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Exercise 4.1.2

Exercise 4.1.2

Exercise 4.1.2. Determine from the graph whether f has any absolute
extreme values on [a, b]:

Solution. First, f is continuous on [a, b] so by Theorem 4.1, The
Extreme-Value Theorem for Continuous Functions, it has both an absolute
maximum and absolute minimum. From the graph, we see that f has an
absolute maximum of f (c) and an absolute minimum of f (b). �
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Exercise 4.1.4

Exercise 4.1.4

Exercise 4.1.4. Determine from the graph whether h has any absolute
extreme values on [a, b]:

Solution. First, h is not defined on [a, b], since h is not defined at x = a
nor at x = b. In addition, h is not defined at x = c . So Theorem 4.1 does
not apply.

In fact, h has
neither an absolute maximum nor an absolute minimum .
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Exercise 4.1.4

Exercise 4.1.4 (continued)

Solution (continued). We see that
limx→a+ h(x) exists and is strictly
greater than any value of h(x) for x ∈ (a, b),
and limx→c h(x) exists and is strictly
less than any value of h(x) for x ∈ (a, b).
So these values are upper and lower bounds
on the values of h, but neither value is
attained by h on (a, b). In fact, values
of h can be made arbitrarily close to both of these values (by making x
sufficiently close to a and greater than a for the upper bound
limx→a+ h(x), and by making x sufficiently close to c for the lower bound
limx→c h(x)). This is related to the idea that there is not a least positive
real number (nor a greatest negative real number); remember that 0 is
neither positive nor negative. . . because it is too busy being 0! �
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Theorem 4.2. Local Extreme Values

Theorem 4.2

Theorem 4.2. Local Extreme Values.
If a function f has a local maximum value or a local minimum value at an
interior point c of its domain, and if f ′ exists at c , then f ′(c) = 0.

Proof. Suppose that f has a local maximum value at x = c , so that
f (x)− f (c) ≤ 0 for all values of x in some open interval containing c .
Since c is an interior point of the domain of f , then f ′(c) is (by the
alternative definition of the derivative; see Exercise 3.2.24)

f ′(c) = lim
x→c

f (x)− f (c)

x − c
.

Considering one-sided

limits and the fact that f (c) is a local maximum

of f , we have f ′(c) = lim
x→c+

f (x)− f (c)

x − c
≤ 0

since f (x)− f (c) ≤ 0 and for x → c+ we have

x − c > 0, and f ′(c) = lim
x→c−

f (x)− f (c)

x − c
≥ 0

since f (x)− f (c) ≤ 0 and for x → c− we have x − c < 0.
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Theorem 4.2. Local Extreme Values

Theorem 4.2 (continued)

Theorem 4.2. Local Extreme Values.
If a function f has a local maximum value or a local minimum value at an
interior point c of its domain, and if f ′ exists at c , then f ′(c) = 0.

Proof (continued). Since the two-sided limit exists, then the one-sided
limits must both exist and be the same by Theorem 2.6. (“Relation
Between One-Sided and Two-Sided Limits”), so we must have f ′(c) = 0.

The argument when f has a local minimum value at x = c (we then have
f (x)− f (c) ≥ 0 for all values of x in some open interval containing c and
the inequalities in the one-sided limits are reversed) is similar.
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Exercise 4.1.24

Exercise 4.1.24

Exercise 4.1.24. Find the absolute maximum and minimum values of
f (x) = 4− x3 on the interval [−2, 1]. Then graph y = f (x) and identify
the points on the graph where the absolute extrema occur.

Solution. We follow the three steps just introduced.

With f (x) = 4− x3,
we have f ′(x) = −3x2 and for Step 1 we set f ′(x) = −3x2 = 0 and see
that x = 0 is the only critical point. For Step 2, we consider the values of
f at the critical point x = 0 and the endpoints a = −2 and b = 1:

x −2 0 1

f(x) 4− (−2)3 = 12 4− (0)3 = 4 4− (1)3 = 3

By Step 3, the absolute maximum is 12 and occurs at x = −2, and the

absolute minimum is 3 and occurs at x = 1.
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Exercise 4.1.24

Exercise 4.1.24 (continued)

Solution (continued). The graph is:

�
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Exercise 4.1.44

Exercise 4.1.44

Exercise 4.1.44. Find the absolute maximum and minimum values of
h(θ) = 3θ2/3 on the interval [−27, 8].

Solution. We follow the three steps.

With h(θ) = 3θ2/3, we have

h′(θ) = 3(2/3)θ−1/3 =
2
3
√

θ
and for Step 1 we see that h′ is never 0, but h′

is undefined at θ = 0. So θ = 0 is the only critical point. For Step 2, we
consider the values of h at the critical point θ = 0 and the endpoints
a = −27 and b = 8:

θ −27 0 8

h(θ) 3(−27)2/3 = 27 3(0)2/3 = 0 3(8)2/3 = 12

By Step 3, the absolute maximum is 27 and occurs at θ = −27, and the

absolute minimum is 0 and occurs at θ = 0. �
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Exercise 4.1.60

Exercise 4.1.60

Exercise 4.1.60. Find the critical points and domain endpoints for
y = f (x) = x2

√
3− x . Then find the value of the function at each of

these points and identify extreme values (absolute and local).

