θ

[
0 + 2

1

θ

]
=

1

2
cot θ − 1

2
tan θ − 2

θ(1 + 2 ln θ)
. �
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Exercise 3.8.52

Exercise 3.8.52

Exercise 3.8.52. Find y ′ by first taking a natural logarithm and then

differentiating implicitly: y =

√
(x + 1)10

(2x + 1)5
.

Solution. First, we have

ln y = ln

(√
(x + 1)10

(2x + 1)5

)
= ln

(
(x + 1)10

(2x + 1)5

)1/2

=
1

2
ln

(
(x + 1)10

(2x + 1)5

)

=
1

2

(
ln(x + 1)10 − ln(2x + 1)5

)
=

1

2
(10 ln(x + 1)− 5 ln(2x + 1))

= 5 ln(x + 1)− 5

2
ln(2x + 1).

Now we differentiate implicitly:

d

dx
[ln y ] =

d

dx

[
5 ln(x + 1)− 5

2
ln(2x + 1)

]
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Exercise 3.8.52

Exercise 3.8.52 (continued 1)

Exercise 3.8.52. Find y ′ by first taking a natural logarithm and then

differentiating implicitly: y =

√
(x + 1)10

(2x + 1)5
.

Solution. Now we differentiate implicitly:

d

dx
[ln y ] =

d

dx

[
5 ln(x + 1)− 5

2
ln(2x + 1)

]

= 5
d

dx
[ln(x + 1)]− 5

2

d

dx
[ln(2x + 1)] =

y

5
1

x + 1
[1]− 5

2

y
1

2x + 1
[2]

=
5

x + 1
− 5

2x + 1
.

So

d

dx
[ln y ] =

y
1

y

[
dy

dx

]
=

5

x + 1
− 5

2x + 1
,

() Calculus 1 August 13, 2020 11 / 26



Exercise 3.8.52

Exercise 3.8.52 (continued 2)

Exercise 3.8.52. Find y ′ by first taking a natural logarithm and then

differentiating implicitly: y =

√
(x + 1)10

(2x + 1)5
.

Solution. . . .

d

dx
[ln y ] =

y
1

y

[
dy

dx

]
=

5

x + 1
− 5

2x + 1
,

and hence

dy

dx
= y

(
5

x + 1
− 5

2x + 1

)
=

√
(x + 1)10

(2x + 1)5

(
5

x + 1
− 5

2x + 1

)
.

�

() Calculus 1 August 13, 2020 12 / 26



Theorem 3.8.B

Theorem 3.8.B

Theorem 3.8.B. If a > 0 and u is a differentiable function of x , then au is
a differentiable function of x and

d

dx
[au] =

y

(ln a)au

[
du

dx

]
.

Proof. First

d

dx
[ax ] =

d

dx

[
ex ln a

]
=

y

ex ln a

[
d

dx
[x ln a]

]
= ax ln a = (ln a)ax .

Then be the Chain Rule (Theorem 3.2),

d

dx
[au] =

y
dau

du

[
du

dx

]
=

y

(ln a)au

[
du

dx

]
,

as claimed.
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Exercise 3.8.70

Exercise 3.8.70

Exercise 3.8.70. Find dy/dx when y = 2(x2).

Solution. By Theorem 3.8.B (with a = 2 and u(x = x2), we have:

d

dx
[y ] =

dy

dx
=

d

dx
[2(x2)] = (ln 2)

y
2(x2)[2x ] = (2 ln 2)x2(x2) .

�
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Theorem 3.8.C

Theorem 3.8.C

Theorem 3.8.C. Differentiating a logarithm base a gives:

d

dx
[loga u] =

y
1

ln a

1

u

[
du

dx

]
.

Proof. This follows easily:

d

dx
[loga x ] =

d

dx

[
ln x

ln a

]
=

1

ln a

d

dx
[ln x ] =

1

ln a

1

x
.

Then be the Chain Rule (Theorem 3.2),

d

dx
[loga u] =

y
d loga u

du

[
du

dx

]
=

y
1

ln a

1

u

[
du

dx

]
,

as claimed.
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Exercise 3.8.74

Exercise 3.8.74

Exercise 3.8.74. Find dy/dθ when y = log3(1 + θ ln 3).

Solution. By Theorem 3.3.C (with a = 3 and u(θ) = 1 + θ ln 3) we have:

dy

dθ
=

d

dθ
[log3(1 + θ ln 3)] =

1

ln 3

y
1

1 + θ ln 3
[0 + ln 3] =

1

1 + θ ln 3
.

�
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Exercise 3.8.80

Exercise 3.8.80

Exercise 3.8.80. Find dy/dx when y = log5

√(
7x

3x + 2

)ln 5

.

Solution. We first apply some properties of logarithms:

y = log5

√(
7x

3x + 2

)ln 5

= log5

(
7x

3x + 2

)(ln 5)/2

=
ln 5

2
log5

7x

3x + 2

=
ln 5

2
(log5(7x)− log5(3x + 2)) .

So by Theorem 3.8.C (with a = 5, u1(x) = 7x , and u2(x) = 3x + 2) we
have

dy

dx
=

d

dx

[
ln 5

2
(log5(7x)− log5(3x + 2))

]
=

ln 5

2

(
d

dx
[log5(7x)]− d

dx
[log5(3x + 2)]

)
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Exercise 3.8.80
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Exercise 3.8.80. Find dy/dx when y = log5

√(
7x

3x + 2

)ln 5

.

