Calculus 1

Chapter 3. Derivatives

3.9. Inverse Trigonometric Functions—Examples and Proofs
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Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

August 14, 2020

the angles: (a) sin"1(1/2), (b) sin"!(—1/v/2), (c) arcsin(+/3/2).

Solution. (c) With 6 = arcsin(v/3/2), we need sin = /3/2 and

0 € [-n/2,7/2]. So 0 is a “special angle” and from our knowledge of

special angles, we have

0=mn/3 0
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Exercise 3.9.4

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin"1(1/2), (b) sin"1(—1/v/2), (c) arcsin(+/3/2).

Solution. (a) With 6 = sin™1(1/2), we need sin = 1/2 and
0 € [—n/2,7/2]. So 0 is a “special angle” and from our knowledge of

special angles, we have |6 = 7/6|.

(b) With 6 = sin"1(-1/1/2),

O

we need sinf = —1/y/2 = —/2/2 and
0 € [-7/2,7/2]. From our knowledge of

special angles, we know that sin /4 = \/2/2.
So we seek an angle 6 with a reference angle
of 7/4 where 6 € [-7/2,7/2] and

sinf < 0. We take |0 = —7/4 |

Exercise 3.9.14

Exercise 3.9.14
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Exercise 3.9.14. Find the limit: lim,_,_;+ cos™}(x).

Solution. First, notice that —1 is a left

endpoint of the domain of cos™
Based on the graph of y = cos™
see (by Dr. Bob's Anthropomorphic Definition

X, we

of Limit, a one-sided version) that as

x — —1 from the right (i.e., from
the positive side) that the graph “tries to
contain the point” (—1,7). So

lim,_._1+ cos 1(x) =[7]
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Theorem 3.9.A

Theorem 3.9.A

Exercise 3.9.24

Theorem 3.9.A. We differentiate sin~! as follows:

d .1 1 du
dx [sin™"u] = N [a] Exercise 3.9.24. For dy/dt when y = sin™(1 — t).
where |u] < 1. ﬁolution. By Theorem 3.9.A (with u(t) =1 —t and du/dt = —1), we
ave
Proof. We know that if y = sin"! x then (for appropriate domain and ~
range values) siny = x and so by implicit differentiation Q _ i[sin_l(l ) = 1 1] = -1
d d mdy dy 1 dat  dt 1—(1-1t)? V2t — 2|
o [siny] = o [x] or cosy [&} =1or dx  cosy’ Since we have -
restricted y to the interval [—7/2,7/2], we know that cosy > 0 and so
cosy = +4/1 — (siny)2 = V1 — x2. Making this substitution we get
d 1
™ [sin_lx] = ﬁ The full theorem then follows from the Chain
Rule. O
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Theorem 3.9.B Exercise 3.9.34
Theorem 3.9.B. We differentiate tan~! as follows:
d o] — 1 m[@] Exercise 3.9.34. Find dy/dx when y = tan~1(Inx).
dx 1+ u? [dx]’ Solution. By Theorem 3.9.B (with u(x) = Inx and du/dx = 1/x), we
have
Proof. We know that if y = tan~! x then (for appropriate domain and ~
range values) tany = x and so by implicit differentiation ﬂ _ i[tan_l(lnx)] _ 1 1 _ 1
J J ”d dx  dx 1+ (Inx)? | x x(1+ (Inx)2 |
= [tany] = = [x] or sec? y [d_ﬂ =1or -
dy 1 1 1

= . The full theorem then follows from
dx sec?y

1+ (tany)? T 112
the Chain Rule.

]
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Theorem 3.9.C

Theorem 3.9.C

Theorem 3.9.C. We differentiate sec ! as follows:
i [sec_1 u} 1 @
dx uVe2 =1 [dx

where |u| > 1.

Proof. We know that if y = sec™! x then (for appropriate domain and
range values) sec y = x and so by implicit differentiation

N
d d dy dy 1
— |secy| = — |x] or sec y ta —|=1o0 = — Weno
dx[ q dx ] or secy tany [dx] " secytany now
need to express this last expression in terms of x. First, secy = x and

tany = +/sec?y — 1 = £v/x2 — 1. Therefore we have

1 1
— [sec x] =t
X xVx2—1
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Exercise 3.9.40
Exercise 3.9.40. Find dy/dx when y = cot™(1/x) — tan! x.
Solution. By Table 3.1(3 and 4) (with u(x) = 1/x = x~! and
du/dx = —x=2? = —1/x?), we have
dy d —1 ~1 d ~1 d ~1
~_ = 1/x) — - = 1 _ =
b dx [cot *(1/x) —tan ~ x] I [cot™*(1/x)] I [tan™ " x]
a1 [ 1
14 (1/x)? | x2 1+ x?
_ 1 _ 1 1 B I @
T ox2(141/x2)  14x2 x2+1 14x2 =
O
Calculus 1 August 14, 2020 12 /17

Theorem 3.9.C

Theorem 3.9.C (continued)

Proof (continued).

