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Exercise 3.9.4

Exercise 3.9.4

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find
the angles: (a) sin−1(1/2), (b) sin−1(−1/

√
2), (c) arcsin(

√
3/2).

Solution. (a) With θ = sin−1(1/2), we need sin θ = 1/2 and
θ ∈ [−π/2, π/2]. So θ is a “special angle” and from our knowledge of

special angles, we have θ = π/6 . �

(b) With θ = sin−1(−1/
√

2),
we need sin θ = −1/

√
2 = −

√
2/2 and

θ ∈ [−π/2, π/2]. From our knowledge of
special angles, we know that sinπ/4 =

√
2/2.

So we seek an angle θ with a reference angle
of π/4 where θ ∈ [−π/2, π/2] and

sin θ < 0. We take θ = −π/4 :

�
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Exercise 3.9.4

Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find
the angles: (a) sin−1(1/2), (b) sin−1(−1/

√
2), (c) arcsin(

√
3/2).

Solution. (c) With θ = arcsin(
√

3/2), we need sin θ =
√

3/2 and
θ ∈ [−π/2, π/2]. So θ is a “special angle” and from our knowledge of

special angles, we have θ = π/3 . �
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Exercise 3.9.4 (continued)
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Exercise 3.9.14

Exercise 3.9.14

Exercise 3.9.14. Find the limit: limx→−1+ cos−1(x).

Solution. First, notice that −1 is a left
endpoint of the domain of cos−1 x .
Based on the graph of y = cos−1 x , we
see (by Dr. Bob’s Anthropomorphic Definition
of Limit, a one-sided version) that as
x → −1 from the right (i.e., from
the positive side) that the graph “tries to
contain the point” (−1, π). So
limx→−1+ cos−1(x) = π . �
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Theorem 3.9.A

Theorem 3.9.A

Theorem 3.9.A. We differentiate sin−1 as follows:

d

dx

[
sin−1 u

]
=

y
1√

1− u2

[
du

dx

]
where |u| < 1.

Proof. We know that if y = sin−1 x then (for appropriate domain and
range values) sin y = x and so by implicit differentiation

d

dx
[sin y ] =

d

dx
[x ] or

y

cos y

[
dy

dx

]
= 1 or

dy

dx
=

1

cos y
.

Since we have

restricted y to the interval [−π/2, π/2], we know that cos y ≥ 0 and so
cos y = +

√
1− (sin y)2 =

√
1− x2. Making this substitution we get

d

dx

[
sin−1 x

]
=

1√
1− x2

. The full theorem then follows from the Chain

Rule.
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Exercise 3.9.24

Exercise 3.9.24

Exercise 3.9.24. For dy/dt when y = sin−1(1− t).

Solution. By Theorem 3.9.A (with u(t) = 1− t and du/dt = −1), we
have

dy

dt
=

d

dt
[sin−1(1− t)] =

y
1√

1− (1− t)2
[−1] =

−1√
2t − t2

.

�
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Theorem 3.9.B

Theorem 3.9.B

Theorem 3.9.B. We differentiate tan−1 as follows:

d

dx

[
tan−1 u

]
=

y
1

1 + u2

[
du

dx

]
.

Proof. We know that if y = tan−1 x then (for appropriate domain and
range values) tan y = x and so by implicit differentiation

d

dx
[tan y ] =

d

dx
[x ] or

y

sec2 y

[
dy

dx

]
= 1 or

dy

dx
=

1

sec2 y
=

1

1 + (tan y)2
=

1

1 + x2
. The full theorem then follows from

the Chain Rule.
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Exercise 3.9.34

Exercise 3.9.34

Exercise 3.9.34. Find dy/dx when y = tan−1(ln x).

Solution. By Theorem 3.9.B (with u(x) = ln x and du/dx = 1/x), we
have

dy

dx
=

d

dx
[tan−1(ln x)] =

y
1

1 + (ln x)2

[
1

x

]
=

1

x(1 + (ln x)2
.

�
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Theorem 3.9.C

Theorem 3.9.C

Theorem 3.9.C. We differentiate sec−1 as follows:

d

dx

[
sec−1 u

]
=

y
1

|u|
√

u2 − 1

[
du

dx

]
where |u| > 1.

