Chapter 4. Applications of Derivatives

4.5. Indeterminate Forms and L’Hôpital’s Rule—Examples and Proofs

Exercise 4.5.16

Exercise 4.5.16. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate $\lim_{x \to 0} \frac{\sin x - x}{x^3}$. Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Solution. With $f(x) = \sin x - x$ and $g(x) = x^3$ and $a = 0$, we have $f(a) = g(a) = 0$, $f'(x) = \cos x - 1$, and $g'(x) = 3x^2$. So the hypotheses of l’Hôpital’s Rule hold, but $f'(a)/g'(a)$ does not exist since $g'(0) = 0$. However, $\lim_{x \to 0} f'(x)/g'(x)$ is itself of the $0/0$ indeterminate form so that we may attempt to apply l’Hôpital’s Rule to that (or maybe even $\lim_{x \to 0} f''(x)/g''(x)$). We then have

\[
\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = \frac{0}{0}
\]

\[
\lim_{x \to 0} \frac{-\cos x}{6} = \frac{-\cos(0)}{6} = \frac{-1}{6}.
\]

Exercise 4.5.38

Exercise 4.5.38. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate $\lim_{x \to 0^+} (\ln x - \ln \sin x)$. Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Solution. First, we rewrite the function $\ln x - \ln \sin x$ as $\ln \frac{x}{\sin x}$. Then

\[
\lim_{x \to 0^+} (\ln x - \ln \sin x) = \lim_{x \to 0^+} \frac{x}{\sin x}
\]

\[
= \ln \left(\lim_{x \to 0^+} \frac{x}{\sin x} \right)
\]

\[
= \ln \left(\lim_{x \to 0^+} \frac{1}{\cos x} \right)
\]

\[
= \ln \left(\frac{1}{\cos(0)} \right)
\]

\[
= \ln(1) = 0.
\]
Exercise 4.5.46

Exercise 4.5.46. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate \(\lim_{x \to \infty} x^2 e^{-x} \). Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Proof. With \(f(x) = e^{-x} \) and \(g(x) = x^2 \) we have
\[\lim_{x \to \infty} g(x) = \lim_{x \to \infty} x^2 = \infty \text{ and} \]
\[\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{-x} = \lim_{x \to \infty} e^x = 0 \] by Example 2.6.5 (where we have replaced \(x \) with \(-x\)). So \(\lim_{x \to \infty} x^2 e^{-x} \) is of the \(0 \cdot \infty \) indeterminate form. We rewrite the function \(x^2 e^{-x} \) as \(x^2 / e^x \) and note that \(\lim_{x \to \infty} x^2 = \infty \) and \(\lim_{x \to \infty} e^x = \infty \), so that \(\lim_{x \to \infty} x^2 / e^x \) is of the \(\infty / \infty \) indeterminate form. So we have by Theorem 4.5.A, “L’Hôpital’s Rule for \(\infty / \infty \) Indeterminate Forms,” that
\[
\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = \frac{2 \lim_{x \to \infty} e^{-x}}{x} = 2(0) = 0 \] by Example 2.6.5. \(\square \)

Exercise 4.5.40

Exercise 4.5.40. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate \(\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) \). Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Solution. With \(f(x) = (3x + 1)/x \) and \(g(x) = 1/\sin x = \csc x \) we have
\(\lim_{x \to 0^+} (3x + 1)/x = \infty \) (by Dr. Bob’s Infinite Limits Theorem) and \(\lim_{x \to 0^+} \csc x = \infty \) (see the graph of \(y = \csc x \)), so
\(\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) \) is of the \(\infty - \infty \) indeterminate form. So we get a common denominator as follows
\[
\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0^+} \left(\frac{(3x + 1) \sin x - x}{x \sin x} - \frac{1}{x \sin x} \right)
= \lim_{x \to 0^+} \frac{(3x + 1) \sin x - x}{2 \cos x - x \sin x} \geq \lim_{x \to 0^+} \frac{[3(\sin x) + (3x + 1)(\cos x) - 1]}{[3(\sin x) + (3x + 1)(\cos x) - 1]}
= \lim_{x \to 0^+} \frac{6 \cos x - (3x + 1) \sin x}{6 \cos x - (3(0) + 1) \sin(0)} = \frac{6}{2} = 3 \square
\]

Exercise 4.5.32

Exercise 4.5.32. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate \(\lim_{x \to \infty} \frac{\log_2 x}{\log_3 (x + 3)} \). Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Solution. With \(f(x) = \log_2 x \) and \(g(x) = \log_3 (x + 3) \), we have
\(\lim_{x \to \infty} \log_2 x = \lim_{x \to \infty} \log_3 (x + 3) = \infty \), so
\(\lim_{x \to \infty} \frac{\log_2 x}{\log_3 (x + 3)} \) is of the \(\infty / \infty \) indeterminate form. So by Theorem 4.5.A, “L’Hôpital’s Rule for \(\infty / \infty \) Indeterminate Forms,”
\[
\lim_{x \to \infty} \frac{\log_2 x}{\log_3 (x + 3)} = \lim_{x \to \infty} \frac{(1/\ln 2)(1/x)}{(1/\ln 3)(1/(x + 3))}
= \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{x + 3}{x} = \frac{\ln 3}{\ln 2} \lim_{x \to \infty} \frac{1}{1} = \frac{\ln 3}{\ln 2} \square
\]

Exercise 4.5.40 (continued)

Exercise 4.5.40. Use l’Hôpital’s Rule (Theorem 4.6) to evaluate \(\lim_{x \to 0^+} \left(\frac{3x + 1}{x} - \frac{1}{\sin x} \right) \). Write the indeterminate form over the equal sign when you use l’Hôpital’s Rule.

