Calculus 1

Chapter 3. Derivatives
3.9. Inverse Trigonometric Functions—Examples and Proofs
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Exercise 3.9.4

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin~1(1/2), (b) sin~!(—1/v/2), (c) arcsin(+/3/2).
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Exercise 3.9.4

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin~1(1/2), (b) sin~!(—1/v/2), (c) arcsin(+/3/2).

Solution. (a) With § = sin"!(1/2), we need sinf = 1/2 and
0 € [-m/2,7/2]. So 0 is a “special angle” and from our knowledge of

special angles, we have . O
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Exercise 3.9.4

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin~1(1/2), (b) sin~!(—1/v/2), (c) arcsin(+/3/2).

Solution. (a) With § = sin"!(1/2), we need sinf = 1/2 and
0 € [-m/2,7/2]. So 0 is a “special angle” and from our knowledge of

special angles, we have . O

(b) With 6 = sin"1(-1/v/2),

we need sinf) = —1/v/2 = —/2/2 and V2/21
0 € [-7/2,7/2]. From our knowledge of

special angles, we know that sin /4 = \/2/2.

So we seek an angle 6 with a reference angle

of m/4 where 6 € [-7/2,7/2] and i

sinf < 0. We take 2 __1
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Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin~1(1/2), (b) sin~!(—1/v/2), (c) arcsin(+/3/2).
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Exercise 3.9.4 (continued)

Exercise 3.9.4. Use reference angles in an appropriate quadrant to find

the angles: (a) sin~1(1/2), (b) sin~!(—1/v/2), (c) arcsin(+/3/2).

Solution. (c) With 6 = arcsin(v/3/2), we need sin = /3/2 and
0 € [-7/2,7/2]. So @ is a “special angle” and from our knowledge of

special angles, we have . O
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Exercise 3.9.14

Exercise 3.9.14. Find the limit: lim,_,_;+ cos™!(x).
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Exercise 3.9.14

Exercise 3.9.14. Find the limit: lim,_,_;+ cos™!(x).

Solution. First, notice that —1 is a left Domain: —1 =
endpoint of the domain of cos™! x. Range: 0=
Based on the graph of y = cos™! x, we .
see (by Dr. Bob's Anthropomorphic Definition ‘
of Limit, a one-sided version) that as s i

x — —1 from the right (i.e., from y = arccos x
the positive side) that the graph “tries to -z

contain the point” (—1,7). So \

lim,__1+ cos }(x) =[7] O : ,
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Theorem 3.9.A

Theorem 3.9.A. We differentiate sin~! as follows:

%
a [sin_1 u] .
dx N V1 — 2 |dx

where |u] < 1.
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Theorem 3.9.A

Theorem 3.9.A

Theorem 3.9.A. We differentiate sin~! as follows:

%
a [sin_1 u] .
dx N V1 — 2 |dx

where |u] < 1.
Proof. We know that if y = sin™! x then (for appropriate domain and
range values) siny = x and so by implicit differentiation

%
dy 1
"dx  cos y

d . d dy
&[smy] —[x] or cosy [dx] =1lo
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Theorem 3.9.A

Theorem 3.9.A. We differentiate sin~! as follows:

d [sin_1 u] .
dx N V1 — 2 |dx
where |u] < 1.

Proof. We know that if y = sin™! x then (for appropriate domain and

range values) siny = x and so by implicit differentiation
m

dy | 1o dy

dx dx cos y
restricted y to the interval [—7/2,7/2], we know that cosy > 0 and so
cosy = +4/1 — (siny)2 = V1 — x2. Making this substitution we get

. Since we have

STyl = W orcosy |

- [sm lx] = \/ﬁ The full theorem then follows from the Chain
Rule. OJ
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Exercise 3.9.24

Exercise 3.9.24. For dy/dt when y = sin"}(1 — t).
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Exercise 3.9.24

Exercise 3.9.24

Exercise 3.9.24. For dy/dt when y = sin"}(1 — t).