Proof. We know that if y = sec−1 x then (for appropriate domain and
range values) sec y = x and so by implicit differentiation

d

dx
[sec y ] =

d

dx
[x ] or

y

sec y tan y

[
dy

dx

]
= 1 or

dy

dx
=

1

sec y tan y
. We now

need to express this last expression in terms of x . First, sec y = x and
tan y = ±

√
sec2 y − 1 = ±

√
x2 − 1. Therefore we have

d

dx

[
sec−1 x

]
= ± 1

x
√

x2 − 1
.
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Theorem 3.9.C

Theorem 3.9.C (continued)

Proof (continued). . . .

d

dx

[
sec−1 x

]
= ± 1

x
√

x2 − 1
.

Notice from the graph of y = sec−1 x above, that the slope of this
function is positive wherever it is defined. So

d

dx

[
sec−1 x

]
=

{
+ 1

x
√

x2−1
if x > 1

− 1
x
√

x2−1
if x < −1.

Notice that if x > 1 then x = |x | and if x < −1 then −x = |x |. Therefore

d

dx

[
sec−1 x

]
=

1

|x |
√

x2 − 1
.

The full theorem then follows from the Chain Rule.
() Calculus 1 August 14, 2020 11 / 17



Theorem 3.9.C

Theorem 3.9.C (continued)

Proof (continued). . . .

d

dx

[
sec−1 x

]
= ± 1

x
√

x2 − 1
.

Notice from the graph of y = sec−1 x above, that the slope of this
function is positive wherever it is defined. So

d

dx

[
sec−1 x

]
=

{
+ 1

x
√

x2−1
if x > 1

− 1
x
√

x2−1
if x < −1.

Notice that if x > 1 then x = |x | and if x < −1 then −x = |x |. Therefore

d

dx

[
sec−1 x

]
=

1

|x |
√

x2 − 1
.

The full theorem then follows from the Chain Rule.
() Calculus 1 August 14, 2020 11 / 17



Exercise 3.9.40

Exercise 3.9.40

Exercise 3.9.40. Find dy/dx when y = cot−1(1/x)− tan−1 x .

Solution. By Table 3.1(3 and 4) (with u(x) = 1/x = x−1 and
du/dx = −x−2 = −1/x2), we have

dy

dx
=

d

dx
[cot−1(1/x)− tan−1 x ] =

d

dx
[cot−1(1/x)]− d

dx
[tan−1 x ]

=

y
−1

1 + (1/x)2

[
−1

x2

]
− 1

1 + x2

=
1

x2(1 + 1/x2)
− 1

1 + x2
=

1

x2 + 1
− 1

1 + x2
= 0 .

�
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Exercise 3.9.44

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when
sin−1(x + y) + cos−1(x − y) = 5π/6.

Solution. Differentiating implicitly we have by Table 3.1(1 and 2) that
d

dx
[sin−1(x + y) + cos−1(x − y)] =

d

dx

[
5π

6

]
or

d

dx
[sin−1(x + y)] +

d

dx
[cos−1(x − y)] =

d

dx

[
5π

6

]
or

y
1√

1− (x + y)2

[
1 +

dy

dx

]
+

y
−1√

1− (x − y)2

[
1− dy

dx

]
= 0 or(

1√
1− (x + y)2

+
1√

1− (x − y)2

)
dy

dx
=

−1√
1− (x + y)2

+
1√

1− (x − y)2
or

(getting a common denominator)
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Exercise 3.9.44

Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when
sin−1(x + y) + cos−1(x − y) = 5π/6.

Solution (continued). . . .

(√
1− (x − y)2 +

√
1− (x + y)2√

1− (x + y)2
√

1− (x − y)2

)
dy

dx
=

−
√

1− (x − y)2 +
√

1− (x + y)2√
1− (x + y)2

√
1− (x − y)2

or(√
1− (x − y)2 +

√
1− (x + y)2

) dy

dx
= −

√
1− (x − y)2 +

√
1− (x + y)2 or

dy

dx
=
−
√

1− (x − y)2 +
√

1− (x + y)2√
1− (x − y)2 +

√
1− (x + y)2

. With (x , y) = (0, 1/2) we have√
1− (x ± y)2 =

√
3/4 =

√
3/2 and at P(0, 1/2) we then have

dy/dx |(x ,y)=(0,1/2) = 0 . �
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Exercise 3.9.60

Exercise 3.9.60

Exercise 3.9.60. What is special about the functions

f (x) = sin−1 1√
x2 + 1

and g(x) = tan−1(1/x)?