Solution (continued). . .
\[
= \lim_{x \to 0^+} \frac{3(\sin x) + (3x + 1)(\cos x) - 1}{[3(\sin x) + (3x + 1)(\cos x) - 1]} = \lim_{x \to 0^+} \frac{3 \sin x + (3x + 1) \cos x - 1}{\sin x + x \cos x}
= \lim_{x \to 0^+} \frac{3 \cos x + [3(\cos x) + (3x + 1)(-\sin x)]}{\cos x + [3(\cos x) + (x)\sin x]}
= \lim_{x \to 0^+} \frac{6 \cos x - (3x + 1) \sin x}{6 \cos x - (3(0) + 1) \sin(0)} = \frac{6}{2} = 3 \square
\]
Theorem 4.5.B

Theorem 4.5.B. If \(\lim_{x \to a} \ln f(x) = L \) then
\[
\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{\lim_{x \to a} \ln f(x)} = e^L.
\]

Here, \(a \) may be finite or infinite.

Proof. Suppose \(\lim_{x \to a} \ln f(x) = L \). Then by the definition of limit, \(\ln f(x) \) is defined on some open interval \(I \) containing \(a \), except possibly at \(a \) itself. Since the natural logarithm is the inverse of the natural exponential, then \(e^{\ln f(x)} = f(x) \) on \(I \) except possibly at \(x = a \). Since the natural exponential function is continuous everywhere (in particular, at \(L \)) then
\[
\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{\lim_{x \to a} \ln f(x)} = e^L,
\]
as claimed. \(\square \)

Exercise 4.5.52

Exercise 4.5.52. Use l'Hôpital's Rule (Theorem 4.6) to evaluate \(\lim_{x \to 1^+} x^{1/(x-1)} \). Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With \(f(x) = x \) and \(g(x) = 1/(x-1) \), we have \(\lim_{x \to 1^-} f(x) = 1 \) and \(\lim_{x \to 1^+} g(x) = \infty \), so \(\lim_{x \to 1^+} x^{1/(x-1)} \) is of the \(1^\infty \) indeterminate form. We take a natural logarithm to get
\[
\lim_{x \to 1^+} \ln(x^{1/(x-1)}) = \lim_{x \to 1^+} \frac{1}{x-1} \ln x = \lim_{x \to 1^+} \frac{\ln x}{x-1}.
\]

\(\frac{0}{0} \)

\[
\lim_{x \to 1^+} \frac{\ln x}{x-1} = \frac{1/(1)}{1} = 1.
\]

So by Theorem 4.5.B, \(\lim_{x \to 1^+} x^{1/(x-1)} = e^{\lim_{x \to 1^+} \ln x^{1/(x-1)}} = e^1 = 2 \). \(\square \)

Exercise 4.5.58

Exercise 4.5.58. Use l'Hôpital's Rule (Theorem 4.6) to evaluate \(\lim_{x \to 0} (e^x + x)^{1/x} \). Write the indeterminate form over the equal sign when you use l'Hôpital's Rule.

Solution. With \(f(x) = e^x + x \) and \(g(x) = 1/x \), we have \(\lim_{x \to 0^-} f(x) = 1 \), \(\lim_{x \to 0^-} g(x) = \lim_{x \to 0^+} 1/x = \infty \), and \(\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} 1/x = -\infty \), so both \(\lim_{x \to 0^-} (e^x + x)^{1/x} \) and \(\lim_{x \to 0^+} (e^x + x)^{1/x} \) are of the \(1^\infty \) indeterminate form. To evaluate \(\lim_{x \to 0^+} (e^x + x)^{1/x} \), we take a natural logarithm to get
\[
\lim_{x \to 0^+} \ln(e^x + x)^{1/x} = \lim_{x \to 0^+} (1/x) \ln(e^x + x) = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}.
\]

\(\frac{0}{0} \)

\[
\lim_{x \to 0^+} \frac{\ln(e^x + x)}{x} = \lim_{x \to 0^+} \frac{1/(e^x + x) \cdot (e^x + 1)}{1} = \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x} = \frac{e^0 + 1}{e^0 + 0} = 1.
\]

So by Theorem 4.5.B, \(\lim_{x \to 0} (e^x + x)^{1/x} = e^{\lim_{x \to 0^-} \ln(e^x + x)^{1/x}} = e^2 \). Therefore by Theorem 2.6, “Relation Between One-Sided and Two-Sided Limits,” \(\lim_{x \to 0} (e^x + x)^{1/x} = e^2 \). \(\square \)
Exercise 4.5.81(b)

Exercise 4.5.81(b). Use l'Hôpital’s Rule (Theorem 4.6) to evaluate

\[\lim_{x \to \infty} (x - \sqrt{x^2 + x}) \]

Write the indeterminate form over the equal sign when you use l'Hôpital's Rule. HINT: As the first step, multiply by \((x + \sqrt{x^2 + x})/(x + \sqrt{x^2 + x})\) and simplify the new numerator.

