Calculus 1

Chapter 3. Derivatives 3.9. Inverse Trigonometric Functions—Examples and Proofs

Table of contents

- 1 Exercise 3.9.4
- 2 Exercise 3.9.14
- 3 Theorem 3.9.A
- 4 Exercise 3.9.24
- 5 Theorem 3.9.B
- 6 Exercise 3.9.34
- Theorem 3.9.C
- 8 Exercise 3.9.40
 - 9 Exercise 3.9.44
- 10 Exercise 3.9.60

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/6$. \Box

Calculus 1

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/6$. \Box

(b) With $\theta = \sin^{-1}(-1/\sqrt{2})$, we need $\sin \theta = -1/\sqrt{2} = -\sqrt{2}/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of special angles, we know that $\sin \pi/4 = \sqrt{2}/2$. So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $\sin \theta < 0$. We take $\theta = -\pi/4$:

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/6$. \Box

(b) With $\theta = \sin^{-1}(-1/\sqrt{2})$, we need $\sin \theta = -1/\sqrt{2} = -\sqrt{2}/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of special angles, we know that $\sin \pi/4 = \sqrt{2}/2$. So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $\sin \theta < 0$. We take $\theta = -\pi/4$:

Calculus 1

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (a) With $\theta = \sin^{-1}(1/2)$, we need $\sin \theta = 1/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/6$. \Box

(b) With $\theta = \sin^{-1}(-1/\sqrt{2})$, we need $\sin \theta = -1/\sqrt{2} = -\sqrt{2}/2$ and $\theta \in [-\pi/2, \pi/2]$. From our knowledge of special angles, we know that $\sin \pi/4 = \sqrt{2}/2$. So we seek an angle θ with a reference angle of $\pi/4$ where $\theta \in [-\pi/2, \pi/2]$ and $\sin \theta < 0$. We take $\theta = -\pi/4$:

Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (c) With $\theta = \arcsin(\sqrt{3}/2)$, we need $\sin \theta = \sqrt{3}/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/3$. \Box

Calculus 1

Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find the angles: (a) $\sin^{-1}(1/2)$, (b) $\sin^{-1}(-1/\sqrt{2})$, (c) $\arcsin(\sqrt{3}/2)$.

Solution. (c) With $\theta = \arcsin(\sqrt{3}/2)$, we need $\sin \theta = \sqrt{3}/2$ and $\theta \in [-\pi/2, \pi/2]$. So θ is a "special angle" and from our knowledge of special angles, we have $\theta = \pi/3$. \Box

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = \cos^{-1} x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \to -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x\to -1^+} \cos^{-1}(x) = \pi$.

Calculus 1

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = \cos^{-1} x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \rightarrow -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x \rightarrow -1^+} \cos^{-1}(x) = \pi$.

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Exercise 3.9.14. Find the limit: $\lim_{x\to -1^+} \cos^{-1}(x)$.

Solution. First, notice that -1 is a left endpoint of the domain of $\cos^{-1} x$. Based on the graph of $y = \cos^{-1} x$, we see (by Dr. Bob's Anthropomorphic Definition of Limit, a one-sided version) that as $x \rightarrow -1$ from the right (i.e., from the positive side) that the graph "tries to contain the point" $(-1, \pi)$. So $\lim_{x \rightarrow -1^+} \cos^{-1}(x) = \pi$.

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$\frac{d}{dx}\left[\sin^{-1}u\right] = \frac{1}{\sqrt{1-u^2}} \left[\frac{du}{dx}\right]$$

where |u| < 1.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin y = x and so by implicit differentiation

$$\frac{d}{dx}[\sin y] = \frac{d}{dx}[x] \text{ or } \cos y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\cos y}.$$

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$\frac{d}{dx}\left[\sin^{-1}u\right] = \frac{1}{\sqrt{1-u^2}} \left[\frac{du}{dx}\right]$$

where |u| < 1.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin y = x and so by implicit differentiation

 $\frac{d}{dx}[\sin y] = \frac{d}{dx}[x] \text{ or } \cos y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\cos y}.$ Since we have restricted y to the interval $[-\pi/2, \pi/2]$, we know that $\cos y \ge 0$ and so $\cos y = +\sqrt{1 - (\sin y)^2} = \sqrt{1 - x^2}.$ Making this substitution we get $\frac{d}{dx}[\sin^{-1} x] = \frac{1}{\sqrt{1 - x^2}}.$ The full theorem then follows from the Chain Rule.

