Calculus 1

Chapter 4. Applications of Derivatives

4.7. Newton's Method—Examples and Proofs

Calculus 1 September 7, 2020 1 /

Exercise 4.7.16. Locating a Planet

Exercise 4.7.16

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x = 1 + 0.5 \sin x$. Graphing the function $f(x) = x - 1 - 0.5 \sin x$ suggests that the function has a root near x = 1.5. Use one application of Newton's Method to improve this estimate. That is, start with $x_0 = 1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution. Notice that the equation $f(x) = x - 1 - 0.5 \sin x = 0$ is equivalent to the desired equation $x = 1 + 0.5 \sin x$. With $f(x) = x - 1 - 0.5 \sin x$, we have $f'(x) = 1 - 0.5 \cos x$. With $x_0 = 1.5$ we have $f(x_0) = f(1.5) = (1.5) - 1 - 0.5 \sin(1.5) = 0.5 - 0.5 \sin(1.5)$ and $f'(x_0) = f'(1.5) = 1 - 0.5 \cos(1.5)$. So

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \left[1.5 - \frac{0.5 - 0.5\sin(1.5)}{1 - \cos(1.5)} \right] \approx 1.498652.$$

Exercise 4.7.2

Exercise 4.7.2

Exercise 4.7.2. Use Newton's Method to estimate the one real solution of $x^3 + 3x + 1 = 0$. Start with $x_0 = 0$ and then find x_2 .

Solution. First, we set $f(x) = x^3 + 3x + 1$ so that we can apply Newton's Method to the equation f(x) = 0, as needed. We then have $f'(x) = 3x^2 + 3$. We make a table of relevant values, as the text does in its Example 4.7.2:

n	X _n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - f(x_n)/f'(x_n)$
0	0	$(0)^3 + 3(0) + 1 = 1$	$3(0)^2 + 3 = 3$	(0) - (1)/(3) = -1/3
1	-1/3	$(-1/3)^3 + 3(-1/3) + 1$	$3(-1/3)^2+3$	(-1/3) - (-1/27)/(10/3)
		= -1/27	= 10/3	= -29/90

So two applications of Newton's Method produces $x_2 = -29/90$. \Box

() Calculus 1 September 7, 2020 3 / 14

Exercise 4.7.16. Locating a Plan

Exercise 4.7.16 (continued)

Exercise 4.7.16. Locating a Planet.

To calculate a planet's space coordinates, we have to solve equations like $x=1+0.5\sin x$. Graphing the function $f(x)=x-1-0.5\sin x$ suggests that the function has a root near x=1.5. Use one application of Newton's Method to improve this estimate. That is, start with $x_0=1.5$ and find x_1 . (The value of the root is 1.49870 to five decimal places.)

Solution (continued). ...

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \left[1.5 - \frac{0.5 - 0.5\sin(1.5)}{1 - \cos(1.5)} \right] \approx 1.498652.$$

Notice that if we round our approximation to four decimal places, then it agrees with the "correct" answer to four decimal places (but not to five decimal places). \Box

 Calculus 1
 September 7, 2020
 4 / 14

 ()
 Calculus 1
 September 7, 2020
 5 / 14

Exercise 4.7.30

Exercise 4.7.30. Factoring a Quartic.

Find the approximate values of r_1 through r_4 in the factorization

$$8x^4 - 14x^3 - 9x^2 + 11x - 1 = 8(x - r_1)(x - r_2)(x - r_3)(x - r_4).$$

Solution. Let $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$ so that finding a root is the same as finding a solution to the equation f(x) = 0. Calculus 1

September 7, 2020 6 / 14

Exercise 4.7.30 (continued 2)

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. It looks like a solution is given by x = 2. So to find the root close to 2, we start with $x_0 = 2$.

n	×n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	2	$8(2)^4 - 14(2)^3 - 9(2)^2$	$32(2)^3 - 42(2)^2$	$(2) - \frac{(1)}{(63)}$
		+11(2)-1=1	-18(2) + 11 = 63	$=\frac{125}{63}\approx 1.98412$
1	125 63	$8(\frac{125}{63})^4 - 14(\frac{125}{63})^3 - 9(\frac{125}{63})^2 + 11(\frac{125}{63}) - 1 \approx 0.02474$	$32(\frac{125}{63})^3 - 42(\frac{125}{63})^2 -18(\frac{125}{63}) + 11 \approx 59.89481$	$\begin{array}{c} \frac{125}{63} - \frac{0.02474}{59.89481} \\ \approx 1.98371 \end{array}$

We have $x_2 \approx 1.98371$ and so take the root as $r_4 = 1.98371$.