Solution. Notice that \(\lim_{x \to \infty} x = \infty\) and \(\lim_{x \to \infty} \sqrt{x^2 + x} = \infty\), so that \(\lim_{x \to \infty} (x - \sqrt{x^2 + x})\) is of an \(\infty - \infty\) indeterminate form. We follow the hint and consider

\[
\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \left(\frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \right) \left(\frac{x}{x} \right) = \lim_{x \to \infty} \frac{x}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}
\]

Theorem 4.7. Cauchy’s Mean Value Theorem.

Theorem 4.7. Cauchy’s Mean Value Theorem.

Suppose functions \(f\) and \(g\) are continuous on \([a, b]\) and differentiable throughout \((a, b)\) and also suppose \(g'(x) \neq 0\) throughout \((a, b)\). Then there exists a number \(c\) in \((a, b)\) at which

\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.
\]

Proof. First, notice that \(f\) and \(g\) both satisfy the hypotheses of the Mean Value Theorem (Theorem 4.4). We claim that \(g'(a) \neq g'(b)\), for if \(g(a) = g(b)\) then by the Mean Value Theorem we have

\[
g'(c) = \frac{g(b) - g(a)}{b - a} = 0 \text{ for some } c \in (a, b) \text{ contradicting the hypotheses of the theorem. Next, consider}
\]

\[
F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)).
\]

Since \(f\) and \(g\) are continuous on \([a, b]\) then so is \(F\), since \(f\) and \(g\) are differentiable on \((a, b)\) then so is \(F\), and \(F(a) = F(b) = 0\).

Solution (continued).

\[
\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}}
\]

\[
\Rightarrow \lim_{x \to \infty} \frac{-1}{1 + (1/2)(x^2 + x)^{-1/2}[2x + 1]} = \lim_{x \to \infty} \frac{-1}{1 + (2x + 1)/(2\sqrt{x^2 + x})} = \frac{-1}{1 + 1} = \frac{-1}{2}
\]

because

\[
\lim_{x \to \infty} \frac{2x + 1}{2\sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{2x + 1}{2\sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{(2x + 1)/x}{2\sqrt{x^2 + x}/x} = \lim_{x \to \infty} \frac{2 + 1/x}{2\sqrt{1 + 1/x}} = 2/2 = 1.
\]

Theorem 4.7 (continued).

Theorem 4.7. Cauchy’s Mean Value Theorem.

Suppose functions \(f\) and \(g\) are continuous on \([a, b]\) and differentiable throughout \((a, b)\) and also suppose \(g'(x) \neq 0\) throughout \((a, b)\). Then there exists a number \(c\) in \((a, b)\) at which

\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.
\]

Proof (continued). Since \(f\) and \(g\) are continuous on \([a, b]\) then so is \(F\), since \(f\) and \(g\) are differentiable on \((a, b)\) then so is \(F\), and \(F(a) = F(b) = 0\). So by Rolle’s Theorem (Theorem 4.3) there is \(c \in (a, b)\) such that \(F'(c) = 0\). Since \(F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(x)\),

then \(F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) = 0\) and hence

\[
\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}
\]

as claimed. \(\square\)
Suppose that \(f(a) = g(a) = 0 \), that \(f \) and \(g \) are differentiable on an open interval \(I \) containing \(a \), and that \(g'(x) \neq 0 \) on \(I \) if \(x \neq a \). Then
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},
\]
assuming that the limit on the right side of this equation exists.

Proof. We consider one-sided limits. Suppose \(x \to a^+ \) and \(x \in I \). Then \(g'(x) \neq 0 \), so by Cauchy's Mean Value Theorem (Theorem 4.7) applied on the interval \([a, x]\) we have for some \(c \in (a, x) \) that
\[
\frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)}.
\]
Since \(f(a) = g(a) = 0 \) by hypothesis, then \(\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}. \) Notice that as \(x \to a^+ \) then \(c \to a^+ \) (since for any given \(x \), the corresponding \(c \) is between \(a \) and \(x \)).

Theorem 4.6 (continued).
Suppose that \(f(a) = g(a) = 0 \), that \(f \) and \(g \) are differentiable on an open interval \(I \) containing \(a \), and that \(g'(x) \neq 0 \) on \(I \) if \(x \neq a \). Then
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},
\]
assuming that the limit on the right side of this equation exists.

Proof (continued). Therefore
\[
\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(c)}{g'(c)},
\]
so l'Hôpital's Rule holds as \(x \to a^+ \). The same argument (except with Cauchy's Mean Value Theorem applied on the interval \([x, a]\)) shows that l'Hôpital's Rule holds as \(x \to a^- \) also. So by Theorem 2.6, "Relation Between One-Sided and Two-Sided Limits," the claim holds. \(\square \)