Theorem 3.9.A

Theorem 3.9.A. We differentiate \sin^{-1} as follows:

$$\frac{d}{dx}\left[\sin^{-1}u\right] = \frac{1}{\sqrt{1-u^2}} \left[\frac{du}{dx}\right]$$

where |u| < 1.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) sin y = x and so by implicit differentiation

 $\frac{d}{dx}[\sin y] = \frac{d}{dx}[x] \text{ or } \cos y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\cos y}.$ Since we have restricted y to the interval $[-\pi/2, \pi/2]$, we know that $\cos y \ge 0$ and so $\cos y = +\sqrt{1 - (\sin y)^2} = \sqrt{1 - x^2}.$ Making this substitution we get $\frac{d}{dx}[\sin^{-1} x] = \frac{1}{\sqrt{1 - x^2}}.$ The full theorem then follows from the Chain Rule.

Exercise 3.9.24. For dy/dt when $y = \sin^{-1}(1 - t)$.

Solution. By Theorem 3.9.A (with u(t) = 1 - t and du/dt = -1), we have

$$\frac{dy}{dt} = \frac{d}{dt}[\sin^{-1}(1-t)] = \frac{1}{\sqrt{1-(1-t)^2}}[-1] = \boxed{\frac{-1}{\sqrt{2t-t^2}}}.$$

Exercise 3.9.24. For dy/dt when $y = \sin^{-1}(1 - t)$.

Solution. By Theorem 3.9.A (with u(t) = 1 - t and du/dt = -1), we have

$$rac{dy}{dt} = rac{d}{dt}[\sin^{-1}(1-t)] = rac{1}{\sqrt{1-(1-t)^2}}[-1] = \boxed{rac{-1}{\sqrt{2t-t^2}}}.$$

Theorem 3.9.B

Theorem 3.9.B. We differentiate tan^{-1} as follows:

$$\frac{d}{dx}\left[\tan^{-1}u\right] = \frac{1}{1+u^2} \left[\frac{du}{dx}\right].$$

Proof. We know that if $y = \tan^{-1} x$ then (for appropriate domain and range values) $\tan y = x$ and so by implicit differentiation

 $\frac{d}{dx} [\tan y] = \frac{d}{dx} [x] \text{ or } \sec^2 y \left[\frac{dy}{dx}\right] = 1 \text{ or}$ $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + (\tan y)^2} = \frac{1}{1 + x^2}.$ The full theorem then follows from the Chain Rule.

Theorem 3.9.B

Theorem 3.9.B. We differentiate tan^{-1} as follows:

$$\frac{d}{dx}\left[\tan^{-1}u\right] = \frac{1}{1+u^2} \left[\frac{du}{dx}\right].$$

Proof. We know that if $y = \tan^{-1} x$ then (for appropriate domain and range values) $\tan y = x$ and so by implicit differentiation

 $\frac{d}{dx} [\tan y] = \frac{d}{dx} [x] \text{ or } \sec^2 y \left[\frac{dy}{dx}\right] = 1 \text{ or}$ $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + (\tan y)^2} = \frac{1}{1 + x^2}.$ The full theorem then follows from the Chain Rule.

Exercise 3.9.34. Find dy/dx when $y = \tan^{-1}(\ln x)$.

