Calculus 1

Chapter 3. Derivatives

3.9. Inverse Trigonometric Functions—Examples and Proofs

Table of contents

- [Exercise 3.9.4](#page-2-0)
	- **[Exercise 3.9.14](#page-8-0)**
- [Theorem 3.9.A](#page-11-0)
- [Exercise 3.9.24](#page-14-0)
- [Theorem 3.9.B](#page-16-0)
- [Exercise 3.9.34](#page-18-0)
	- [Theorem 3.9.C](#page-20-0)
- [Exercise 3.9.40](#page-24-0)
	- [Exercise 3.9.44](#page-26-0)
- [Exercise 3.9.60](#page-30-0)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find **Exercise 3.9.4.** Ose reference angles in an appropriate quadrant to the angles: (a) sin⁻¹(1/2), (b) sin⁻¹(-1/ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

Solution. (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/6$. \Box

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find **Exercise 3.9.4.** Ose reference angles in an appropriate quadrant to the angles: (a) sin⁻¹(1/2), (b) sin⁻¹(-1/ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

 ${\sf Solution.}$ (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\left|\theta = \pi/6\right|$. \Box

(b) With $\theta = \sin^{-1}(-1)$ $\frac{-1}{2}$ (2), we need sin $\theta=-1/\sqrt{2}=-1$ √ $2/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of $\sigma \in [-\pi/2, \pi/2]$. From our knowledge of
special angles, we know that sin $\pi/4 = \sqrt{2}/2$. So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $\sin \theta < 0$. We take $\theta = -\pi/4$:

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) sin $^{-1}(1/2)$, (b) sin $^{-1}(-1/2)$ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

 ${\sf Solution.}$ (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\vert \theta = \pi/6 \vert$. \Box

√ (b) With $\theta = \sin^{-1}(-1)$ $x^2 + y^2 = 1$ 2), √ √ $\sqrt{2}/2$ we need sin $\theta=-1/2$ $2 = 2/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of $\sigma \in [-\pi/2, \pi/2]$. From our knowledge of
special angles, we know that sin $\pi/4 = \sqrt{2}/2$. $\pi/4$ $-\pi/4$ So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $-\sqrt{2}/2$ $\sin \theta < 0$. We take $\theta = -\pi/4$: -1

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) sin $^{-1}(1/2)$, (b) sin $^{-1}(-1/2)$ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

 ${\sf Solution.}$ (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\vert \theta = \pi/6 \vert$. \Box

√ (b) With $\theta = \sin^{-1}(-1)$ $x^2 + y^2 = 1$ 2), √ √ $\sqrt{2}/2$ we need sin $\theta=-1/2$ $2 = 2/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of $\sigma \in [-\pi/2, \pi/2]$. From our knowledge of
special angles, we know that sin $\pi/4 = \sqrt{2}/2$. $\pi/4$ $-\pi/4$ So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $-\sqrt{2}/2$ $\sin \theta < 0$. We take $\theta = -\pi/4$: -1 \Box

Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find **Exercise 3.9.4.** Ose reference angles in an appropriate quadrant to the angles: (a) sin⁻¹(1/2), (b) sin⁻¹(-1/ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

Solution. (c) With $\theta = \arcsin(\sqrt{3}/2)$, we need $\sin \theta =$ 3/2 and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\left|\theta = \pi/3\right|$. \Box

Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find **Exercise 3.9.4.** Ose reference angles in an appropriate quadrant to the angles: (a) sin⁻¹(1/2), (b) sin⁻¹(-1/ $\sqrt{2}$), (c) arcsin($\sqrt{3}/2$).

