Chapter 4. Applications of Derivatives
4.1. Extreme Values of Functions on Closed Intervals—Examples and Proofs
<table>
<thead>
<tr>
<th></th>
<th>Exercise 4.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Exercise 4.1.4</td>
</tr>
<tr>
<td>3</td>
<td>Theorem 4.2. Local Extreme Values</td>
</tr>
<tr>
<td>4</td>
<td>Exercise 4.1.24</td>
</tr>
<tr>
<td>5</td>
<td>Exercise 4.1.44</td>
</tr>
<tr>
<td>6</td>
<td>Exercise 4.1.60</td>
</tr>
<tr>
<td>7</td>
<td>Exercise 4.1.72. Even Functions</td>
</tr>
</tbody>
</table>
Exercise 4.1.2. Determine from the graph whether f has any absolute extreme values on $[a, b]$:

Solution. First, f is continuous on $[a, b]$ so by Theorem 4.1, The Extreme-Value Theorem for Continuous Functions, it has both an absolute maximum and absolute minimum. From the graph, we see that f has an absolute maximum of $f(c)$ and an absolute minimum of $f(b)$. \qed
Exercise 4.1.2. Determine from the graph whether f has any absolute extreme values on $[a, b]$:

Solution. First, f is continuous on $[a, b]$ so by Theorem 4.1, The Extreme-Value Theorem for Continuous Functions, it has both an absolute maximum and absolute minimum. From the graph, we see that f has an absolute maximum of $f(c)$ and an absolute minimum of $f(b)$. □
Exercise 4.1.4. Determine from the graph whether h has any absolute extreme values on $[a, b]$:

Solution. First, h is not defined on $[a, b]$, since h is not defined at $x = a$ nor at $x = b$. In addition, h is not defined at $x = c$. So Theorem 4.1 does not apply.
Exercise 4.1.4. Determine from the graph whether \(h \) has any absolute extreme values on \([a, b]\):

Solution. First, \(h \) is not defined on \([a, b]\), since \(h \) is not defined at \(x = a \) nor at \(x = b \). In addition, \(h \) is not defined at \(x = c \). So Theorem 4.1 does not apply. In fact, \(h \) has neither an absolute maximum nor an absolute minimum.
Exercise 4.1.4. Determine from the graph whether h has any absolute extreme values on $[a, b]$:

Solution. First, h is not defined on $[a, b]$, since h is not defined at $x = a$ nor at $x = b$. In addition, h is not defined at $x = c$. So Theorem 4.1 does not apply. In fact, h has neither an absolute maximum nor an absolute minimum.
Solution (continued). We see that
\[\lim_{x \to a^+} h(x) \] exists and is strictly greater than any value of \(h(x) \) for \(x \in (a, b) \), and
\[\lim_{x \to c} h(x) \] exists and is strictly less than any value of \(h(x) \) for \(x \in (a, b) \).
So these values are upper and lower bounds on the values of \(h \), but neither value is attained by \(h \) on \((a, b)\). In fact, values of \(h \) can be made arbitrarily close to both of these values (by making \(x \) sufficiently close to \(a \) and greater than \(a \) for the upper bound
\[\lim_{x \to a^+} h(x) \], and by making \(x \) sufficiently close to \(c \) for the lower bound
\[\lim_{x \to c} h(x) \]). This is related to the idea that there is not a least positive real number (nor a greatest negative real number); remember that 0 is neither positive nor negative... because it is too busy being 0! □
Solution (continued). We see that
\[\lim_{x \to a^+} h(x) \] exists and is strictly
greater than any value of \(h(x) \) for \(x \in (a, b) \),
and \(\lim_{x \to c} h(x) \) exists and is strictly
less than any value of \(h(x) \) for \(x \in (a, b) \).
So these values are upper and lower bounds
on the values of \(h \), but neither value is
attained by \(h \) on \((a, b) \). In fact, values
of \(h \) can be made arbitrarily close to both of these values (by making \(x \)
sufficiently close to \(a \) and greater than \(a \) for the upper bound
\(\lim_{x \to a^+} h(x) \), and by making \(x \) sufficiently close to \(c \) for the lower bound
\(\lim_{x \to c} h(x) \)). This is related to the idea that there is not a least positive
real number (nor a greatest negative real number); remember that 0 is
neither positive nor negative. . . because it is too busy being 0! □
Theorem 4.2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then $f'(c) = 0$.

