Calculus 1

Exercise 5.2.2

Chapter 5. Integrals

5.2. Sigma Notation and Limits of Finite Sums—Examples and Proofs

Early Transcendentals
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Exercise 5.2.12

Exercise 5.2.12. Express the sum 144 + 9 4 16 in sigma notation.

Solution. Notice that these numbers 1, 4, 9, and 16 are the squares of
the natural numbers 1, 2, 3, and 4 (respectively). So we have:

1+4+9+16=1%2+22+32+42= O
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3
k—1
Exercise 5.2.2. Write the sum Z 0 without the sigma notation and

k=1
then evaluate the sum.

Solution. We have

3
k=1 (1)-1 (-1 (3)-1 2 [7
= —04+-+=|-| O
2T T e %t
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Exercise 5.2.18

Exercise 5.2.18. Suppose that Z ar =0 and Z by = 1. Find the
k=1 k=1

n n n
values of: (a) ZSak, (b) Z250bk, (c) Z(ak +1), and
k=1 k=1 k=1

(d) > (b —1).
k=1

Solution. (a) We have
n n
ZSak SZak by Theorem 5.2.A(3), “Constant Multiple Rule”
k=1 k=1

n
8(0) = @ since Z ax =0.
k=1



Exercise 5.2.18 (continued 1) Exercise 5.2.18 (continued 2)

n n Exercise 5.2.18. Suppose that Z ax =0 and Z bx = 1. Find the
Exercise 5.2.18. Suppose that Z ar =0 and Z by = 1. Find the k=1 k=1

n o = values of: (c) y (ax +1), and (d) s (bx — 1).
values of: (b) > 2505, (c) > (ax+1), and (d) > (b — 1). e kz_; i i kz_; '
k=1 k=1 k=1

Solution. (c) We have
Solution. (b) We have

n n n

n n Z(ak +1) = Z(ak) + Z(l) by Theorem 5.2.A(1), “Sum Rule"
> 250b, = 250 by by Theorem 5.2.A(3), “Constant Multiple Rule” k=1 k=1 k=1
k=1 n n
n = (0) + n(1) since Zak =0 and Z(l) =
= 250(1) = since Z by =1. k=1 k=1
k=1 by Theorem 5.2.A(4), “Constant Value Rule"
~ [n)
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Exercise 5.2.18 (continued 3) Exercise 5.2.24
n n 6
Exercise 5.2.18. Suppose that Z ar = 0 and Z by = 1. Find the Exercise 5.2.24. Evaluate the sum using Theorem 5.2.B: Z(k2 -
k= k= k=1
' ' Solution. We have

n
values of: (d) Z(bk —1). 6 6 6
k=1 Z(k2 -5) = Z k? — Z 5 by Theorem 5.2.A(2), "“Difference Rule’

Solution. (d) We have k=1 k=1
n n n G 6)( )1 _ g5) since
D (bk—1) = > (bk)+ > _(~1) by Theorem 5.2.A(1), "Sum Rule" n
k=1 k=1 k=1 k? = n(n + 1)6(2n +1) by Theorem 5.2.B(2) and
n n k=1
= (1)+n(-1)since > be=1& » (~1)=n(-1) = —n 6
by Theorem 5.2.Aé(4:)1, “Constantk\z/élue Rule” Z( )= 6(5) =30 by Thm 5.2.A(4), Const. Mult. Rule

k=1
= [1-n| O (6)(76)( 3 _3p—91-30=[61] O



Exercise 5.2.28 (continued)

Exercise 5.2.28

Solution. We have
Exercise 5.2.28. Evaluate the sum using Theorem 5.2.B:

Py
M\.
N
|
M\.
I
I

(3r) i3

k=1 k=1
k=1 k=1 by Theorem 5.2.A(3), “Constant Multiple Rule”
_ (Mm+1 1 <(7)((7) + 1)>2
Solution. We have 2 4 2

1
! 1~ 5 since Zk— n+ n(n+1) by Theorem 5.2.B(1)
D k=32 k
4
k=1 k=1

by Theorem 5.2.A(3), “Constant Multiple Rule” and Z k3 = < nt 1)> by Theorem 5.2.B(3)

= 28—196:. O
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Exercise 5.2.38 Exercise 5.2.38

Exercise 5.2.38

Exercise 5.2.38. Graph function f(x) = —x? over interval [0, 1]. Partition
the interval into four subintervals of equal length. Then add to your sketch
the rectangles associated with the Riemann sum S"7_; f(ck)Ax, given
that ¢y is the (@) left-hand endpoint, (b) right-hand endpoint, (c)
midpoint of the kth subinterval. (Make a separate sketch for each set of
rectangles.)