Solution. (c) With $\theta = \arcsin(\sqrt{3}/2)$, we need $\sin \theta =$ √ $3/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\boxed{\theta = \pi/3}$. \Box

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = cos^{-1}x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \rightarrow -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x\to -1^+}$ cos⁻¹(x) = π . □

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = cos^{-1}x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \rightarrow -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x\to -1^+}$ cos $^{-1}(x) = \boxed{\pi}$. \Box

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = cos^{-1}x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \rightarrow -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x\to -1^+}$ cos $^{-1}(x) = \boxed{\pi}$. \Box

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$
\frac{d}{dx}\left[\sin^{-1} u\right] = \frac{1}{\sqrt{1-u^2}}\left[\frac{du}{dx}\right]
$$

where $|u| < 1$.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin $y = x$ and so by implicit differentiation \sim

$$
\frac{d}{dx}\left[\sin y\right] = \frac{d}{dx}\left[x\right] \text{ or } \cos y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\cos y}.
$$

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$
\frac{d}{dx}\left[\sin^{-1} u\right] = \frac{1}{\sqrt{1-u^2}}\left[\frac{du}{dx}\right]
$$

where $|u| < 1$.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin $y = x$ and so by implicit differentiation \sim

 $\frac{d}{dx}$ [sin y] $= \frac{d}{dx}$ [x] or $\cos y \left[\frac{dy}{dx} \right] = 1$ or $\frac{dy}{dx} = \frac{1}{\cos x}$ $\frac{1}{\cos y}$. Since we have restricted y to the interval $[-\pi/2, \pi/2]$, we know that cos $y \ge 0$ and so cos $y = +\sqrt{1-(\sin y)^2} = \sqrt{1-x^2}.$ Making this substitution we get d dx $\left[\sin^{-1} x\right] = \frac{1}{\sqrt{1 - x^2}}$ $\frac{1}{1-x^2}$. The full theorem then follows from the Chain Rule.

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$
\frac{d}{dx}\left[\sin^{-1} u\right] = \frac{1}{\sqrt{1-u^2}}\left[\frac{du}{dx}\right]
$$

where $|u| < 1$.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin $y = x$ and so by implicit differentiation \sim

 $\frac{d}{dx}$ [sin y] $= \frac{d}{dx}$ [x] or $\cos y \left[\frac{dy}{dx} \right] = 1$ or $\frac{dy}{dx} = \frac{1}{\cos x}$ $\frac{1}{\cos y}$. Since we have restricted y to the interval $[-\pi/2, \pi/2]$, we know that cos $y \ge 0$ and so cos $y=+\sqrt{1-(\sin y)^2}=\sqrt{1-x^2}.$ Making this substitution we get d dx $\left[\sin^{-1}x\right]=\frac{1}{\sqrt{1-\frac$ $\frac{1}{1-x^2}$. The full theorem then follows from the Chain Rule.

Exercise 3.9.24. For dy/dt when $y = sin^{-1}(1-t)$.

Solution. By Theorem 3.9.A (with $u(t) = 1 - t$ and $du/dt = -1$), we have

$$
\frac{dy}{dt} = \frac{d}{dt}[\sin^{-1}(1-t)] = \frac{1}{\sqrt{1-(1-t)^2}}[-1] = \boxed{\frac{-1}{\sqrt{2t-t^2}}}.
$$

 \Box

Exercise 3.9.24. For dy/dt when $y = sin^{-1}(1-t)$.

Solution. By Theorem 3.9.A (with $u(t) = 1 - t$ and $du/dt = -1$), we have

$$
\frac{dy}{dt} = \frac{d}{dt}[\sin^{-1}(1-t)] = \frac{1}{\sqrt{1-(1-t)^2}}[-1] = \boxed{\frac{-1}{\sqrt{2t-t^2}}}.
$$

 \Box

Theorem 3.9.B

Theorem 3.9.B. We differentiate tan^{-1} as follows:

$$
\frac{d}{dx}\left[\tan^{-1} u\right] = \frac{1}{1+u^2}\left[\frac{du}{dx}\right].
$$

Proof. We know that if $y = \tan^{-1} x$ then (for appropriate domain and range values) tan $y = x$ and so by implicit differentiation \sim

 $\frac{d}{dx}$ [tan y] $= \frac{d}{dx}$ [x] or $\sec^2 y \left[\frac{dy}{dx} \right] = 1$ or $\frac{dy}{dx} = \frac{1}{\sec^2 x}$ $\frac{1}{\sec^2 y} = \frac{1}{1 + (\tan^2 y)^2}$ $\frac{1}{1+(\tan y)^2} = \frac{1}{1+}$ $\frac{1}{1 + x^2}$. The full theorem then follows from the Chain Rule.