Solution. By Theorem 3.9.B (with $u(x) = \ln x$ and du/dx = 1/x), we have

$$\frac{dy}{dx} = \frac{d}{dx} [\tan^{-1}(\ln x)] = \frac{1}{1 + (\ln x)^2} \left[\frac{1}{x}\right] = \left[\frac{1}{x(1 + (\ln x)^2)}\right]$$

Exercise 3.9.34. Find dy/dx when $y = \tan^{-1}(\ln x)$.

Solution. By Theorem 3.9.B (with $u(x) = \ln x$ and du/dx = 1/x), we have

$$\frac{dy}{dx} = \frac{d}{dx} [\tan^{-1}(\ln x)] = \frac{1}{1 + (\ln x)^2} \left[\frac{1}{x}\right] = \left[\frac{1}{x(1 + (\ln x)^2)}\right]$$

Theorem 3.9.C

Theorem 3.9.C. We differentiate \sec^{-1} as follows:

$$\frac{d}{dx}\left[\sec^{-1}u\right] = \frac{1}{|u|\sqrt{u^2 - 1}} \left[\frac{du}{dx}\right]$$

where |u| > 1.

Proof. We know that if $y = \sec^{-1} x$ then (for appropriate domain and range values) $\sec y = x$ and so by implicit differentiation

 $\frac{d}{dx}[\sec y] = \frac{d}{dx}[x] \text{ or } \sec y \tan y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\sec y \tan y}.$ We now need to express this last expression in terms of x. First, $\sec y = x$ and $\tan y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}.$ Therefore we have

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}$$

Theorem 3.9.C

Theorem 3.9.C. We differentiate \sec^{-1} as follows:

$$\frac{d}{dx}\left[\sec^{-1}u\right] = \frac{1}{|u|\sqrt{u^2 - 1}} \left[\frac{du}{dx}\right]$$

where |u| > 1.

Proof. We know that if $y = \sec^{-1} x$ then (for appropriate domain and range values) $\sec y = x$ and so by implicit differentiation

 $\frac{d}{dx}[\sec y] = \frac{d}{dx}[x] \text{ or } \sec y \tan y \left[\frac{dy}{dx}\right] = 1 \text{ or } \frac{dy}{dx} = \frac{1}{\sec y \tan y}.$ We now need to express this last expression in terms of x. First, $\sec y = x$ and $\tan y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}.$ Therefore we have

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}$$

Theorem 3.9.C (continued)

Proof (continued). ...

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}.$$

Notice from the graph of $y = \sec^{-1} x$ above, that the slope of this function is positive wherever it is defined. So

$$\frac{d}{dx} \left[\sec^{-1} x \right] = \begin{cases} +\frac{1}{x\sqrt{x^2-1}} & \text{if } x > 1 \\ -\frac{1}{x\sqrt{x^2-1}} & \text{if } x < -1. \end{cases}$$

Notice that if x > 1 then x = |x| and if x < -1 then -x = |x|. Therefore

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

The full theorem then follows from the Chain Rule.

Theorem 3.9.C (continued)

Proof (continued). ...

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}$$

Notice from the graph of $y = \sec^{-1} x$ above, that the slope of this function is positive wherever it is defined. So

$$\frac{d}{dx} \left[\sec^{-1} x \right] = \begin{cases} +\frac{1}{x\sqrt{x^2-1}} & \text{if } x > 1 \\ -\frac{1}{x\sqrt{x^2-1}} & \text{if } x < -1. \end{cases}$$

Notice that if x > 1 then x = |x| and if x < -1 then -x = |x|. Therefore

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

The full theorem then follows from the Chain Rule.

Exercise 3.9.40. Find dy/dx when $y = \cot^{-1}(1/x) - \tan^{-1} x$.

