
Calculus 1

Chapter 5. Integrals

5.2. Sigma Notation and Limits of Finite Sums—Examples and Proofs

Calculus 1

October 10, 2020

1 / 23

()

Calculus 1

October 10, 2020

3 / 22

Exercise 5.2.1

Exercise 5.2.12

Exercise 5.2.12. Express the sum 1+4+9+16 in sigma notation.

Solution. Notice that these numbers 1, 4, 9, and 16 are the squares of the natural numbers 1, 2, 3, and 4 (respectively). So we have:

$$1+4+9+16=1^2+2^2+3^2+4^2=\boxed{\sum_{k=1}^4 k^2}.$$

Exercise 5.2.2

Exercise 5.2.2. Write the sum $\sum_{k=1}^{3} \frac{k-1}{k}$ without the sigma notation and then evaluate the sum.

Solution. We have

$$\sum_{k=1}^{3} \frac{k-1}{k} = \frac{(1)-1}{(1)} + \frac{(2)-1}{(2)} + \frac{(3)-1}{(3)} = 0 + \frac{1}{2} + \frac{2}{3} = \boxed{\frac{7}{6}}. \quad \Box$$

Exercise 5.2.1

Exercise 5.2.18

Exercise 5.2.18. Suppose that $\sum_{k=1}^{n} a_k = 0$ and $\sum_{k=1}^{n} b_k = 1$. Find the

values of: **(a)** $\sum_{k=1}^{n} 8a_k$, **(b)** $\sum_{k=1}^{n} 250b_k$, **(c)** $\sum_{k=1}^{n} (a_k + 1)$, and

(d)
$$\sum_{k=1}^{n} (b_k - 1)$$
.

Solution. (a) We have

$$\sum_{k=1}^{n} 8a_k = 8\sum_{k=1}^{n} a_k \text{ by Theorem 5.2.A(3), "Constant Multiple Rule"}$$

$$= 8(0) = \boxed{0} \text{ since } \sum_{k=1}^{n} a_k = 0.$$

Calculus 1 October 10, 2020 4 / 22

Calculus 1 Octob

Exercise 5.2.18 (continued 1)

Exercise 5.2.18. Suppose that $\sum_{k=1}^{n} a_k = 0$ and $\sum_{k=1}^{n} b_k = 1$. Find the values of: **(b)** $\sum_{k=1}^{n} 250b_k$, **(c)** $\sum_{k=1}^{n} (a_k + 1)$, and **(d)** $\sum_{k=1}^{n} (b_k - 1)$.

Solution. (b) We have

$$\sum_{k=1}^{n} 250b_k = 250 \sum_{k=1}^{n} b_k \text{ by Theorem 5.2.A(3), "Constant Multiple Rule"}$$

$$= 250(1) = 250 \text{ since } \sum_{k=1}^{n} b_k = 1.$$

Calculus 1

October 10, 2020

0 6/2

Calculus 1

October 10, 2020

Evereice 5.2.19

Exercise 5.2.18 (continued 3)

Exercise 5.2.18. Suppose that $\sum_{k=1}^{n} a_k = 0$ and $\sum_{k=1}^{n} b_k = 1$. Find the values of: **(d)** $\sum_{k=1}^{n} (b_k - 1)$.

Solution. (d) We have

$$\sum_{k=1}^{n} (b_k - 1) = \sum_{k=1}^{n} (b_k) + \sum_{k=1}^{n} (-1) \text{ by Theorem 5.2.A(1), "Sum Rule"}$$

$$= (1) + n(-1) \text{ since } \sum_{k=1}^{n} b_k = 1 \& \sum_{k=1}^{n} (-1) = n(-1) = -n$$

$$\text{by Theorem 5.2.A(4), "Constant Value Rule"}$$

$$= \boxed{1-n}. \ \Box$$

Exercise 5.2.18

Exercise 5.2.18 (continued 2)

Exercise 5.2.18. Suppose that $\sum_{k=1}^{n} a_k = 0$ and $\sum_{k=1}^{n} b_k = 1$. Find the values of: **(c)** $\sum_{k=1}^{n} (a_k + 1)$, and **(d)** $\sum_{k=1}^{n} (b_k - 1)$.