Theorem 3.9.B

Theorem 3.9.B. We differentiate tan^{-1} as follows:

$$
\frac{d}{dx}\left[\tan^{-1} u\right] = \frac{1}{1+u^2}\left[\frac{du}{dx}\right].
$$

Proof. We know that if $y = \tan^{-1} x$ then (for appropriate domain and range values) tan $y = x$ and so by implicit differentiation \sim

 $\frac{d}{dx}$ [tan y] $= \frac{d}{dx}$ [x] or $\sec^2 y \left[\frac{dy}{dx} \right] = 1$ or $\frac{dy}{dx} = \frac{1}{\sec^2 x}$ $\frac{1}{\sec^2 y} = \frac{1}{1+(\textsf{t}z)}$ $\frac{1}{1+(\tan y)^2} = \frac{1}{1+}$ $\frac{1}{1 + x^2}$. The full theorem then follows from the Chain Rule.

Exercise 3.9.34. Find dy/dx when $y = \tan^{-1}(\ln x)$.

Solution. By Theorem 3.9.B (with $u(x) = \ln x$ and $du/dx = 1/x$), we have

$$
\frac{dy}{dx} = \frac{d}{dx}[\tan^{-1}(\ln x)] = \frac{1}{1 + (\ln x)^2} \left[\frac{1}{x}\right] = \frac{1}{x(1 + (\ln x)^2)}.
$$

 \Box

Exercise 3.9.34. Find dy/dx when $y = \tan^{-1}(\ln x)$.

Solution. By Theorem 3.9.B (with $u(x) = \ln x$ and $du/dx = 1/x$), we have

$$
\frac{dy}{dx} = \frac{d}{dx}[\tan^{-1}(\ln x)] = \frac{1}{1 + (\ln x)^2} \left[\frac{1}{x}\right] = \boxed{\frac{1}{x(1 + (\ln x)^2)}}.
$$

 \Box

Theorem 3.9.C

Theorem 3.9.C. We differentiate sec $^{-1}$ as follows:

$$
\frac{d}{dx}\left[\sec^{-1} u\right] = \frac{1}{|u|\sqrt{u^2 - 1}} \left[\frac{du}{dx}\right]
$$

where $|u| > 1$.

Proof. We know that if $y = \sec^{-1} x$ then (for appropriate domain and range values) sec $y = x$ and so by implicit differentiation $\tilde{\frown}$

 $\frac{d}{dx}$ [sec y] = $\frac{d}{dx}$ [x] or sec y tan y $\left[\frac{dy}{dx}\right] = 1$ or $\frac{dy}{dx} = \frac{1}{\sec y}$ $\frac{1}{\sec y \tan y}$. We now need to express this last expression in terms of x. First, sec $y = x$ and tan $y=\pm\sqrt{\sec^2 y-1}=\pm\sqrt{x^2-1}.$ Therefore we have

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}.
$$

Theorem 3.9.C

Theorem 3.9.C. We differentiate sec $^{-1}$ as follows:

$$
\frac{d}{dx}\left[\sec^{-1} u\right] = \frac{1}{|u|\sqrt{u^2 - 1}} \left[\frac{du}{dx}\right]
$$

where $|u| > 1$.

Proof. We know that if $y = \sec^{-1} x$ then (for appropriate domain and range values) sec $y = x$ and so by implicit differentiation $\tilde{\curvearrowright}$

 $\frac{d}{dx}$ [sec y] $= \frac{d}{dx}$ [x] or sec y tan y $\left[\frac{dy}{dx} \right] = 1$ or $\frac{dy}{dx} = \frac{1}{\sec y}$ $\frac{1}{\sec y \tan y}$. We now need to express this last expression in terms of x. First, sec $y = x$ and tan $\mathcal{y}=\pm\sqrt{\sec^2 y-1}=\pm\sqrt{\varkappa^2-1}.$ Therefore we have

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2-1}}.
$$

Theorem 3.9.C (continued)

Proof (continued). ...

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2-1}}.
$$

Notice from the graph of $y = \sec^{-1} x$ above, that the slope of this function is positive wherever it is defined. So

$$
\frac{d}{dx} \left[\sec^{-1} x \right] = \begin{cases} +\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x > 1\\ -\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x < -1. \end{cases}
$$

Notice that if $x > 1$ then $x = |x|$ and if $x < -1$ then $-x = |x|$. Therefore

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2 - 1}}.
$$

The full theorem then follows from the Chain Rule.