Solution. By Table 3.1(3 and 4) (with $u(x) = 1/x = x^{-1}$ and $du/dx = -x^{-2} = -1/x^2$), we have

$$\frac{dy}{dx} = \frac{d}{dx} [\cot^{-1}(1/x) - \tan^{-1}x] = \frac{d}{dx} [\cot^{-1}(1/x)] - \frac{d}{dx} [\tan^{-1}x]$$
$$= \frac{-1}{1 + (1/x)^2} \left[\frac{-1}{x^2}\right] - \frac{1}{1 + x^2}$$
$$= \frac{1}{x^2(1 + 1/x^2)} - \frac{1}{1 + x^2} = \frac{1}{x^2 + 1} - \frac{1}{1 + x^2} = \boxed{0}.$$

Exercise 3.9.40. Find dy/dx when $y = \cot^{-1}(1/x) - \tan^{-1} x$.

Solution. By Table 3.1(3 and 4) (with $u(x) = 1/x = x^{-1}$ and $du/dx = -x^{-2} = -1/x^2$), we have

$$\frac{dy}{dx} = \frac{d}{dx} \left[\cot^{-1}(1/x) - \tan^{-1}x \right] = \frac{d}{dx} \left[\cot^{-1}(1/x) \right] - \frac{d}{dx} \left[\tan^{-1}x \right]$$
$$= \frac{-1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right] - \frac{1}{1 + x^2}$$
$$= \frac{1}{x^2(1 + 1/x^2)} - \frac{1}{1 + x^2} = \frac{1}{x^2 + 1} - \frac{1}{1 + x^2} = \boxed{0}.$$

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when $\sin^{-1}(x + y) + \cos^{-1}(x - y) = 5\pi/6$.

Solution. Differentiating implicitly we have by Table 3.1(1 and 2) that

$$\frac{d}{dx}[\sin^{-1}(x+y) + \cos^{-1}(x-y)] = \frac{d}{dx}\left[\frac{5\pi}{6}\right] \text{ or}$$

$$\frac{d}{dx}[\sin^{-1}(x+y)] + \frac{d}{dx}[\cos^{-1}(x-y)] = \frac{d}{dx}\left[\frac{5\pi}{6}\right] \text{ or}$$

$$\frac{1}{\sqrt{1-(x+y)^2}}\left[1 + \frac{dy}{dx}\right] + \frac{-1}{\sqrt{1-(x-y)^2}}\left[1 - \frac{dy}{dx}\right] = 0 \text{ or}$$

$$\left(\frac{1}{\sqrt{1-(x+y)^2}} + \frac{1}{\sqrt{1-(x-y)^2}}\right)\frac{dy}{dx} = \frac{-1}{\sqrt{1-(x+y)^2}} + \frac{1}{\sqrt{1-(x-y)^2}} \text{ or}$$
(getting a common denominator)

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when $\sin^{-1}(x + y) + \cos^{-1}(x - y) = 5\pi/6$.

Solution. Differentiating implicitly we have by Table 3.1(1 and 2) that $\frac{d}{dx}[\sin^{-1}(x+y) + \cos^{-1}(x-y)] = \frac{d}{dx} \left[\frac{5\pi}{6}\right] \text{ or }$ $\frac{d}{dx}[\sin^{-1}(x+y)] + \frac{d}{dx}[\cos^{-1}(x-y)] = \frac{d}{dx}\left[\frac{5\pi}{6}\right] \text{ or }$ $\frac{1}{\sqrt{1-(x+y)^2}}\left[1+\frac{dy}{dx}\right] + \frac{-1}{\sqrt{1-(x-y)^2}}\left[1-\frac{dy}{dx}\right] = 0 \text{ or }$ $\left(\frac{1}{\sqrt{1-(x+y)^2}} + \frac{1}{\sqrt{1-(x-y)^2}}\right)\frac{dy}{dx} = \frac{-1}{\sqrt{1-(x+y)^2}} + \frac{1}{\sqrt{1-(x-y)^2}} \text{ or }$ (getting a common denominator)

Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when $\sin^{-1}(x+y) + \cos^{-1}(x-y) = 5\pi/6.$ Solution (continued). ... $\left(\frac{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x+y)^2}}\right)\frac{dy}{dx} =$ $\frac{-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}}$ $\left(\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}\right)\frac{dy}{dx}=-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ or $\frac{dy}{dx} = \frac{-\sqrt{1 - (x - y)^2} + \sqrt{1 - (x + y)^2}}{\sqrt{1 - (x - y)^2} + \sqrt{1 - (x + y)^2}}.$ With (x, y) = (0, 1/2) we have $\sqrt{1-(x\pm y)^2} = \sqrt{3/4} = \sqrt{3}/2$ and at P(0,1/2) we then have $|dy/dx|_{(x,y)=(0,1/2)}=0|$.

Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0, 1/2) when $\sin^{-1}(x+y) + \cos^{-1}(x-y) = 5\pi/6.$ Solution (continued). ... $\left(\frac{\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x+y)^2}}\right)\frac{dy}{dx} =$ $\frac{-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}}{\sqrt{1-(x+y)^2}\sqrt{1-(x-y)^2}}$ $\left(\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}\right)\frac{dy}{dx}=-\sqrt{1-(x-y)^2}+\sqrt{1-(x+y)^2}$ or $\frac{dy}{dx} = \frac{-\sqrt{1 - (x - y)^2} + \sqrt{1 - (x + y)^2}}{\sqrt{1 - (x - y)^2} + \sqrt{1 - (x + y)^2}}.$ With (x, y) = (0, 1/2) we have $\sqrt{1-(x\pm y)^2} = \sqrt{3/4} = \sqrt{3}/2$ and at P(0, 1/2) we then have $|dy/dx|_{(x,y)=(0,1/2)}=0|.$

Exercise 3.9.60

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}}$ and $g(x) = \tan^{-1}(1/x)$?

Solution. Notice that

$$\frac{df}{dx} = \frac{d}{dx} \left[\sin^{-1} \frac{1}{\sqrt{x^2 + 1}} \right] = \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \frac{d}{dx} \left[(x^2 + 1)^{-1/2} \right]$$
$$= \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \left[\frac{-1}{2} (x^2 + 1)^{-3/2} \left[2x \right] \right]$$
$$= \frac{1}{\sqrt{1 - 1/(x^2 + 1)}} (-x(x^2 + 1)^{-3/2}) = \frac{1}{\sqrt{((x^2 + 1) - 1)/(x^2 + 1)}} \frac{-x}{(x^2 + 1)^{3/2}}$$
$$= \frac{\sqrt{x^2 + 1}}{\sqrt{x^2}} \frac{-x}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{-x}{|x|(x^2 + 1)}$$

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}}$ and $g(x) = \tan^{-1}(1/x)$?

Solution. Notice that

$$\frac{df}{dx} = \frac{d}{dx} \left[\sin^{-1} \frac{1}{\sqrt{x^2 + 1}} \right] = \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \frac{d}{dx} \left[(x^2 + 1)^{-1/2} \right]$$
$$= \frac{1}{\sqrt{1 - (1/\sqrt{x^2 + 1})^2}} \left[\frac{-1}{2} (x^2 + 1)^{-3/2} \left[2x \right] \right]$$
$$= \frac{1}{\sqrt{1 - 1/(x^2 + 1)}} (-x(x^2 + 1)^{-3/2}) = \frac{1}{\sqrt{((x^2 + 1) - 1)/(x^2 + 1)}} \frac{-x}{(x^2 + 1)^{3/2}}$$
$$= \frac{\sqrt{x^2 + 1}}{\sqrt{x^2}} \frac{-x}{(x^2 + 1)\sqrt{x^2 + 1}} = \frac{-x}{|x|(x^2 + 1)}$$

Exercise 3.9.60 (continued 1)

Solution. Notice that

$$\frac{dg}{dx} = \frac{d}{dx} \left[\tan^{-1} \frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \frac{d}{dx} \left[\frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right]$$
$$= \frac{-1}{(1 + (1/x)^2)x^2} = \frac{-1}{x^2 + 1}.$$