Solution. (c) We have

$$\sum_{k=1}^{n} (a_k + 1) = \sum_{k=1}^{n} (a_k) + \sum_{k=1}^{n} (1) \text{ by Theorem 5.2.A(1), "Sum Rule"}$$

$$= (0) + n(1) \text{ since } \sum_{k=1}^{n} a_k = 0 \text{ and } \sum_{k=1}^{n} (1) = n(1) = n$$
by Theorem 5.2.A(4), "Constant Value Rule"
$$= \boxed{n}.$$

Exercise 5.2.2

Exercise 5.2.24

Exercise 5.2.24. Evaluate the sum using Theorem 5.2.B: $\sum_{k=1}^{6} (k^2 - 5)$.

Solution. We have

$$\sum_{k=1}^{6} (k^2 - 5) = \sum_{k=1}^{6} k^2 - \sum_{k=1}^{6} 5 \text{ by Theorem 5.2.A(2), "Difference Rule"}$$

$$= \frac{(6)((6) + 1)(2(6) + 1)}{6} - 6(5) \text{ since}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \text{ by Theorem 5.2.B(2) and}$$

$$\sum_{k=1}^{6} (5) = 6(5) = 30 \text{ by Thm 5.2.A(4), Const. Mult. Rule}$$

$$= \frac{(6)(7)(13)}{6} - 30 = 91 - 30 = \boxed{61}. \square$$

Exercise 5.2.28

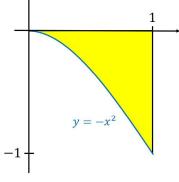
Exercise 5.2.28. Evaluate the sum using Theorem 5.2.B:

$$\left(\sum_{k=1}^7 k\right) - \sum_{k=1}^7 \frac{k^3}{4}.$$

Solution. We have

$$\left(\sum_{k=1}^{7} k\right) - \sum_{k=1}^{7} \frac{k^3}{4} = \left(\sum_{k=1}^{7} k\right) - \frac{1}{4} \sum_{k=1}^{7} k^3$$
by Theorem 5.2.A(3), "Constant Multiple Rule"

Calculus 1


October 10, 2020 10

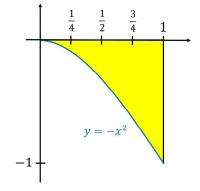
Evereice 5.2.2

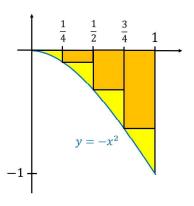
Exercise 5.2.38

Exercise 5.2.38. Graph function $f(x) = -x^2$ over interval [0,1]. Partition the interval into four subintervals of equal length. Then add to your sketch the rectangles associated with the Riemann sum $\sum_{k=1}^{4} f(c_k) \Delta x$, given that c_k is the **(a)** left-hand endpoint, **(b)** right-hand endpoint, **(c)** midpoint of the kth subinterval. (Make a separate sketch for each set of rectangles.)

Solution. The graph of $f(x) = -x^2$ over interval [0,1], along with the "area" between the curve and the *x*-axis, are:

Exercise 5.2.28 (continued)

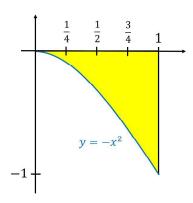

Solution. We have

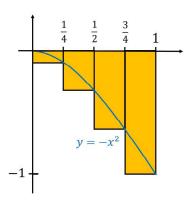

$$\left(\sum_{k=1}^{7} k\right) - \sum_{k=1}^{7} \frac{k^3}{4} = \left(\sum_{k=1}^{7} k\right) - \frac{1}{4} \sum_{k=1}^{7} k^3$$
by Theorem 5.2.A(3), "Constant Multiple Rule"
$$= \frac{(7)((7)+1)}{2} - \frac{1}{4} \left(\frac{(7)((7)+1)}{2}\right)^2$$
since $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ by Theorem 5.2.B(1)
and $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$ by Theorem 5.2.B(3)
$$= 28 - 196 = \boxed{-168}. \Box$$

Exercise 5.2.

