Calculus 1 J

Chapter 5. Integrals
5.2. Sigma Notation and Limits of Finite Sums—Examples and Proofs
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Exercise 5.2.2

3
k—1
Exercise 5.2.2. Write the sum Z e without the sigma notation and

k=1
then evaluate the sum.
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Exercise 5.2.2

-1
Exercise 5.2.2. Write the sum Z ——— without the sigma notation and

k=1
then evaluate the sum.

Solution. We have

k-1 (1)-1 2)-1 (3)-1 1 2
) _ (@ (2) 3)

7
L T m e e Teta e
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Exercise 5.2.12

Exercise 5.2.12. Express the sum 1 4+ 4 + 9 + 16 in sigma notation.
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Exercise 5.2.12

Exercise 5.2.12. Express the sum 1 4+ 4 + 9 + 16 in sigma notation.

Solution. Notice that these numbers 1, 4, 9, and 16 are the squares of
the natural numbers 1, 2, 3, and 4 (respectively). So we have:

1+4+9+16=12+224+3244%2= Zk2. O
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Exercise 5.2.18

Exercise 5.2.18

Exercise 5.2.18. Suppose that Zak =0 and Z by = 1. Find the
k=1 k=1

values of: (a) zn:&ak, (b) zn:250bk, (c) zn:(ak +1), and
] k=1 k=1 k=1
(d) > (b —1).
k:].
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Exercise 5.2.18

Exercise 5.2.18

Exercise 5.2.18. Suppose that Zak =0 and Z by = 1. Find the
k=1 k=1

values of: (a) zn:&ak, (b) zn:250bk, (c) zn:(ak +1), and
] k=1 k=1 k=1
(d) > (b —1).
k:].

Solution. (a) We have

n n
ZSak = SZak by Theorem 5.2.A(3), "Constant Multiple Rule”
k=1 k=1

= 8(0) =[0]since Z ag =0.
k=1

T
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Exercise 5.2.18 (continued 1)

Exercise 5.2.18. Suppose that Zak =0 and Z bx = 1. Find the
k=1 k=1

values of: (b) zn:ZSObk, (c) zn:(ak + 1), and (d) i(bk —1).
k=1 k=1 k=1

Solution. (b) We have

n n
> 250bc = 250 by by Theorem 5.2.A(3), “Constant Multiple Rule”
k=1 k=1

= 250(1) = since Z by = 1.

k=1
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Exercise 5.2.18 (continued 2)

Exercise 5.2.18. Suppose that Zak =0 and Z by = 1. Find the
k=1 k=1

values of: (c) i(ak + 1), and (d) i(bk —1).
k=1 k=1

Solution. (c) We have

n n n

Z(ak +1) = Z(ak) + Z(l) by Theorem 5.2.A(1), “Sum Rule"
k=1 k=1 k=1
= (0) + n(1) since Zak =0 and Z(l) =n(l)=n
k=1 k=1
by Theorem 5.2.A(4), “Constant Value Rule”
= _

Caleulus 1 October 10, 2020 7 / 22



Exercise 5.2.18 (continued 3)

Exercise 5.2.18. Suppose that Zak =0 and Z bx = 1. Find the
k=1 k=1

values of: (d) zn:(bk —1).

k=1
Solution. (d) We have

n n n

> (bk—1) = > (b)+ > (~1) by Theorem 5.2.A(1), “Sum Rule"
k=1 k=1 k=1
= (1)+n(-1)since > be=1& » (-1)=n(-1) = —n
k=1 k=1
by Theorem 5.2.A(4), “Constant Value Rule”

~ [z O
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Exercise 5.2.24

6
Exercise 5.2.24. Evaluate the sum using Theorem 5.2.B: Z:(k2 —5).
k=1
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Exercise 5.2.24

6
Exercise 5.2.24. Evaluate the sum using Theorem 5.2.B: Z:(k2 -

k=1
Solution. We have

6 6 6
Z:(k2 —-5) = Z k? — 25 by Theorem 5.2.A(2), “Difference Rule”
k=
+ )
6

k=1
(2(6) +1)

— 6(5) since

_ n(n+ 1)6(2n +1) by Theorem 5.2.B(2) and

6
> (5) =6(5) = 30 by Thm 5.2.A(4), Const. Mult. Rule

k=1
— ()(2(13)—30:91—30:. O
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Exercise 5.2.28

Exercise 5.2.28. Evaluate the sum using Theorem 5.2.B:

7 7 3
4
k=1 k=1
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Exercise 5.2.28

Exercise 5.2.28. Evaluate the sum using Theorem 5.2.B:

7 7 3
4
k=1 k=1

Solution. We have

() %% - () e

by Theorem 5.2.A(3), “Constant Multiple Rule”

T
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Exercise 5.2.28 (continued)

Solution. We have

(32) 5% - () iz

by Theorem 5.2.A(3), “Constant Multiple Rule”
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Exercise 5.2.28 (continued)