Proof. Suppose that f has a local maximum value at $x = c$, so that $f(x) - f(c) \leq 0$ for all values of x in some open interval containing c. Since c is an interior point of the domain of f, then $f'(c)$ is (by the alternative definition of the derivative; see Exercise 3.2.24)

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}. $$
Theorem 4.2. Local Extreme Values.
If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then $f'(c) = 0$.

Proof. Suppose that f has a local maximum value at $x = c$, so that $f(x) - f(c) \leq 0$ for all values of x in some open interval containing c. Since c is an interior point of the domain of f, then $f'(c)$ is (by the alternative definition of the derivative; see Exercise 3.2.24)

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$ Considering one-sided
Theorem 4.2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then $f'(c) = 0$.

Proof. Suppose that f has a local maximum value at $x = c$, so that $f(x) - f(c) \leq 0$ for all values of x in some open interval containing c. Since c is an interior point of the domain of f, then $f'(c)$ is (by the alternative definition of the derivative; see Exercise 3.2.24)

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

Considering one-sided limits and the fact that $f(c)$ is a local maximum of f, we have $f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \leq 0$ since $f(x) - f(c) \leq 0$ and for $x \to c^+$ we have $x - c > 0$, and $f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \geq 0$ since $f(x) - f(c) \leq 0$ and for $x \to c^-$ we have $x - c < 0$.

Local maximum value

Secant slopes ≥ 0
(never negative)

Secant slopes ≤ 0
(never positive)

x
Theorem 4.2. Local Extreme Values.

Theorem 4.2. If a function \(f \) has a local maximum value or a local minimum value at an interior point \(c \) of its domain, and if \(f' \) exists at \(c \), then \(f'(c) = 0 \).

Proof. Suppose that \(f \) has a local maximum value at \(x = c \), so that \(f(x) - f(c) \leq 0 \) for all values of \(x \) in some open interval containing \(c \). Since \(c \) is an interior point of the domain of \(f \), then \(f'(c) \) is (by the alternative definition of the derivative; see Exercise 3.2.24)

\[
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.
\]

Considering one-sided limits and the fact that \(f(c) \) is a local maximum of \(f \), we have

\[
f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \leq 0
\]

since \(f(x) - f(c) \leq 0 \) and for \(x \to c^+ \) we have \(x - c > 0 \), and

\[
f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \geq 0
\]

since \(f(x) - f(c) \leq 0 \) and for \(x \to c^- \) we have \(x - c < 0 \).
Theorem 4.2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then $f'(c) = 0$.

Proof (continued). Since the two-sided limit exists, then the one-sided limits must both exist and be the same by Theorem 2.6. ("Relation Between One-Sided and Two-Sided Limits"), so we must have $f'(c) = 0$.

The argument when f has a local minimum value at $x = c$ (we then have $f(x) - f(c) \geq 0$ for all values of x in some open interval containing c and the inequalities in the one-sided limits are reversed) is similar.
Theorem 4.2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then $f'(c) = 0$.

Proof (continued). Since the two-sided limit exists, then the one-sided limits must both exist and be the same by Theorem 2.6. ("Relation Between One-Sided and Two-Sided Limits"), so we must have $f'(c) = 0$.

The argument when f has a local minimum value at $x = c$ (we then have $f(x) - f(c) \geq 0$ for all values of x in some open interval containing c and the inequalities in the one-sided limits are reversed) is similar.
Exercise 4.1.24

Exercise 4.1.24. Find the absolute maximum and minimum values of $f(x) = 4 - x^3$ on the interval $[-2, 1]$. Then graph $y = f(x)$ and identify the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced.
Exercise 4.1.24. Find the absolute maximum and minimum values of $f(x) = 4 - x^3$ on the interval $[-2, 1]$. Then graph $y = f(x)$ and identify the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced. With $f(x) = 4 - x^3$, we have $f'(x) = -3x^2$ and for Step 1 we set $f'(x) = -3x^2 = 0$ and see that $x = 0$ is the only critical point.
Exercise 4.1.24. Find the absolute maximum and minimum values of \(f(x) = 4 - x^3 \) on the interval \([-2, 1]\). Then graph \(y = f(x) \) and identify the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced. With \(f(x) = 4 - x^3 \), we have \(f'(x) = -3x^2 \) and for Step 1 we set \(f'(x) = -3x^2 = 0 \) and see that \(x = 0 \) is the only critical point. For Step 2, we consider the values of \(f \) at the critical point \(x = 0 \) and the endpoints \(a = -2 \) and \(b = 1 \):

\[
\begin{array}{|c|c|c|c|}
\hline
x & -2 & 0 & 1 \\
\hline
f(x) & 4 - (-2)^3 = 12 & 4 - (0)^3 = 4 & 4 - (1)^3 = 3 \\
\hline
\end{array}
\]