Exercise 4.7.30 (continued 1)

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. It looks like a solution is given by x = -1. So to find the root close to -1, we start with $x_0 = -1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values ...

n	Xn	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	-1	$8(-1)^4 - 14(-1)^3 - 9(-1)^2$	$32(-1)^3 - 42(-1)^2$	$(-1) - \frac{(1)}{(-45)}$
		+11(-1)-1=1	-18(-1)+11=-45	$=\frac{-44}{45}\approx -0.97778$
1	$\frac{-44}{45}$	$8(\frac{-44}{45})^4 - 14(\frac{-44}{45})^3 - 9(\frac{-44}{45})^2$	$32(\frac{-44}{45})^3 - 42(\frac{-44}{45})^2$	$\frac{-44}{45} - \frac{0.03950}{-41.46780}$
		$+11(\frac{-44}{45}) - 1 \approx 0.03950$	$-18(rac{-44}{45}) + 11 pprox -41.46780$	≈ -0.97683

We have $x_2 \approx -0.97683$ and so take the first root as $r_1 = -0.97683$.

September 7, 2020 7 / 14

Exercise 4.7.30 (continued 3)

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. We start with $x_0 = 0$ and look for the root which is a bit greater than 0.

п	Xn	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	0	$8(0)^4 - 14(0)^3 - 9(0)^2$	$32(0)^3 - 42(0)^2$	$(0) - \frac{(-1)}{(11)}$
		+11(0)-1=-1	-18(0)+11=11	$=\frac{1}{11}\approx 0.09091$
1	$\frac{1}{11}$	$8(\frac{1}{11})^4 - 14(\frac{1}{11})^3 - 9(\frac{1}{11})^2$	$32(\frac{1}{1})^3 - 42(\frac{1}{11})^2$	$\frac{1}{11} - \frac{-0.08435}{9.01057}$
		$+11(\frac{1}{11})-1 \approx -0.08435$	$-18(rac{1}{11}) + 11 pprox 9.01057$	pprox 0.10026

We have $x_2 \approx 0.10026$ and so take the root as $r_2 = 0.10026$.

Calculus 1 September 7, 2020 9 / 14

Exercise 4.7.30 (continued 4)

Solution (continued). With $f(x) = 8x^4 - 14x^3 - 9x^2 + 11x - 1$, we have $f'(x) = 32x^3 - 42x^2 - 18x + 11$. We start with $x_0 = 1$ and look for the root which is a bit less than 1 (we iterate Newton's Method more here since our guess is more crude).

n	×n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	1	$8(1)^4 - 14(1)^3 - 9(1)^2$	$32(1)^3 - 42(1)^2$	$(1) - \frac{(-5)}{(-17)}$
		+11(1)-1=-5	-18(1) + 11 = -17	$=\frac{12}{17}\approx 0.70588$
1	12 17	$8(\frac{12}{17})^4 - 14(\frac{12}{17})^3 - 9(\frac{12}{17})^2$	$32(\frac{12}{17})^3 - 42(\frac{12}{17})^2$	$\frac{12}{17} - \frac{-0.65762}{-11.37818}$
		$+11(\frac{12}{17})-1 \approx -0.65762$	$-18(rac{12}{17}) + 11 pprox -11.37818$	≈ 0.64809
2	0.64809	$8(0.64809)^4 - 14(0.64809)^3 - 9(0.64809)^2$	$32(0.64809)^3 - 42(0.64809)^2$	$0.64809 - \frac{-0.05081}{-9.59573}$
		$+11(0.64809) - 1 \approx -0.05081$	$-18(0.64809) + 11 \approx -9.59573$	≈ 0.64280

Calculus 1

We have $x_3 \approx 0.64280$ and so take the root as $r_3 = 0.64280$.