Solution. By Theorem 3.9.A (with u(t) =1 —t and du/dt = —1), we
have

N

dy d | 1 —1
= —lsin"(1-t)] = —F—m—m—=x -1l =| —— |
gt ~ g (1Y) \/1—(1—1')2[ ] V2t — t2
O
Calculus 1
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Theorem 3.9.B

Theorem 3.9.B. We differentiate tan—! as follows:

N

i[tan_1 ]—; @
dx u_1+u2 dx |’

T
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Theorem 3.9.B

Theorem 3.9.B. We differentiate tan—! as follows:

i[tan_1 ]—71 m@
dx u_1+u2 dx |’

Proof. We know that if y = tan! x then (for appropriate domain and
range values) tany = x and so by implicit differentiation
&%

d _d > ldy|

&[tany] = [x] or sec” y [dx] =1or

dy 1 1

. = c?y = T (tany)2 = Tl The full theorem then follows from
the Chain Rule. ]
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Exercise 3.9.34

Exercise 3.9.34. Find dy/dx when y = tan~1(Inx).
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Exercise 3.9.34

Exercise 3.9.34

Exercise 3.9.34. Find dy/dx when y = tan~!(In x).
Solution. By Theorem 3.9.B (with u(x) = Inx and du/dx = 1/x), we

have

dy d 1 B 1
ol dX[tan (Inx)] =

T

1+ (Inx)2

1

I x(1+(Inx)2 |
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Theorem 3.9.C

Theorem 3.9.C. We differentiate sec™! as follows:

i [sec_:l u] = 71 [du]
dx |u|\/u2—]_ dx

where |u| > 1.
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Theorem 3.9.C

Theorem 3.9.C

Theorem 3.9.C. We differentiate sec™! as follows:

i [sec_:l u] = 71 [du]
dx |u|\/u2—]_ dx

where |u| > 1.

Proof. We know that if y = sec™! x then (for appropriate domain and
range values) secy = x and so by implicit differentiation
m

d d dy dy 1

— [secy| = — or sec y ta —|=1lor — = — Weno
dx [secy] dx bx] or secytany [dx} " dx secytany now
need to express this last expression in terms of x. First, secy = x and

tany = ++/sec?y — 1 = +/x2 — 1. Therefore we have

1
-1 o
dx [sec X] _ix x2 -1
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Theorem 3.9.C (continued)

Proof (continued). ...

d 1 1
&[sec x] :iix =1

T i Y, G
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Theorem 3.9.C (continued)

Proof (continued). ...

d 1 1
&[sec x] :iix =1

Notice from the graph of y = sec™! x above, that the slope of this
function is positive wherever it is defined. So

{+1 ifx>1

d 1 .
o e =

_ oy e
[sec 1 if x < —1.

T xVx2-1

Notice that if x > 1 then x = |x| and if x < —1 then —x = |x|. Therefore

1
_ -1 =
g o = T
The full theorem then follows from the Chain Rule. O
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Exercise 3.9.40

Exercise 3.9.40. Find dy/dx when y = cot™}(1/x) — tan™! x.
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Exercise 3.9.40

Exercise 3.9.40

Exercise 3.9.40. Find dy/dx when y = cot™}(1/x) — tan™! x.

Solution. By Table 3.1(3 and 4) (with u(x) = 1/x = x~! and

du/dx = —x~2 = —1/x?), we have

dy

a3

S R
1+ (1/x)? |:X2

1 1
T X2(1+1/x2) 1+x2
O
Calculus 1

x2+1 1+x2

d _ _ d _ d _
i &[cot '(1/x) —tan"'x] = &[COt H1/x)] - &[tan tx]

_[0]
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Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when
sin~!(x +y) + cos~!(x — y) = 57/6.
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Exercise 3.9.44

Exercise 3.9.44

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when

sin~!(x +y) + cos~!(x — y) = 57/6.

Solution. Differentiating implicitly we have by Table 3.1(1 and 2) that

or

d .1 _ d 5t
a[sm (x +y) +cos H(x—y)] = o [ 6 | or
CZ{[sin_l(x%-y)] +di)’<[cos_1(x—y)] = c;i 567r] or

-1

L[+ 2+ -2 o

1—(x+y)? dx 1-(x—y)2l dx

1 1 dy -1 1

V1= (x+y)? \/l—x— dx V1= (x+y)? \/1—(><—y)2

(getting a common denommator)

T
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Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when
sin~!(x +y) + cos~!(x — y) = 57/6.