Exercise 5.2.38 (continued 1)

Solution (continued). (a) The graph and the partitioning of the interval is given here (left), along with the rectangles based on left-endpoints (right):





October 10, 2020

Exercise 5.2.38 (continued 2)

Solution (continued). (b) The graph and the partitioning of the interval is given here (left), along with the rectangles based on right-endpoints (right):

Calculus 1 October 10, 2020

Example 5.2.5

Example 5.2.5. Partition the interval [0,1] into n subintervals of the same width, give the lower sum approximation of area under $y = 1 - x^2$ based on n, and find the limit as $n \to \infty$ (in which case the width of the subintervals approaches 0).

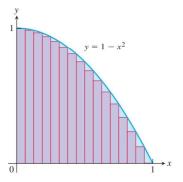
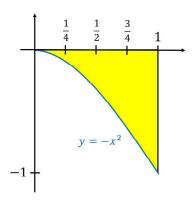
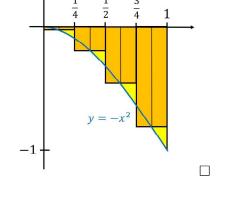
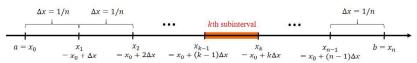




Figure 5.4(a)

Exercise 5.2.38 (continued 3)

Solution (continued). (c) The graph and the partitioning of the interval is given here (left), along with the rectangles based on midpoints (right):


Calculus 1 October 10, 2020

Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0,1] into n subintervals of the same width, give the lower sum approximation of area under $y = 1 - x^2$ based on n, and find the limit as $n \to \infty$ (in which case the width of the subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of the same width, then that width will be

 $\Delta x = (b-a)/n = (1-0)/n = 1/n$. The resulting subintervals will be $[x_{k-1}, x_k]$ for k = 1, 2, ..., n, where $x_k = a + k\Delta x = 0 + k(1/n) = k/n$ for $k = 0, 1, \ldots, n$.

Since $y = f(x) = 1 - x^2$ is a decreasing function, we use the right-hand endpoint in determining the function value used for a given subinterval. That is, we take $c_k = x_k = k/n$.

Calculus 1

Example 5.2.5 (continued 2)

Example 5.2.5. Partition the interval [0,1] into n subintervals of the same width, give the lower sum approximation of area under $y=1-x^2$ based on n, and find the limit as $n\to\infty$ (in which case the width of the subintervals approaches 0).

Solution (continued). With $c_k = x_k = k/n$ and $\Delta x_k = \Delta x = 1/n$ (when Δx_k is the same for all k, the partition is called *regular*), we have the Riemann sum:

$$s_n = \sum_{k=1}^n f(c_k) \, \Delta x_k = \sum_{k=1}^n f(k/n) \, (1/n) = \sum_{k=1}^n (1 - (k/n)^2) \, (1/n)$$

$$= \frac{1}{n} \sum_{k=1}^n \left(1 - \frac{k^2}{n^2} \right) = \frac{1}{n} \sum_{k=1}^n (1) - \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$= \frac{1}{n} (n) - \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} \text{ by Theorem 5.2.B(2)}$$

Calculus 1

Exercise 5.2.48

Exercise 5.2.48. For the function $f(x) = 3x + 2x^2$, find a formula for the Riemann sum obtained by dividing the interval [a,b] = [0,1] into n equal subintervals and using the right-hand endpoint for each c_k . Then take a limit of these sums as $n \to \infty$ to calculate the area under the curve over [0,1].