Exercise 4.7.20

Exercise 4.7.20. Intersecting Curves.

(a) Does $\cos 3x$ ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution. A very careful graph of $y = \cos 3x$ and y = x suggests that there are three points of intersection.

We show that there is a solution in $[0, \pi/3]$.

Exercise 4.7.30 (continued 5)

Solution (continued). We approximate the roots as $r_1 = -0.97683$ $r_2 = 0.10026$, $r_3 = 0.64280$, and $r_4 = 1.98371$. \square

Note. A computer algebra system, such as Wolfram Alpha, gives the values to five decimal places as $r_1 = -0.97682$, $r_2 = 0.10036$, $r_3 = 0.64274$, and $r_4 = 1.98371$.

Calculus 1

Exercise 4.7.20 (continued 1)

Exercise 4.7.20. Intersecting Curves.

(a) Does $\cos 3x$ ever equal x? Give reasons for your answer. (b) Use Newton's Method to find where.

Solution (continued). We consider $f(x) = \cos(3x) - x$ so that the equation $\cos 3x = x$ is equivalent to the equation f(x) = 0.

(a) We have $f(0) = \cos(3(0)) - (0) = 1 > 0$ and $f(\pi/3) = \cos(3(\pi/3)) - (\pi/3) = -1 - \pi/3 < 0$. Since $f(x) = \cos(3x) - x$ is continuous, f(0) > 0, and $f(\pi/3) < 0$ then by the Intermediate Value Theorem (Theorem 2.11), YES, there exists $r \in [0, \pi/3]$ such that f(r) = 0. \square

(b) Based on the graph, we start with $x_0 = \pi/6$. We have $f(x) = \cos(3x) - x$ then $f'(x) = -3\sin(3x) - 1$. We make a table, but we are forced to use numerical approximations (rounded to five decimal places) instead of exact values . . . 😊

Calculus 1

September 7, 2020 11 / 14

September 7, 2020

10 / 14

Exercise 4.7.20 (continued 2)

Solution (continued).

n	×n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - f(x_n)/f'(x_n)$
0	$\pi/6$	$\cos(3(\pi/6)) - (\pi/6)$	$-3\sin(3(\pi/6))-1$	$(\pi/6) - \frac{\cos(\pi/2) - (\pi/6)}{-3\sin(\pi/2) - 1}$
	≈ 0.52360	$=-\pi/6 \approx -0.52360$	= -4	≈ 0.39270
1	0.39270	$\cos(3(0.39270)) - (0.39270)$	$-3\sin(3(0.39270)) - 1$	$(0.39270) - \frac{\cos(3(0.39270)) - (0.39270)}{-3\sin(3(0.39270)) - 1}$
		≈ -0.01002	≈ -3.77164	$\approx (0.39270) - \frac{-0.01002}{-3.77164} \approx 0.39004$
2	0.39004	cos(3(0.39004)) - (0.39004)	-3 sin(3(0.39004))	$(0.39004) - \frac{\cos(3(0.39004)) - (0.39004)}{-3\sin(3(0.39004))}$
		≈ 0.000001	≈ -3.76239	$\approx (0.39004) - \frac{-3\sin(3(0.39004))}{-0.000001} \approx 0.39004$

Notice that $f(x_2) \approx f(x_3) = f(0.39004) \approx 0.000001$ and to five decimal places x_2 and x_3 are the same. So we approximate the solution of $\cos 3x = x$ for $x \in [0, \pi/3]$ as 0.39004.

In fact, a computer algebra system, such as Wolfram Alpha, gives the solution to nine decimal places as 0.390040317 (so our x_2 is, in fact, accurate to four decimal places). The other two solutions to the equation are approximately -0.979367 and -0.887726.

() Calculus 1 September 7, 2020 14 / 14