So for x > 0, f'(x) = g'(x). We will see in Corollary 4.2 (see Section 4.2. The Mean Value Theorem) that this implies f(x) - g(x) is constant. We can evaluate f and g at some x > 0 to see what this constant is. With x = 1 we have $f(1) = \sin^{-1} \frac{1}{\sqrt{(12+1)}} = \sin^{-1}(1/\sqrt{2}) = \sin^{-1}(\sqrt{2}/2) = \pi/4$ and

$$g(1) = \tan^{-1}(1/(1)) = \tan^{-1}(1) = \pi/4$$
, so that the constant is 0 and so

we must have
$$f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}} = \tan^{-1}(1/x) = g(x)$$
 for $x > 0$.

Exercise 3.9.60 (continued 1)

Solution. Notice that

$$\frac{dg}{dx} = \frac{d}{dx} \left[\tan^{-1} \frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \frac{d}{dx} \left[\frac{1}{x} \right] = \frac{1}{1 + (1/x)^2} \left[\frac{-1}{x^2} \right]$$
$$= \frac{-1}{(1 + (1/x)^2)x^2} = \frac{-1}{x^2 + 1}.$$

So for x > 0, f'(x) = g'(x). We will see in Corollary 4.2 (see Section 4.2. The Mean Value Theorem) that this implies f(x) - g(x) is constant. We can evaluate f and g at some x > 0 to see what this constant is. With x = 1 we have $f(1) = \sin^{-1} \frac{1}{\sqrt{(1)^2 + 1}} = \sin^{-1}(1/\sqrt{2}) = \sin^{-1}(\sqrt{2}/2) = \pi/4$ and $g(1) = \tan^{-1}(1/(1)) = \tan^{-1}(1) = \pi/4$, so that the constant is 0 and so we must have $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}} = \tan^{-1}(1/x) = g(x)$ for x > 0.

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}}$ and $g(x) = \tan^{-1}(1/x)$?

Solution (continued). For x < 0, f'(x) = -g'(x) or f'(x) + g'(x) = 0. Again, by Corollary 4.2 (see Section 4.2. The Mean Value Theorem) this implies f(x) + g(x) is constant. We can evaluate f and g at some x < 0to see what this constant is. With x = -1 we have $f(-1) = \sin^{-1} \frac{1}{\sqrt{(-1)^2+1}} = \sin^{-1}(1/\sqrt{2}) = \sin^{-1}(\sqrt{2}/2) = \pi/4$ and $g(-1) = \tan^{-1}(1/(-1)) = \tan^{-1}(-1) = -\pi/4$, so that $f(x) + g(x) = \pi/4 + (-\pi/4) = 0$ for x < 0, or $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2+1}} = -\tan^{-1}(1/x) = -g(x)$ for x < 0.

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2 + 1}}$ and $g(x) = \tan^{-1}(1/x)$?

Solution (continued). For x < 0, f'(x) = -g'(x) or f'(x) + g'(x) = 0. Again, by Corollary 4.2 (see Section 4.2. The Mean Value Theorem) this implies f(x) + g(x) is constant. We can evaluate f and g at some x < 0 to see what this constant is. With x = -1 we have $f(-1) = \sin^{-1} \frac{1}{\sqrt{(-1)^2+1}} = \sin^{-1}(1/\sqrt{2}) = \sin^{-1}(\sqrt{2}/2) = \pi/4$ and $g(-1) = \tan^{-1}(1/(-1)) = \tan^{-1}(-1) = -\pi/4$, so that $f(x) + g(x) = \pi/4 + (-\pi/4) = 0$ for x < 0, or $f(x) = \sin^{-1} \frac{1}{\sqrt{x^2+1}} = -\tan^{-1}(1/x) = -g(x)$ for x < 0.