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of the same width, then that width will be

 $\Delta x = (b-a)/n = (1-0)/n = 1/n$. The resulting subintervals will be $[x_{k-1}, x_k]$ for k = 1, 2, ..., n, where $x_k = a + k\Delta x = 0 + k(1/n) = k/n$ for k = 0, 1, ..., n. Using the right-hand endpoint for c_k , we have $c_k = x_k = k/n$. We have the Riemann sum:

$$s_n = \sum_{k=1}^n f(c_k) \Delta x_k = \sum_{k=1}^n f(k/n) (1/n) = \sum_{k=1}^n (3(k/n) + 2(k/n)^2) (1/n)$$

Example 5.2.5

Example 5.2.5 (continued 3)

Solution (continued). ...

$$s_n = \frac{1}{n}(n) - \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = 1 - \frac{(n+1)(2n+1)}{6n^2}.$$

The limit as $n \to \infty$ of the Riemann sum is:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{(n+1)(2n+1)}{6n^2} \right) = 1 - \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2}$$

$$= 1 - \lim_{n \to \infty} \frac{2n^2 + 3n + 1}{6n^2} \left(\frac{1/n^2}{1/n^2} \right) = 1 - \lim_{n \to \infty} \frac{(2n^2 + 3n + 1)/n^2}{6n^2/n^2}$$

$$= 1 - \lim_{n \to \infty} \frac{2 + 3/n + 1/n^2}{6} = 1 - \frac{2 + 3\lim_{n \to \infty} (1/n) + (\lim_{n \to \infty} 1/n)^2}{6}$$

$$= 1 - \frac{2 + 3(0) + (0)^2}{6} = 1 - \frac{2}{6} = \boxed{\frac{2}{3}}. \quad \Box$$

Calculus 1

Exercise 5.2.4

Exercise 5.2.48 (continued 1)

Solution (continued).

$$s_n = \sum_{k=1}^n f(c_k) \, \Delta x_k = \sum_{k=1}^n f(k/n) \, (1/n) = \sum_{k=1}^n (3(k/n) + 2(k/n)^2) \, (1/n)$$

$$= \frac{1}{n} \sum_{k=1}^n \left(\frac{3}{n} k + \frac{2}{n^2} k^2 \right) \text{ by Theorem 5.2.A(3)}$$

$$= \frac{3}{n^2} \sum_{k=1}^n k + \frac{2}{n^3} \sum_{k=1}^n k^2 \text{ by Theorem 5.2.A(1,3)}$$

$$= \frac{3}{n^2} \left(\frac{n(n+1)}{2} \right) + \frac{2}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) \text{ by Theorem 5.2.B(1,2)}$$

$$= \frac{3(n+1)}{2n} + \frac{(n+1)(2n+1)}{3n^2}.$$

Calculus 1

October 10, 2020

Exercise 5.2.48 (continued 2)

Solution (continued). Taking a limit as $n \to \infty$ of the Riemann sum gives:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{3(n+1)}{2n} + \frac{(n+1)(2n+1)}{3n^2} \right)$$

$$= \lim_{n \to \infty} \frac{3(n+1)}{2n} + \lim_{n \to \infty} \frac{(n+1)(2n+1)}{3n^2}$$

$$= \lim_{n \to \infty} \frac{3(n+1)}{2n} \left(\frac{1/n}{1/n} \right) + \lim_{n \to \infty} \frac{(n+1)(2n+1)}{3n^2} \left(\frac{1/n^2}{1/n^2} \right)$$

$$= \lim_{n \to \infty} \frac{3(n+1)/n}{2n/n} + \lim_{n \to \infty} \frac{2n^2/n^2 + 3n/n^2 + 1/n^2}{3n^2/n^2}$$

$$= \lim_{n \to \infty} \frac{3+1/n}{2} + \lim_{n \to \infty} \frac{2+3/n+1/n^2}{3} = \frac{3+(0)}{2} + \frac{2+3(0)+(0)^2}{3}$$

$$= \frac{3}{2} + \frac{2}{3} = \boxed{\frac{13}{6}}. \quad \Box$$

Calculus 1 October 10, 2020 22 / 22