Solution. We have

7 743 7 17
— 3
(S4)-3% - (24 -1

by Theorem 5.2.A(3), “Constant Multiple Rule”

MM+ 1 ((7)((7) + 1)>2

2 4 2

n
1
since Z k= ”(”;) by Theorem 5.2.B(1)

1
and Zk3 <”+)> by Theorem 5.2.B(3)
= 28-196=|-168] O
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Exercise 5.2.38

Exercise 5.2.38

Exercise 5.2.38. Graph function f(x) = —x? over interval [0, 1]. Partition
the interval into four subintervals of equal length. Then add to your sketch
the rectangles associated with the Riemann sum 3"7_; f(ck)Ax, given
that ¢ is the (a) left-hand endpoint, (b) right-hand endpoint, (c)

midpoint of the kth subinterval. (Make a separate sketch for each set of
rectangles.)
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Exercise 5.2.38

Exercise 5.2.38. Graph function f(x) = —x? over interval [0, 1]. Partition
the interval into four subintervals of equal length. Then add to your sketch
the rectangles associated with the Riemann sum 3"7_; f(ck)Ax, given
that ¢ is the (a) left-hand endpoint, (b) right-hand endpoint, (c)
midpoint of the kth subinterval. (Make a separate sketch for each set of
rectangles.)

Solution. The graph of f(x) = —x? 1
over interval [0, 1], along with
the “area” between the curve
and the x-axis, are:
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Exercise 5.2.38

Exercise 5.2.38. Graph function f(x) = —x? over interval [0, 1]. Partition
the interval into four subintervals of equal length. Then add to your sketch
the rectangles associated with the Riemann sum 3"7_; f(ck)Ax, given
that ¢ is the (a) left-hand endpoint, (b) right-hand endpoint, (c)
midpoint of the kth subinterval. (Make a separate sketch for each set of
rectangles.)

Solution. The graph of f(x) = —x? 1
over interval [0, 1], along with
the “area” between the curve
and the x-axis, are:
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Exercise 5.2.38

Exercise 5.2.38 (continued 1)

Solution (continued). (a) The graph and the partitioning of the interval

is given here (left), along with the rectangles based on left-endpoints
(right):

+ nl-
-+ N =
-T- Sl w
—_
- o=
N[ =
|
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Exercise 5.2.38

Exercise 5.2.38 (continued 2)

Solution (continued). (b) The graph and the partitioning of the interval

is given here (left), along with the rectangles based on right-endpoints
(right):

T+ &l

-+ N =

-+ Dl w
—_
NS
N =
N
[N

T TR



Exercise 5.2.38 (continued 3)

Solution (continued). (c) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on midpoints (right):

1 1 3 1 1 3
4 2 4 1 4 2 4 1
i } } B
y= 7x2 y = 7x2
_1__ _1 o
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Example 5.2.5

Example 5.2.5

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y = 1 — x?

based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

v

1 o

Figure 5.4(a)
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Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be
Ax=(b—a)/n=(1-0)/n=1/n.

2
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Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be

Ax =(b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,... n, where xx = a+ kAx =0+ k(1/n) = k/n for
k=0,1,...,n.

2

Ax =1/n Ax=1/n Ax=1/n
f I ¥ . \ eee kth subinterval —_—
N ; : RS : :
T T T L “ T T
a=xp X1 Xy X—1 X Xn-1 b =xy
=xp + Ax =x0+2Mx =xp+(k—-1DAx =x+kAx =X+ (n— 1)Ax
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Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be

Ax =(b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,... n, where xx = a+ kAx =0+ k(1/n) = k/n for
k=0,1,...,n.

2

Ax =1/n Ax=1/n Ax=1/n
f I ¥ . \ eee kth subinterval —_—
N ; : . " : :
T T T v 1 T T
a=xp X1 Xy X—1 X Xn-1 b =xy
=xp + Ax =x0+2Mx =xp+(k—-1DAx =x+kAx =X+ (n— 1)Ax
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Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y =1 — x
based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be

Ax =(b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,... n, where xx = a+ kAx =0+ k(1/n) = k/n for
k=0,1,...,n.

2

Ax =1/n Ax=1/n Ax=1/n
f I ¥ . \ eee kth subinterval —_—
N ; : . " : :
T T T v 1 T T
a=xp X1 Xy X—1 X Xn-1 b =xy
=xp + Ax =x0+2Mx =xp+(k—-1DAx =x+kAx =X+ (n— 1)Ax

Since y = f(x) = 1 — x2 is a decreasing function, we use the right-hand
endpoint in determining the function value used for a given subinterval.
That is, we take cx = xx = k/n.

Caleulus 1 October 10, 2020 17 / 22



Example 5.2.5

Example 5.2.5 (continued 2)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y = 1 — x?

based on n, and find the limit as n — oo (in which case the width of the
subintervals approaches 0).