Solution. . . .

dy

dx
=

ln 5

2

(
d

dx
[log5(7x)]− d

dx
[log5(3x + 2)]

)

=
ln 5

2

 1

ln 5

y
1

7x
[7]− 1

ln 5

y
1

3x + 2
[3]


=

1

2

(
1

x
− 3

3x + 2

)
.
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Exercise 3.8.90

Exercise 3.8.90

Exercise 3.8.90. Use logarithmic differentiation to find dy/dx : y = xx+1.

Solution. Notice that y has x in both the base and the exponent, so that
it is neither an exponential function nor a power of x . We must take a
logarithm and use logarithmic differentiation. First, we have

ln y = ln xx+1 = (x + 1) ln x .

Then
d

dx
[ln y ] =

d

dx
[(x + 1) ln x ] or

y
1

y

[
dy

dx

]
= [1](ln x) + (x + 1)

[
1

x

]
or

dy

dx
= y

(
ln x +

x + 1

x

)
, so

dy

dx
= xx+1

(
ln x +

x + 1

x

)
. �
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Theorem 3.3.C/3.8.D. General Power Rule for Derivatives

Theorem 3.3.C/3.8.D

Theorem 3.3.C/3.8.D. General Power Rule for Derivatives.
For x > 0 and any real number n,

d

dx
[xn] = nxn−1.

If x < 0, then the formula holds whenever the derivative, xn, and xn−1 all
exist.

Proof. We have for x > 0 that

d

dx
[xn] =

d

dx

[
en ln x

]
=

y

en ln x d

dx
[n ln x ] by the Chain Rule

= xn n

x
= nxn−1,

as claimed.
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Theorem 3.3.C/3.8.D. General Power Rule for Derivatives

Theorem 3.3.C/3.8.D (continued)

Proof (continued). When x < 0, if y = xn, y ′, and xn−1 all exist, then
we have ln |y | = ln |xn| = ln |x |n = n ln |x |. Differentiating implicitly (this
is where we must assume that y ′ exists) we have that
d

dx
[ln |y |] =

d

dx
[n ln |x |], which implies (by Example 3.8.3(c))

y
1

y

[
dy

dx

]
= n

1

x
, or

dy

dx
= ny

1

x
= nxn 1

x
= nxn−1, as claimed.

This still leaves the case that for x = 0 and n ≥ 1, the derivative is 0; this
is to be shown in Exercise 3.8.103. �
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Exercise 3.8.72

Exercise 3.8.72

Example 3.8.72. Differentiate y = t1−e .

Solution. This is an easy problem computationally, but we do it at this
time because the exponent 1− e is irrational. By Theorem 3.3.C/3.8.D,
“General Power Rule for Derivatives,” we have

dy

dt
=

d

dt
[t1−e ] = (1− e)t(1−e)−1 = (1− e)t−e .

�
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Theorem 3.4. The Number e as a Limit

Theorem 3.4

Theorem 3.4. The Number e as a Limit
We can find e as a limit:

e = lim
x→0

(1 + x)1/x .

Proof. Let f (x) = ln x . Then f ′(x) = 1/x and f ′(1) = 1. Now by the
definition of derivative:

f ′(1) = lim
h→0

f (1 + h)− f (1)

h
= lim

x→0

f (1 + x)− f (1)

x

= lim
x→0

ln(1 + x)− ln 1

x
= lim

x→0

1

x
ln(1 + x)

= lim
x→0

ln(1 + x)1/x

= ln
(

lim
x→0

(1 + x)1/x
)

since ln x is continuous.
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Theorem 3.4. The Number e as a Limit

Theorem 3.4 (continued)

Theorem 3.4. The Number e as a Limit
We can find e as a limit:

e = lim
x→0

(1 + x)1/x .

Proof (continued). Therefore, since f ′(1) = 1, we have

ln
(

lim
x→0

(1 + x)1/x
)

= 1.

Since ln e = 1 and ln x is one-to-one,

lim
x→0

(1 + x)1/x = e.
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Exercise 3.8.102

Exercise 3.8.102

Exercise 3.8.102. Show that lim
n→∞

(
1 +

x

n

)n
= ex for any x > 0.

Solution. As in the proof of Theorem 3.4, “The Number e as a Limit,”
we let f (x) = ln x (this is where we need x > 0) so that f ′(x) = 1/x and
by the definition of derivative,

1

x
= f ′(x) = lim

h→0

f (x + h)− f (x)

h
= lim

h→0

ln(x + h)− ln x

h
.

Now the exponential function is continuous at all real numbers, so

e1/x = e limh→0(ln(x+h)−ln x)/h = lim
h→0

e(ln(x+h)−ln x)/h = lim
h→0

e(1/h) ln((x+h)/x)

= lim
h→0

e ln((x+h)/x)1/h
= lim

h→0

(
x + h

x

)1/h

= lim
h→0

(
1 +

h

x

)1/h

.
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Exercise 3.8.102

Exercise 3.8.102 (continued)

Exercise 3.8.102. Show that lim
n→∞

(
1 +

x

n

)n
= ex for any x > 0.

Solution (continued). . . . e1/x = lim
h→0

(
1 +

h

x

)1/h

. In particular, we have

e1/x = lim
h→0+

(
1 +

h

x

)1/h

. Replacing h with 1/n and noting that h → 0+

if and only if n →∞, we then have e1/x = lim
n→∞

(
1 +

1

nx

)n

. Now

replacing x with 1/x we get ex = lim
n→∞

(
1 +

x

n

)n
, as claimed.
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