Notice from the graph of y = sec™! x above, that the slope of this
function is positive wherever it is defined. So

d o . v ifx>1
ol Il R N
xVx2-1 )

Notice that if x > 1 then x = |x| and if x < —1 then —x = |x|. Therefore

1
Ix|[v/x2 =1

The full theorem then follows from the Chain Rule.

— [sec_1 x| =
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Exercise 3.9.44

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when
sin}(x +y) +cos~i(x — y) = 57/6.
Solution. Differentiating implicitly We have by Table 3.1(1 and 2) that

dix[sin_l(x+y)+cos_1(x— y)]=— I [56?} or

d .1 d -1 d 5
a[sm (x+y)] +&[cos (x—y)] = I [?] or
I-(x+y) L dx I-(x—y) L
1 1 ﬂ -1 1
V1= (x+y)? \/l—x— dx  /1—(x+y)? \/l—x—

(getting a common denomlnator)

O
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Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when
sin~}(x +y) + cos~Y(x — y) = 57/6.

Solution (continued). ... (%};}?;j;j\/{i}jiﬁ?j % -
—/1—(x—y)2++/1- x+y
\/1—(X+y2¢1— (x—y
(\/1—(x— +\/l—x—|—y> =—\1-(x—y)2++1—-(x+y)?or

dy  —/1—(x—y)? +\/l—x+y) : _
v A PR Y e With (x,y) = (0,1/2) we have
V1—(x£y)2=./3/4=+/3/2 and at P(0,1/2) we then have

dy/dx|(x,y):(o,1/2) =0} O

or
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Exercise 3.9.60 (continued 1)

Solution. Notice that

m m

& =5 3] - e ) - o ]

-1 -1

1+ (1/x)2)x2 x2+ 17
So for x > 0, f'(x) = g’(x). We will see in Corollary 4.2 (see Section 4.2.
The Mean Value Theorem) that this implies f(x) — g(x) is constant. We

can evaluate f and g at some x > 0 to see what this constant is. With
x =1 we have

—ein-l_ 1 _ _
f(1) =sin Torn =sin~}(1/v/2) = sin"}(v/2/2) = 7/4 and
g(1) = tan=1(1/(1)) = tan1(1) = 7/4, so that the constant is 0 and so
1
we must have | f(x =tan"}(1/x) = g(x) for x > 0.
(9 =sin! ——— = tan"1(1/%) = &(x)
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Exercise 3.9.60

Exercise 3.9.60. What is special about the functions

1
f(x) =sin~! and g(x) = tan"%(1/x)?
() = sin™! ——— and g(x) = tan}(1/x)
Solution. Notice that
df  d [ _, 1 1 “d
&:E{snl X2+J— (G
V1o (/e i)
— L [_71(x2 + 1)_3/2[2x]}
V1- QT I)
1 2 —3/2 1 —X
= — 1 =
1—1/(X2+1)( XD VIGZF1) 1)/ +1) (x2+1)3/2
VX241 —X B —X
TV R+ +T X +1)
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Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions
1
—1 -1
and g(x) =tan™ " (1/x)?
) g(x) (1/x)

Solution (continued). For x < 0, '(x) = —g'(x) or f'(x) + g'(x) = 0.
Again, by Corollary 4.2 (see Section 4.2. The Mean Value Theorem) this
implies f(x) + g(x) is constant. We can evaluate f and g at some x < 0
to see what this constant is. With x = —1 we have

f(—1) =sin"! —— =sin"}(1/v2) = sin"}(v/2/2) = 7/4 and

(=1)2+1
g(=1) =tan"1(1/(-1)) = tan1(—1) = —7/4, so that

f(x)+g(x)=n/4+(—7n/4) =0 for x <0, or

f(x) =sin

1
f(x) =sin"! —— = —tan"}(1/x) = —g(x) for x < 0. | O
() =sin ! o (1/x) = ~&(x)
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