By Step 3, the absolute maximum is 12 and occurs at \(x = -2 \), and the absolute minimum is 3 and occurs at \(x = 1 \).
Exercise 4.1.24

Exercise 4.1.24. Find the absolute maximum and minimum values of \(f(x) = 4 - x^3 \) on the interval \([-2, 1]\). Then graph \(y = f(x) \) and identify the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced. With \(f(x) = 4 - x^3 \), we have \(f'(x) = -3x^2 \) and for Step 1 we set \(f'(x) = -3x^2 = 0 \) and see that \(x = 0 \) is the only critical point. For Step 2, we consider the values of \(f \) at the critical point \(x = 0 \) and the endpoints \(a = -2 \) and \(b = 1 \):

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>(4 - (-2)^3 = 12)</td>
<td>(4 - (0)^3 = 4)</td>
<td>(4 - (1)^3 = 3)</td>
</tr>
</tbody>
</table>

By Step 3, the absolute maximum is 12 and occurs at \(x = -2 \), and the absolute minimum is 3 and occurs at \(x = 1 \).
Exercise 4.1.24. Find the absolute maximum and minimum values of \(f(x) = 4 - x^3 \) on the interval \([-2, 1]\). Then graph \(y = f(x) \) and identify the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced. With \(f(x) = 4 - x^3 \), we have \(f'(x) = -3x^2 \) and for Step 1 we set \(f'(x) = -3x^2 = 0 \) and see that \(x = 0 \) is the only critical point. For Step 2, we consider the values of \(f \) at the critical point \(x = 0 \) and the endpoints \(a = -2 \) and \(b = 1 \):

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>4 - (-2)^3 = 12</td>
<td>4 - (0)^3 = 4</td>
<td>4 - (1)^3 = 3</td>
</tr>
</tbody>
</table>

By Step 3, the absolute maximum is 12 and occurs at \(x = -2 \), and the absolute minimum is 3 and occurs at \(x = 1 \).
Solution (continued). The graph is:

\[y = 4 - x^3 \]

The graph includes points \((-2, 12)\) and \((1, 3)\).
Exercise 4.1.44

Exercise 4.1.44. Find the absolute maximum and minimum values of \(h(\theta) = 3\theta^{2/3} \) on the interval \([-27, 8]\).

Solution. We follow the three steps.
Exercise 4.1.44

Exercise 4.1.44. Find the absolute maximum and minimum values of \(h(\theta) = 3\theta^{2/3} \) on the interval \([-27, 8]\).

Solution. We follow the three steps. With \(h(\theta) = 3\theta^{2/3} \), we have
\[
h'(\theta) = 3(2/3)\theta^{-1/3} = \frac{2}{\sqrt[3]{\theta}}
\]
and for Step 1 we see that \(h' \) is never 0, but \(h' \) is undefined at \(\theta = 0 \). So \(\theta = 0 \) is the only critical point.

Exercise 4.1.44. Find the absolute maximum and minimum values of $h(\theta) = 3\theta^{2/3}$ on the interval $[-27, 8]$.

Solution. We follow the three steps. With $h(\theta) = 3\theta^{2/3}$, we have

$$h'(\theta) = 3(2/3)\theta^{-1/3} = \frac{2}{\sqrt[3]{\theta}}$$

and for Step 1 we see that h' is never 0, but h' is undefined at $\theta = 0$. So $\theta = 0$ is the only critical point. For Step 2, we consider the values of h at the critical point $\theta = 0$ and the endpoints $a = -27$ and $b = 8$:

<table>
<thead>
<tr>
<th>θ</th>
<th>-27</th>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(\theta)$</td>
<td>$3(-27)^{2/3} = 27$</td>
<td>$3(0)^{2/3} = 0$</td>
<td>$3(8)^{2/3} = 12$</td>
</tr>
</tbody>
</table>
Exercise 4.1.44. Find the absolute maximum and minimum values of \(h(\theta) = 3\theta^{2/3} \) on the interval \([-27, 8]\).