Solution (continued). ... (V\;;—(?;If):—\/\{l__()f):t;z)z) % _
—V1-(x—y)P+ V1 (x+y)?
VI )T (x )

or

(VIZG P+ VI G P) L= VI P+ VI o)

dy I yP+ V1= (o yP
o VTP VI P

August 14, 2020
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Exercise 3.9.44 (continued)

Exercise 3.9.44. Find dy/dx at point P(0,1/2) when
sin~!(x +y) + cos~!(x — y) = 57/6.

Solution (continued). ... (V\;;—(?;If):—\/\{l__()f):t;z)z) % _
—V1-(x—y)P+ V1 (x+y)?

VI ()21 (x —y) )
(\/1—(X—y)2+\/1—(x+y)2)d—iz—\/l_(x_y)ur\/l_(xﬂ)z or
dy VI (P VI Y ik () = we hav
B Tl I (e Cey) = (O /2) e have
V1—(x£y)?=+/3/4=+/3/2and at P(0,1/2) we then have
dy/dX’(x,y):(071/2) =0 0O

or

Calculus 1 August 14, 2020 14 / 17



Exercise 3.9.60

Exercise 3.9.60. What is special about the functions

F(x) = sin~! \/leiﬂ and g(x) = tan—1(1/x)?

T

August 14, 2020

15 / 17



Exercise 3.9.60

Exercise 3.9.60

Exercise 3.9.60. What is special about the functions
1
f(x) =sin"! ———— and g(x) = tan"1(1/x)?
) —— and g(x) = tan1(1/)

Solution. Notice that

df _ d sin! 1
dx ~ dx

N

_ 1 d 2 ~1/2
x2+l] \/1_(1/m)2dx{( +1)77]

m

{‘21(% 4 1)—3/5[24]

1
- V1- Q2 H1)

1
JI-1/(x2+1)

(2 -3/2) — = —
(—x(x*+1)7°?) N DRI L
_Vx2+1 —X _ X

VX (Ve X2+ 1)
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Exercise 3.9.60 (continued 1)

Solution. Notice that

(Y

m

o= o) - e ) - e )

-1 -1
(1+(1/x)2)x2  x2+1°
So for x > 0, f'(x) = g'(x).

T
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Exercise 3.9.60 (continued 1)

Solution. Notice that
(Y m

dg _ d [tanl 1} _ 1 4 H _ [—1}

dx  dx X 1+ (1/x)%2dx [ x 1+ (1/x)% | x2

-1 !
(1+(1/x)2)x2  x2+1°
So for x > 0, f'(x) = g'(x). We will see in Corollary 4.2 (see Section 4.2.
The Mean Value Theorem) that this implies f(x) — g(x) is constant. We
can evaluate f and g at some x > 0 to see what this constant is. With
x =1 we have

f(1) =sin~! ——L— =sin~1(1/v2) = sin"}(v/2/2) = 7/4 and

V(1)*+1
g(1) =tan"1(1/(1)) = tan"1(1) = 7/4, so that the constant is 0 and so
1
we must have | f(x) = sin™! ——— =tan"1(1/x) = g(x) for x > 0.
() = sin~? o = tan1(1/2) = ()
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Exercise 3.9.60

Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions
1
f(x) = sin”! ——— and g(x) = tan"1(1/x)?
) —— and g(x) = tan " (1/x)

Solution (continued). For x < 0, f'(x) = —g'(x) or f'(x) + g’(x) = 0.

Calculus 1 August 14, 2020 17 /17
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Exercise 3.9.60 (continued 2)

Exercise 3.9.60. What is special about the functions
1
f(x) =sin~! ——— and g(x) = tan"1(1/x)?
() = sin ! ——— and g(x) = tan"(1/)
Solution (continued). For x < 0, f'(x) = —g'(x) or f'(x) + g’(x) = 0.

Again, by Corollary 4.2 (see Section 4.2. The Mean Value Theorem) this
implies f(x) + g(x) is constant. We can evaluate f and g at some x < 0

to see what this constant is. With x = —1 we have
f(-=1) =sin~! ﬁ =sin"}(1/v2) = sin"1(v/2/2) = 7/4 and

g(—1) =tan"1(1/(-1)) = tan"1(~1) = —7/4, so that
f(x)+g(x)=n/4+ (—7n/4) =0 for x <0, or

f(x) =sin! = —tan }(1/x) = —g(x) for x < 0.| O

1
Vx2+1
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