Solution (continued). With ¢, = xx = k/n and Ax, = Ax = 1/n (when
Axy is the same for all k, the partition is called regular), we have the
Riemann sum:

n

Sn= D F(e) Bxe = 0 F(K/m) (1/m) = S (1= (k/n)?) (1/n)
k=1 k=1

k=1

1 < k2 1 < 1 <&
= - )==) 1)-=)) K
nk_l( n2> nz( ) n3;

k=1
1 1 n(n+1)(2n+1)
= E(n) - 6 by Theorem 5.2.B(2)
Caleulus 1
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Example 5.2.5 (continued 3)

Solution (continued). ...

1 1 n(n+1)(2n+1)

sn=—(n) —

n n3 6

B T

(n+1)(2n+1)

6n>

October 10, 2020
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Example 5.2.5 (continued 3)

Solution (continued). ...

1 1 n(n+1)(2n+1) 1 (n+1)(2n+1).

B A S 612

The limit as n — oo of the Riemann sum is:

<1_ (n+1%£)22n+1)> 1 lim (n+1)(2n+1)

lim s, = lim

n—o0 n—oo n—o0 6n2

2 2 2 2
1 im 2n“+3n+1 (1/n 1 m (2n* +3n+1)/n
n—oo 6n2 1//72 n—o0 6n2/n2
1 g 23/l 24 3limyoo(1/) + (limp o 1/n)?
- n—o0 6 o 6
2 +3(0) + (0)? 2 |2
=l-——F=1-—-=|-| 0
6 6 |3
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Exercise 5.2.48

Exercise 5.2.48

Exercise 5.2.48. For the function f(x) = 3x + 2x2, find a formula for the
Riemann sum obtained by dividing the interval [a, b] = [0, 1] into n equal
subintervals and using the right-hand endpoint for each cx. Then take a

limit of these sums as n — oo to calculate the area under the curve over
[0,1].

Calculus 1 October 10, 2020 20 / 22



Exercise 5.2.48

Exercise 5.2.48. For the function f(x) = 3x + 2x2, find a formula for the
Riemann sum obtained by dividing the interval [a, b] = [0, 1] into n equal
subintervals and using the right-hand endpoint for each cx. Then take a
limit of these sums as n — oo to calculate the area under the curve over
[0,1].

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be

Ax =(b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,...,n, where x, = a+ kAx =0+ k(1/n) = k/n for
k=20,1,...,n. Using the right-hand endpoint for ¢y, we have

Ck = XK = k/n.

Calculus 1 October 10, 2020 20 / 22



Exercise 5.2.48

Exercise 5.2.48. For the function f(x) = 3x + 2x2, find a formula for the
Riemann sum obtained by dividing the interval [a, b] = [0, 1] into n equal
subintervals and using the right-hand endpoint for each cx. Then take a
limit of these sums as n — oo to calculate the area under the curve over
[0,1].

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be

Ax =(b—a)/n=(1—-0)/n=1/n. The resulting subintervals will be
[xk—1,xk] for k =1,2,...,n, where x, = a+ kAx =0+ k(1/n) = k/n for
k=20,1,...,n. Using the right-hand endpoint for ¢y, we have

ck = xx = k/n. We have the Riemann sum:

n

Sn = Z f(ck) Axie = Z f(k/n)(1/n) = (3(k/n)+ 2(k/n)?) (1/n)

k=1
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Exercise 5.2.48 (continued 1)

Solution (continued).

n

sn=Y_ flc) Axc =Y f(k/n)(1/n) = (3(k/n)+2(k/n)?)(1/n)

k=1 k=1 k=1

- Z < k + k2) by Theorem 5.2.A(3)

3 2 U
= Z K+ = >~ K by Theorem 5.2.A(L,3)

k=1 k=1
3 (n(n+1) 2 (n(n+1)(2n+1)
2 < 5 > + 3 ( 6 by Theorem 5.2.B(1,2)
~3(n+1) N (n+1)(2n+1)
~ 2n 3n? '
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Exercise 5.2.48 (continued 2)

Solution (continued). Taking a limit as n — oo of the Riemann sum

gives:
lim s, — lim 3(n+1) n (n+1)(2n+1)
n—o00 n—oo 2n 3n?
~ im 3(n+1) + im (n+1)(2n+1)
n—o0 n n—o0 3n2
. 3(n+1) (1/n . (n+1)(2n+1) (1/n?
= lim ——— = I
oo 2n (1/n> T 3n2 1/n?
27,2 2 2
~ im 3(n+1)/n+ im 2n°/n“+3n/n"+1/n
n—oo  2n/n n—00 3n2/n?
2 2
~ im 3+1/n+ im 24+3/n+1/n :3—|—(0)+2+3(0)+(0)
n—oo n—oo 3 2 3
3 2 13
=—+-=|—| 0
2+3 6
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