Solution. We follow the three steps. With \(h(\theta) = 3\theta^{2/3} \), we have

\[
h'(\theta) = 3(2/3)\theta^{-1/3} = \frac{2}{\sqrt[3]{\theta}}
\]

and for Step 1 we see that \(h' \) is never 0, but \(h' \) is undefined at \(\theta = 0 \). So \(\theta = 0 \) is the only critical point. For Step 2, we consider the values of \(h \) at the critical point \(\theta = 0 \) and the endpoints \(a = -27 \) and \(b = 8 \):

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>-27</th>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(\theta))</td>
<td>(3(-27)^{2/3} = 27)</td>
<td>(3(0)^{2/3} = 0)</td>
<td>(3(8)^{2/3} = 12)</td>
</tr>
</tbody>
</table>

By Step 3, the absolute maximum is 27 and occurs at \(\theta = -27 \), and the absolute minimum is 0 and occurs at \(\theta = 0 \). □
Exercise 4.1.44. Find the absolute maximum and minimum values of $h(\theta) = 3\theta^{2/3}$ on the interval $[-27, 8]$.

Solution. We follow the three steps. With $h(\theta) = 3\theta^{2/3}$, we have $h'(\theta) = 3(2/3)\theta^{-1/3} = \frac{2}{\sqrt[3]{\theta}}$ and for Step 1 we see that h' is never 0, but h' is undefined at $\theta = 0$. So $\theta = 0$ is the only critical point. For Step 2, we consider the values of h at the critical point $\theta = 0$ and the endpoints $a = -27$ and $b = 8$:

<table>
<thead>
<tr>
<th>θ</th>
<th>-27</th>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(\theta)$</td>
<td>$3(-27)^{2/3} = 27$</td>
<td>$3(0)^{2/3} = 0$</td>
<td>$3(8)^{2/3} = 12$</td>
</tr>
</tbody>
</table>

By Step 3, the absolute maximum is 27 and occurs at $\theta = -27$, and the absolute minimum is 0 and occurs at $\theta = 0$. □
Exercise 4.1.60

Exercise 4.1.60. Find the critical points and domain endpoints for $y = f(x) = x^2 \sqrt{3 - x}$. Then find the value of the function at each of these points and identify extreme values (absolute and local).

Solution. First, notice that the domain of f is $(-\infty, 3]$ (that is, $x \leq 3$ where $3 - x \geq 0$), so 3 is an endpoint of the domain. Also, f is nonnegative. Since the domain is not an interval of the form $[a, b]$, we cannot precisely follow the three steps.

The critical points are $x = 0$ (because $f'(0) = 0$), $x = \frac{12}{5}$ (because $f'(\frac{12}{5}) = 0$), and $x = 3$ (because $x = 3$ is in the domain of f but f' is not defined at $x = 3$).
Exercise 4.1.60. Find the critical points and domain endpoints for
\(y = f(x) = x^2 \sqrt{3 - x} \). Then find the value of the function at each of
these points and identify extreme values (absolute and local).

Solution. First, notice that the domain of \(f \) is \((-\infty, 3]\) (that is, \(x \leq 3 \)
where \(3 - x \geq 0 \)), so 3 is an endpoint of the domain. Also, \(f \) is
nonnegative. Since the domain is not an interval of the form \([a, b]\), we
cannot precisely follow the three steps. But we still need the critical points
of \(f(x) = x^2(3 - x)^{1/2} \) and so consider

\[
\begin{align*}
f'(x) &= [2x][(3 - x)^{1/2}) + (x^2)[(1/2)(3 - x)^{-1/2}[-1]] = \\
&= 2x\sqrt{3 - x} - \frac{x^2}{2\sqrt{3 - x}} = 2x\sqrt{3 - x} \left(\frac{2\sqrt{3 - x}}{2\sqrt{3 - x}}\right) - \frac{x^2}{2\sqrt{3 - x}} = \\
&= \frac{4x(3 - x) - x^2}{2\sqrt{3 - x}} = \frac{12x - 5x^2}{2\sqrt{3 - x}} = \frac{x(12 - 5x)}{2\sqrt{3 - x}}. \text{ The critical points are } x = 0 \\
&\quad \text{(because } f'(0) = 0) \quad \text{and } x = 3.
\end{align*}
\]

(because \(x = 3 \) is in the domain of \(f \) but \(f' \) is not defined at \(x = 3 \)).
Exercise 4.1.60. Find the critical points and domain endpoints for \(y = f(x) = x^2 \sqrt{3 - x} \). Then find the value of the function at each of these points and identify extreme values (absolute and local).