Theorem 3.9.C (continued)

Proof (continued). ...

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2-1}}.
$$

Notice from the graph of $y = \sec^{-1}x$ above, that the slope of this function is positive wherever it is defined. So

$$
\frac{d}{dx} \left[\sec^{-1} x \right] = \begin{cases} +\frac{1}{x \sqrt{x^2 - 1}} & \text{if } x > 1\\ -\frac{1}{x \sqrt{x^2 - 1}} & \text{if } x < -1. \end{cases}
$$

Notice that if $x > 1$ then $x = |x|$ and if $x < -1$ then $-x = |x|$. Therefore

$$
\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2-1}}.
$$

The full theorem then follows from the Chain Rule.

Exercise 3.9.40. Find dy/dx when $y = \cot^{-1}(1/x) - \tan^{-1}x$.

Solution. By Table 3.1(3 and 4) (with $u(x) = 1/x = x^{-1}$ and $du/dx = -x^{-2} = -1/x^2$), we have

$$
\frac{dy}{dx} = \frac{d}{dx} [\cot^{-1}(1/x) - \tan^{-1} x] = \frac{d}{dx} [\cot^{-1}(1/x)] - \frac{d}{dx} [\tan^{-1} x]
$$

$$
= \frac{-1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right] - \frac{1}{1 + x^2}
$$

$$
= \frac{1}{x^2 (1 + 1/x^2)} - \frac{1}{1 + x^2} = \frac{1}{x^2 + 1} - \frac{1}{1 + x^2} = \boxed{0}.
$$

 \Box

Exercise 3.9.40. Find dy/dx when $y = \cot^{-1}(1/x) - \tan^{-1}x$.

<code>Solution</code>. By Table 3.1(3 and 4) (with $u(x) = 1/x = x^{-1}$ and $du/dx=-x^{-2}=-1/x^2),$ we have

$$
\frac{dy}{dx} = \frac{d}{dx} [\cot^{-1}(1/x) - \tan^{-1} x] = \frac{d}{dx} [\cot^{-1}(1/x)] - \frac{d}{dx} [\tan^{-1} x]
$$

$$
= \frac{-1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right] - \frac{1}{1 + x^2}
$$

$$
= \frac{1}{x^2 (1 + 1/x^2)} - \frac{1}{1 + x^2} = \frac{1}{x^2 + 1} - \frac{1}{1 + x^2} = \boxed{0}.
$$

 \Box

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point $P(0, 1/2)$ when $\sin^{-1}(x+y)+\cos^{-1}(x-y)=5\pi/6.$

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point $P(0, 1/2)$ when $\sin^{-1}(x+y)+\cos^{-1}(x-y)=5\pi/6.$

Solution. Differentiating implicitly we have by Table 3.1(1 and 2) that $\frac{d}{dx}[\sin^{-1}(x+y)+\cos^{-1}(x-y)]=\frac{d}{dx}\left[\frac{5\pi}{6}\right]$ 6 $\Big]$ or $\frac{d}{dx}[\sin^{-1}(x+y)] + \frac{d}{dx}[\cos^{-1}(x-y)] = \frac{d}{dx} \left[\frac{5\pi}{6} \right]$ 6 $\Big]$ or \sim 1 $\sqrt{1-(x+y)^2}$ $\left[1+\frac{dy}{dx}\right]+$ \sim −1 $\sqrt{1-(x-y)^2}$ $\left[1-\displaystyle\frac{dy}{dx}\right]=0$ or $\begin{pmatrix} 1 \end{pmatrix}$ $\frac{1}{\sqrt{1-(x+y)^2}} + \frac{1}{\sqrt{1-(x+y)^2}}$ $\sqrt{1-(x-y)^2}$ $\frac{dy}{dx} = \frac{-1}{\sqrt{1-(x-x)^2}}$ $\frac{-1}{\sqrt{1-(x+y)^2}}+\frac{1}{\sqrt{1-(x+y)^2}}$ $\frac{1}{\sqrt{1-(x-y)^2}}$ or (getting a common denominator)

Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point $P(0, 1/2)$ when $\sin^{-1}(x+y)+\cos^{-1}(x-y)=5\pi/6.$ Solution (continued). \ldots $\left(\frac{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}\right)$ $\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}$ $\frac{dy}{dx} =$ $-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ $\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}$ or $\left(\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}\right)\frac{dy}{dx}=-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ or $\frac{dy}{dx} = \frac{-\sqrt{1-(x-y)^2} + \sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2} + \sqrt{1-(x+y)^2}}$ $\frac{\sqrt{1-(x-y)^2}+ \sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2}+ \sqrt{1-(x+y)^2}}$. With $(x, y) = (0, 1/2)$ we have $\sqrt{1-(x+y)^2} = \sqrt{3/4} = \sqrt{3}/2$ and at $P(0,1/2)$ we then have $dy/dx|_{(x,y)=(0,1/2)} = 0$.

Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point $P(0, 1/2)$ when $\sin^{-1}(x+y)+\cos^{-1}(x-y)=5\pi/6.$ Solution (continued). \ldots $\left(\frac{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}\right)$ $\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}$ $\frac{dy}{dx} =$ $-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ $\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}$ or $\left(\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}\right)\frac{dy}{dx}=-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ or $\frac{dy}{dx} = \frac{-\sqrt{1-(x-y)^2} + \sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2} + \sqrt{1-(x+y)^2}}$ $\frac{\sqrt{1-(x-y)^2}+ \sqrt{1-(x+y)^2}}{\sqrt{1-(x-y)^2}+ \sqrt{1-(x+y)^2}}$. With $(x,y)=(0,1/2)$ we have $\sqrt{1-(x+y)^2} = \sqrt{3/4} = \sqrt{3}/2$ and at $P(0, 1/2)$ we then have $dy/dx|_{(x,y)=(0,1/2)} = 0$.

Exercise 3.9.60

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ x^2+1 and $g(x)=\tan^{-1}(1/x)?$

Solution. Notice that

$$
\frac{df}{dx} = \frac{d}{dx} \left[\sin^{-1} \frac{1}{\sqrt{x^2 + 1}} \right] = \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \frac{d}{dx} \left[(x^2 + 1)^{-1/2} \right]
$$

$$
= \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \left[\frac{-1}{2} (x^2 + 1)^{-3/2} [2x] \right]
$$

$$
= \frac{1}{\sqrt{1 - 1/(x^2 + 1)}} (-x(x^2 + 1)^{-3/2}) = \frac{1}{\sqrt{((x^2 + 1) - 1)/(x^2 + 1)}} \frac{-x}{(x^2 + 1)^{3/2}}
$$

$$
= \frac{\sqrt{x^2 + 1}}{\sqrt{x^2}} \frac{-x}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{-x}{|x|(x^2 + 1)}
$$

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ x^2+1 and $g(x)=\tan^{-1}(1/x)?$

Solution. Notice that

$$
\frac{df}{dx} = \frac{d}{dx} \left[\sin^{-1} \frac{1}{\sqrt{x^2 + 1}} \right] = \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \frac{d}{dx} \left[(x^2 + 1)^{-1/2} \right]
$$
\n
$$
= \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \left[\frac{-1}{2} (x^2 + 1)^{-3/2} [2x] \right]
$$
\n
$$
= \frac{1}{\sqrt{1 - 1/(x^2 + 1)}} (-x(x^2 + 1)^{-3/2}) = \frac{1}{\sqrt{((x^2 + 1) - 1)/(x^2 + 1)}} \frac{-x}{(x^2 + 1)^{3/2}}
$$
\n
$$
= \frac{\sqrt{x^2 + 1}}{\sqrt{x^2}} \frac{-x}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{-x}{|x|(x^2 + 1)}
$$

 \sim

Exercise 3.9.60 (continued 1)