Solution. Notice that

df

dx
=

d

dx

[
sin−1 1√

x2 + 1

]
=

y
1√

1− (1/
√

x2 + 1)2

d

dx

[
(x2 + 1)−1/2

]

=

y
1√

1− (1/
√

x2 + 1)2

[
−1

2

y
(x2 + 1)−3/2[2x ]

]

=
1√

1− 1/(x2 + 1)
(−x(x2 + 1)−3/2) =

1√
((x2 + 1)− 1)/(x2 + 1)

−x

(x2 + 1)3/2

=

√
x2 + 1√

x2

−x

(x2 + 1)
√

x2 + 1
=

−x

|x |(x2 + 1)
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Exercise 3.9.60

Exercise 3.9.60 (continued 1)

Solution. Notice that

dg

dx
=

d

dx

[
tan−1 1

x

]
=

y
1

1 + (1/x)2
d

dx

[
1

x

]
=

y
1

1 + (1/x)2

[
−1

x2

]

=
−1

(1 + (1/x)2)x2
=

−1

x2 + 1
.

So for x > 0, f ′(x) = g ′(x). We will see in Corollary 4.2 (see Section 4.2.
The Mean Value Theorem) that this implies f (x)− g(x) is constant. We
can evaluate f and g at some x > 0 to see what this constant is. With
x = 1 we have
f (1) = sin−1 1√

(1)2+1
= sin−1(1/

√
2) = sin−1(

√
2/2) = π/4 and

g(1) = tan−1(1/(1)) = tan−1(1) = π/4, so that the constant is 0 and so

we must have f (x) = sin−1 1√
x2 + 1

= tan−1(1/x) = g(x) for x > 0.

() Calculus 1 August 14, 2020 16 / 17

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf


Exercise 3.9.60

Exercise 3.9.60 (continued 1)

Solution. Notice that

dg

dx
=

d

dx

[
tan−1 1

x

]
=

y
1

1 + (1/x)2
d

dx

[
1

x

]
=

y
1

1 + (1/x)2

[
−1

x2

]

=
−1

(1 + (1/x)2)x2
=

−1

x2 + 1
.

So for x > 0, f ′(x) = g ′(x). We will see in Corollary 4.2 (see Section 4.2.
The Mean Value Theorem) that this implies f (x)− g(x) is constant. We
can evaluate f and g at some x > 0 to see what this constant is. With
x = 1 we have
f (1) = sin−1 1√

(1)2+1
= sin−1(1/

√
2) = sin−1(

√
2/2) = π/4 and

g(1) = tan−1(1/(1)) = tan−1(1) = π/4, so that the constant is 0 and so

we must have f (x) = sin−1 1√
x2 + 1

= tan−1(1/x) = g(x) for x > 0.

() Calculus 1 August 14, 2020 16 / 17

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/C4S2-14E.pdf


Exercise 3.9.60

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions

f (x) = sin−1 1√
x2 + 1

and g(x) = tan−1(1/x)?

Solution (continued). For x < 0, f ′(x) = −g ′(x) or f ′(x) + g ′(x) = 0.
Again, by Corollary 4.2 (see Section 4.2. The Mean Value Theorem) this
implies f (x) + g(x) is constant. We can evaluate f and g at some x < 0
to see what this constant is. With x = −1 we have
f (−1) = sin−1 1√

(−1)2+1
= sin−1(1/

√
2) = sin−1(

√
2/2) = π/4 and

g(−1) = tan−1(1/(−1)) = tan−1(−1) = −π/4, so that
f (x) + g(x) = π/4 + (−π/4) = 0 for x < 0, or

f (x) = sin−1 1√
x2 + 1

= − tan−1(1/x) = −g(x) for x < 0. �
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