Solution. First, notice that the domain of \(f \) is \((-\infty, 3]\) (that is, \(x \leq 3 \) where \(3 - x \geq 0 \)), so 3 is an endpoint of the domain. Also, \(f \) is nonnegative. Since the domain is not an interval of the form \([a, b]\), we cannot precisely follow the three steps. But we still need the critical points of \(f(x) = x^2(3 - x)^{1/2} \) and so consider

\[
 f'(x) = [2x][(3 - x)^{1/2}] + (x^2)[(1/2)(3 - x)^{-1/2}][-1] = 2x\sqrt{3-x} - \frac{x^2}{2\sqrt{3-x}} = 2x\sqrt{3-x} - \frac{x^2}{2\sqrt{3-x}} = 4(x(3-x) - x^2) = 12x - 5x^2 = \frac{x(12 - 5x)}{2\sqrt{3-x}}.
\]

The critical points are \(x = 0 \) (because \(f'(0) = 0 \)), \(x = 12/5 \) (because \(f'(12/5) = 0 \)), and \(x = 3 \) (because \(x = 3 \) is in the domain of \(f \) but \(f' \) is not defined at \(x = 3 \)).
Solution (continued). We consider the values of f at the critical points and endpoint:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>12/5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$(0)^2\sqrt{3 - (0)} = 0$</td>
<td>$(12/5)^2\sqrt{3 - 12/5} = (144/25)\sqrt{3/5}$</td>
<td>$(3)^2\sqrt{3 - (3)} = 0$</td>
</tr>
</tbody>
</table>

Since $f(x) \geq 0$ for all x in its domain, then f must have an absolute minimum at $x = 0$ and $x = 3$ of 0. Next, we claim that f has a local maximum at $x = 12/5$. This is because $12/5$ is between 0 and 3, and $f(12/5) > f(0) = f(3)$; for if f had a larger value than $f(12/5)$ for some $0 < x < 3$, then (since f is differentiable for $0 < x < 3$) by Theorem 4.2, Local Extreme Values, f would have another critical point between 0 and 3 where the derivative is 0, but there is no such point. So $f(12/5)$ must be the largest value of f on the open interval $(0, 3)$ and hence f has a local maximum at $x = 12/5$ of $(144/25)\sqrt{3/5}$.
Solution (continued). We consider the values of f at the critical points and endpoint:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>$12/5$</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$(0)^2 \sqrt{3} - (0) = 0$</td>
<td>$(12/5)^2 \sqrt{3} - 12/5 = (144/25)\sqrt{3}/5$</td>
<td>$(3)^2 \sqrt{3} - (3) = 0$</td>
</tr>
</tbody>
</table>

Since $f(x) \geq 0$ for all x in its domain, then f must have an absolute minimum at $x = 0$ and $x = 3$ of 0. Next, we claim that f has a local maximum at $x = 12/5$. This is because $12/5$ is between 0 and 3, and $f(12/5) > f(0) = f(3)$; for if f had a larger value than $f(12/5)$ for some $0 < x < 3$, then (since f is differentiable for $0 < x < 3$) by Theorem 4.2, Local Extreme Values, f would have another critical point between 0 and 3 where the derivative is 0, but there is no such point. So $f(12/5)$ must be the largest value of f on the open interval $(0, 3)$ and hence f has a local maximum at $x = 12/5$ of $(144/25)\sqrt{3}/5$.
Solution (continued). As shown above, \(f'(x) = \frac{x(12 - 5x)}{2\sqrt{3 - x}} \), so \(f \) is differentiable for all \(x < 3 \). Now all such \(x \) are interior points of the domain of \(f \), so by Theorem 4.2, Local Extreme Values, if \(f \) has a local extrema at such an \(x \) value then \(f' \) must be 0 at that \(x \) value. We have found all such critical points of \(f \), so there can be no other local extrema (and hence no other absolute extrema of \(f \)). Notice that we can make \(f(x) \) large and positive by making \(x \) large and negative (so \(f \) has no absolute maximum); in particular, we can make \(f \) larger than \(f(12/5) \).
Solution (continued). As shown above, $f'(x) = \frac{x(12 - 5x)}{2\sqrt{3-x}}$, so f is differentiable for all $x < 3$. Now all such x are interior points of the domain of f, so by Theorem 4.2, Local Extreme Values, if f has a local extrema at such an x value then f' must be 0 at that x value. We have found all such critical points of f, so there can be no other local extrema (and hence no other absolute extrema of f). Notice that we can make $f(x)$ large and positive by making x large and negative (so f has no absolute maximum); in particular, we can make f larger than $f(12/5)$.