Solution. Notice that

$$
\frac{dg}{dx} = \frac{d}{dx} \left[\tan^{-1} \frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \frac{d}{dx} \left[\frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right]
$$

$$
= \frac{-1}{(1 + (1/x)^2)x^2} = \frac{-1}{x^2 + 1}.
$$

So for $x > 0$, $f'(x) = g'(x)$. We will see in Corollary 4.2 (see [Section 4.2.](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) [The Mean Value Theorem\)](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) that this implies $f(x) - g(x)$ is constant. We can evaluate f and g at some $x > 0$ to see what this constant is. With $x = 1$ we have $f(1) = \sin^{-1} \frac{1}{\sqrt{11}}$ $\frac{1}{(1)^2+1} = \sin^{-1}(1/$ $\sqrt{2}$) = sin⁻¹($(2/2)=\pi/4$ and $\mathrm{g}(1)=\tan^{-1}(1/(1))=\tan^{-1}(1)=\pi/4$, so that the constant is 0 and so

we must have
$$
f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}} = \tan^{-1}(1/x) = g(x)
$$
 for $x > 0$.

Exercise 3.9.60 (continued 1)

Solution. Notice that

$$
\frac{dg}{dx} = \frac{d}{dx} \left[\tan^{-1} \frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \frac{d}{dx} \left[\frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right]
$$

$$
= \frac{-1}{(1 + (1/x)^2)x^2} = \frac{-1}{x^2 + 1}.
$$

So for $x > 0$, $f'(x) = g'(x)$. We will see in Corollary 4.2 (see [Section 4.2.](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) [The Mean Value Theorem\)](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) that this implies $f(x) - g(x)$ is constant. We can evaluate f and g at some $x > 0$ to see what this constant is. With $x = 1$ we have $f(1) = \sin^{-1} \frac{1}{\sqrt{11}}$ $\frac{1}{(1)^2+1}=\mathsf{sin}^{-1}(1/$ $\sqrt{2}$) = sin⁻¹(√ $(2/2)=\pi/4$ and $\mathrm{g}(1)=\tan^{-1}(1/(1))=\tan^{-1}(1)=\pi/4,$ so that the constant is 0 and so we must have $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ $x^2 + 1$ $=\tan^{-1}(1/x)=g(x)$ for $x>0.$

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ x^2+1 and $g(x)=\tan^{-1}(1/x)$?

Solution (continued). For $x < 0$, $f'(x) = -g'(x)$ or $f'(x) + g'(x) = 0$. Again, by Corollary 4.2 (see [Section 4.2. The Mean Value Theorem\)](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) this implies $f(x) + g(x)$ is constant. We can evaluate f and g at some $x < 0$ to see what this constant is. With $x = -1$ we have $f(-1) = \sin^{-1} \frac{1}{\sqrt{1-1}}$ $\frac{1}{(-1)^2+1} = \sin^{-1}(1/$ $= -1$ we hav
 $\sqrt{2}$) = sin⁻¹(ve
∕ $(2/2)=\pi/4$ and $\mathrm{g}(-1)=\tan^{-1}(1/(-1))=\tan^{-1}(-1)=-\pi/4,$ so that $f(x) + g(x) = \pi/4 + (-\pi/4) = 0$ for $x < 0$, or $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ $x^2 + 1$ $=-\tan^{-1}(1/x)=-g(x)$ for $x < 0.$ \Box

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ x^2+1 and $g(x)=\tan^{-1}(1/x)$?

Solution (continued). For $x < 0$, $f'(x) = -g'(x)$ or $f'(x) + g'(x) = 0$. Again, by Corollary 4.2 (see [Section 4.2. The Mean Value Theorem\)](https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf) this implies $f(x) + g(x)$ is constant. We can evaluate f and g at some $x < 0$ to see what this constant is. With $x = -1$ we have $f(-1) = \sin^{-1} \frac{1}{\sqrt{1-1}}$ $\frac{1}{(-1)^2+1}=\sin^{-1}(1/$ $= -1$ we nav
 $\sqrt{2}$) = sin⁻¹(ve
∕ $(2/2)=\pi/4$ and $\mathsf{g}(-1) = \tan^{-1}(1/(-1)) = \tan^{-1}(-1) = -\pi/4,$ so that $f(x) + g(x) = \pi/4 + (-\pi/4) = 0$ for $x < 0$, or $f(x) = \sin^{-1} \frac{1}{\sqrt{2}}$ $x^2 + 1$ $=-\tan^{-1}(1/x)=-g(x)$ for $x < 0.$ \Box