Solution. First, notice that the domain of f is (−∞, 3] (that is, x ≤ 3
where 3− x ≥ 0), so 3 is an endpoint of the domain. Also, f is
nonnegative. Since the domain is not an interval of the form [a, b], we
cannot precisely follow the three steps.

But we still need the critical points
of f (x) = x2(3− x)1/2 and so consider

f ′(x) = [2x ]((3− x)1/2) + (x2)[
y

(1/2)(3− x)−1/2[−1]] =

2x
√

3− x − x2

2
√

3− x
= 2x

√
3− x

(
2
√

3− x

2
√

3− x

)
− x2

2
√

3− x
=

4x(3− x)− x2

2
√

3− x
=

12x − 5x2

2
√

3− x
=

x(12− 5x)

2
√

3− x
. The critical points are x = 0

(because f ′(0) = 0), x = 12/5 (because f ′(12/5) = 0), and x = 3
(because x = 3 is in the domain of f but f ′ is not defined at x = 3).
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Exercise 4.1.60

Exercise 4.1.60 (continued 1)

Solution (continued). We consider the values of f at the critical points
and endpoint:

x 0 12/5 3

f(x) (0)2
p

3− (0) = 0 (12/5)2
p

3− 12/5 = (144/25)
p

3/5 (3)2
p

3− (3) = 0

Since f (x) ≥ 0 for all x in its domain, then f must have an

absolute minimum at x = 0 and x = 3 of 0 . Next, we claim that f has a
local maximum at x = 12/5. This is because 12/5 is between 0 and 3, and
f (12/5) > f (0) = f (3); for if f had a larger value than f (12/5) for some
0 < x < 3, then (since f is differentiable for 0 < x < 3) by Theorem 4.2,
Local Extreme Values, f would have another critical point between 0 and
3 where the derivative is 0, but there is no such point. So f (12/5) must
be the largest value of f on the open interval (0, 3) and hence f has a

local maximum at x = 12/5 of (144/25)
√

3/5 .

() Calculus 1 August 18, 2020 12 / 14



Exercise 4.1.60

Exercise 4.1.60 (continued 1)

Solution (continued). We consider the values of f at the critical points
and endpoint:

x 0 12/5 3

f(x) (0)2
p

3− (0) = 0 (12/5)2
p

3− 12/5 = (144/25)
p

3/5 (3)2
p

3− (3) = 0

Since f (x) ≥ 0 for all x in its domain, then f must have an

absolute minimum at x = 0 and x = 3 of 0 . Next, we claim that f has a
local maximum at x = 12/5. This is because 12/5 is between 0 and 3, and
f (12/5) > f (0) = f (3); for if f had a larger value than f (12/5) for some
0 < x < 3, then (since f is differentiable for 0 < x < 3) by Theorem 4.2,
Local Extreme Values, f would have another critical point between 0 and
3 where the derivative is 0, but there is no such point. So f (12/5) must
be the largest value of f on the open interval (0, 3) and hence f has a

local maximum at x = 12/5 of (144/25)
√

3/5 .

() Calculus 1 August 18, 2020 12 / 14



Exercise 4.1.60

Exercise 4.1.60 (continued 2)

Solution (continued). As shown above, f ′(x) =
x(12− 5x)

2
√

3− x
, so f is

differentiable for all x < 3. Now all such x are interior points of the
domain of f , so by Theorem 4.2, Local Extreme Values, if f has a local
extrema at such an x value then f ′ must be 0 at that x value. We have
found all such critical points of f , so there can be no other local extrema
(and hence no other absolute extrema of f ). Notice that we can make f (x)
large and positive by making x
large and negative (so f has

no absolute maximum ; in particular,
we can make f larger than f (12/5)).

The graph of f is something like
(we have used red has marks to
indicate critical points):

�
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Exercise 4.1.60
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Exercise 4.1.72. Even Functions

Exercise 4.1.72

Exercise 4.1.72. If an even function f (x) has a local maximum value at
x = c , can anything be said about the value of f at x = −c? Give reasons
for your answer.

Solution. YES! First, if c = 0 then c = −c and we can (vacuously) say
that f has a local maximum at −c . If f has a local maximum at
x = c 6= 0, then by the definition of “local maximum” there is an open
interval I containing c such that f (x) ≤ f (c) for all x ∈ I . Let I = (a, b).

Since f is hypothesized to be even, then f (x) = f (−x) for all x in the
domain of f . So for each x ∈ (−b,−a), we have −x ∈ (a, b) = I , and for
all such x we have f (x) = f (−x) ≤ f (c) = f (−c). That is, there is an
open interval containing −c , namely (−b,−a), such that for all
x ∈ (−b,−a) we have f (x) ≤ f (−c). Therefore, f has a

local maximum value at x = −c . �
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