The graph of f is something like (we have used red has marks to indicate critical points):
Solution (continued). As shown above, \(f'(x) = \frac{x(12 - 5x)}{2\sqrt{3-x}} \), so \(f \) is differentiable for all \(x < 3 \). Now all such \(x \) are interior points of the domain of \(f \), so by Theorem 4.2, Local Extreme Values, if \(f \) has a local extrema at such an \(x \) value then \(f' \) must be 0 at that \(x \) value. We have found all such critical points of \(f \), so there can be no other local extrema (and hence no other absolute extrema of \(f \)). Notice that we can make \(f(x) \) large and positive by making \(x \) large and negative (so \(f \) has no absolute maximum); in particular we can make \(f \) larger than \(f(12/5) \)). The graph of \(f \) is something like (we have used red has marks to indicate critical points):
Solution (continued). As shown above, \(f'(x) = \frac{x(12 - 5x)}{2\sqrt{3-x}} \), so \(f \) is differentiable for all \(x < 3 \). Now all such \(x \) are interior points of the domain of \(f \), so by Theorem 4.2, Local Extreme Values, if \(f \) has a local extrema at such an \(x \) value then \(f' \) must be 0 at that \(x \) value. We have found all such critical points of \(f \), so there can be no other local extrema (and hence no other absolute extrema of \(f \)). Notice that we can make \(f(x) \) large and positive by making \(x \) large and negative (so \(f \) has no absolute maximum); in particular we can make \(f \) larger than \(f(12/5) \). The graph of \(f \) is something like (we have used red has marks to indicate critical points):
Exercise 4.1.72

Exercise 4.1.72. If an even function \(f(x) \) has a local maximum value at \(x = c \), can anything be said about the value of \(f \) at \(x = -c \)? Give reasons for your answer.

Solution. YES! First, if \(c = 0 \) then \(c = -c \) and we can (vacuously) say that \(f \) has a local maximum at \(-c \). If \(f \) has a local maximum at \(x = c \neq 0 \), then by the definition of “local maximum” there is an open interval \(I \) containing \(c \) such that \(f(x) \leq f(c) \) for all \(x \in I \). Let \(I = (a, b) \).
Exercise 4.1.72.

If an even function \(f(x) \) has a local maximum value at \(x = c \), can anything be said about the value of \(f \) at \(x = -c \)? Give reasons for your answer.

Solution. YES! First, if \(c = 0 \) then \(c = -c \) and we can (vacuously) say that \(f \) has a local maximum at \(-c \). If \(f \) has a local maximum at \(x = c \neq 0 \), then by the definition of “local maximum” there is an open interval \(I \) containing \(c \) such that \(f(x) \leq f(c) \) for all \(x \in I \). Let \(I = (a, b) \).

Since \(f \) is hypothesized to be even, then \(f(x) = f(-x) \) for all \(x \) in the domain of \(f \). So for each \(x \in (-b, -a) \), we have \(-x \in (a, b) = I \), and for all such \(x \) we have \(f(x) = f(-x) \leq f(c) = f(-c) \). That is, there is an open interval containing \(-c \), namely \((-b, -a) \), such that for all \(x \in (-b, -a) \) we have \(f(x) \leq f(-c) \). Therefore, \(f \) has a local maximum value at \(x = -c \). □
Exercise 4.1.72. If an even function \(f(x) \) has a local maximum value at \(x = c \), can anything be said about the value of \(f \) at \(x = -c \)? Give reasons for your answer.

Solution. YES! First, if \(c = 0 \) then \(c = -c \) and we can (vacuously) say that \(f \) has a local maximum at \(-c\). If \(f \) has a local maximum at \(x = c \neq 0 \), then by the definition of “local maximum” there is an open interval \(I \) containing \(c \) such that \(f(x) \leq f(c) \) for all \(x \in I \). Let \(I = (a, b) \). Since \(f \) is hypothesized to be even, then \(f(x) = f(-x) \) for all \(x \) in the domain of \(f \). So for each \(x \in (-b, -a) \), we have \(-x \in (a, b) = I\), and for all such \(x \) we have \(f(x) = f(-x) \leq f(c) = f(-c) \). That is, there is an open interval containing \(-c\), namely \((-b, -a)\), such that for all \(x \in (-b, -a) \) we have \(f(x) \leq f(-c) \). Therefore, \(f \) has a local maximum value at \(x = -c \). □