Solution. The graph of f(x) = —x? 1
over interval [0, 1], along with
the “area” between the curve
and the x-axis, are:
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Exercise 5.2.38 (continued 1)

Solution (continued). (a) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on left-endpoints

(right):

1 1 3 1 1 3
4 2 4 1 4 2 4 1
] 1 1 ]
T I 1
y = —XZ y= _XZ
—1 < 14
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Exercise 5.2.38

Exercise 5.2.38 (continued 2)

Solution (continued). (b) The graph and the partitioning of the interval

is given here (left), along with the rectangles based on right-endpoints
(right):

B
N =
S w
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Example 5.2.5

Example 5.2.5

Example 5.2.5. Partition the interval [0,1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x?
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

v

1 e

Figure 5.4(a)
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Exercise 5.2.38

Exercise 5.2.38 (continued 3)

Solution (continued). (c) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on midpoints (right):

1 1 3 1 1 3
4 2 4 1 4 2 4 1
} ; } B
y=—x? y=—x?
=14 —1
U
Calculus 1 October 10, 2020 15 / 22

Example 5.2.5

Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0,1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x?
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0,1] into n subintervals of
the same width, then that width will be

Ax = (b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,...,n, where xx = a+ kAx =0+ k(1/n) = k/n for
k=0,1,...,n.

Ax=1/n

Ax =1/n Ax=1/n
r ) Y ) ) kth subinterval ——
. N . . .
T T t —— t t
=g Xy X2 Xr—1 X Xp—1 b=x,
— xp + Ax =xo+20x  =xo+(k—1DAx  =xy+kAx =xo+ (n — 1)Ax

Since y = f(x) = 1 — x? is a decreasing function, we use the right-hand
endpoint in determining the function value used for a given subinterval.
That is, we take ¢, = xx = k/n.
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Example 5.2.5 (continued 2)

Example 5.2.5. Partition the interval [0,1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x?
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution (continued). With ¢, = xx = k/n and Ax,x = Ax = 1/n (when
Axy is the same for all k, the partition is called regular), we have the
Riemann sum:

s,,_Zf ck)Axk_Zf k/n)(1/n) =

n

> (L= (k/n?)(1/n)

k=1

S (S B SR ol

k=1
1 1 n(n+1)2n+1)
= ;(n) -3 6 by Theorem 5.2.B(2)
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Exercise 5.2.48

Exercise 5.2.48. For the function f(x) = 3x + 2x2, find a formula for the
Riemann sum obtained by dividing the interval [a, b] = [0, 1] into n equal
subintervals and using the right-hand endpoint for each c,. Then take a

limit of these sums as n — oo to calculate the area under the curve over
[0,1].

Solution. If we partition the interval [a, b] =
the same width, then that width will be

Ax = (b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,...,n, where x, = a+ kAx = 0+ k(1/n) = k/n for
k=0,1,...,n. Using the right-hand endpoint for cx, we have

ck = xk = k/n. We have the Riemann sum:

[0,1] into n subintervals of

n

> _(3(k/n) +2(k/n)?) (1/n)

k=1

sn=>_fla)bxe=Y_ f(k/n)(1/n) =
k=1 k=1
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Example 5.2.5 (continued 3)

Solution (continued).

Sn:%(n)_ln(n+1)(2n+1) 1 (n+1)(2n+1).

n3 6 B 6n?

The limit as n — oo of the Riemann sum is:

lim s, = lim (1_w>:1_ i (1r)@n+1)

n— o0 n—o0 6n2 n—o0o 6n?

2 2 2 2
1 Im 2n*+3n+1 (1/n 1 Im (2n* +3n+1)/n
n—00 6n? 1/n? n—o0 6n2/n?
1 g 2F3/n+ 1/n% L 24 3limnoo(1/n) + (limp o 1/n)?
2
_ 12430407, _2_|2| 4
6 6 3
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Exercise 5.2.48 (continued 1)

Solution (continued).

n

sn=>_ fla) Dxe =Y f(k/n)(1/n) = (3(k/n) +2(k/n)*) (1/n)

k=1 k=1 k=1

== Z ( k + —k2> by Theorem 5.2.A(3)
Z k2 by Theorem 5.2.A(1,3)

3
:_2§:
k=1 k=1

( n—|—1> %( ”+1)(2”+1)> by Theorem 5.2.B(1,2)

6
3(n+1) n (n+1)(2n+1)
- 2n 3n? ’
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Exercise 5.2.48 (continued 2)

Solution (continued). Taking a limit as n — oo of the Riemann sum

gives:
lim s, — lim 3(n+1) N (n+1)(2n+1)
n—00 n—0o0 2n 3n2
_ im 3(n+1) . (n+1)(2n+1)
n—o00 2n n—oo 3n?
. 3(n+1) (1/n . (n+1)2n+1) [1/n?
= lim ——— | — |
oo 2n (1/n> T 3n2 1/n?
22 2 2
~ im 3(n—|—1)/n+ im 2n?/n* +3n/n* +1/n
n—oo  2n/n n—o0 3n?/n?
2 2
— lim 3—|—1/n+ im 2+3/n+1/n :3+(0)+2+3(0)+(0)
n—oo n—oo 3 2 3
3 2 13
=—+4+-=|—| O
2 + 3 6




