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Exercise 5.2.2

Exercise 5.2.2

Exercise 5.2.2. Write the sum
3∑

k=1

k − 1

k
without the sigma notation and

then evaluate the sum.

Solution. We have

3∑
k=1

k − 1

k
=

(1)− 1

(1)
+

(2)− 1

(2)
+

(3)− 1

(3)
= 0 +

1

2
+

2

3
=

7

6
. �
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Exercise 5.2.12

Exercise 5.2.12

Exercise 5.2.12. Express the sum 1 + 4 + 9 + 16 in sigma notation.

Solution. Notice that these numbers 1, 4, 9, and 16 are the squares of
the natural numbers 1, 2, 3, and 4 (respectively). So we have:

1 + 4 + 9 + 16 = 12 + 22 + 32 + 42 =
4∑

k=1

k2 . �
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Exercise 5.2.18

Exercise 5.2.18

Exercise 5.2.18. Suppose that
n∑

k=1

ak = 0 and
n∑

k=1

bk = 1. Find the

values of: (a)
n∑

k=1

8ak , (b)
n∑

k=1

250bk , (c)
n∑

k=1

(ak + 1), and

(d)
n∑

k=1

(bk − 1).

Solution. (a) We have

n∑
k=1

8ak = 8
n∑

k=1

ak by Theorem 5.2.A(3), “Constant Multiple Rule”

= 8(0) = 0 since
n∑

k=1

ak = 0.
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Exercise 5.2.18

Exercise 5.2.18 (continued 1)

Exercise 5.2.18. Suppose that
n∑

k=1

ak = 0 and
n∑

k=1

bk = 1. Find the

values of: (b)
n∑

k=1

250bk , (c)
n∑

k=1

(ak + 1), and (d)
n∑

k=1

(bk − 1).

Solution. (b) We have

n∑
k=1

250bk = 250
n∑

k=1

bk by Theorem 5.2.A(3), “Constant Multiple Rule”

= 250(1) = 250 since
n∑

k=1

bk = 1.
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Exercise 5.2.18

Exercise 5.2.18 (continued 2)

Exercise 5.2.18. Suppose that
n∑

k=1

ak = 0 and
n∑

k=1

bk = 1. Find the

values of: (c)
n∑

k=1

(ak + 1), and (d)
n∑

k=1

(bk − 1).

Solution. (c) We have

n∑
k=1

(ak + 1) =
n∑

k=1

(ak) +
n∑

k=1

(1) by Theorem 5.2.A(1), “Sum Rule”

= (0) + n(1) since
n∑

k=1

ak = 0 and
n∑

k=1

(1) = n(1) = n

by Theorem 5.2.A(4), “Constant Value Rule”

= n .
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Exercise 5.2.18

Exercise 5.2.18 (continued 3)

Exercise 5.2.18. Suppose that
n∑

k=1

ak = 0 and
n∑

k=1

bk = 1. Find the

values of: (d)
n∑

k=1

(bk − 1).

Solution. (d) We have

n∑
k=1

(bk − 1) =
n∑

k=1

(bk) +
n∑

k=1

(−1) by Theorem 5.2.A(1), “Sum Rule”

= (1) + n(−1) since
n∑

k=1

bk = 1 &
n∑

k=1

(−1) = n(−1) = −n

by Theorem 5.2.A(4), “Constant Value Rule”

= 1− n . �
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Exercise 5.2.24

Exercise 5.2.24

Exercise 5.2.24. Evaluate the sum using Theorem 5.2.B:
6∑

k=1

(k2 − 5).

Solution. We have
6∑

k=1

(k2 − 5) =
6∑

k=1

k2 −
6∑

k=1

5 by Theorem 5.2.A(2), “Difference Rule”

=
(6)((6) + 1)(2(6) + 1)

6
− 6(5) since

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
by Theorem 5.2.B(2) and

6∑
k=1

(5) = 6(5) = 30 by Thm 5.2.A(4), Const. Mult. Rule

=
(6)(7)(13)

6
− 30 = 91− 30 = 61 . �
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Exercise 5.2.28

Exercise 5.2.28

Exercise 5.2.28. Evaluate the sum using Theorem 5.2.B:(
7∑

k=1

k

)
−

7∑
k=1

k3

4
.

Solution. We have(
7∑

k=1

k

)
−

7∑
k=1

k3

4
=

(
7∑

k=1

k

)
− 1

4

7∑
k=1

k3

by Theorem 5.2.A(3), “Constant Multiple Rule”
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Exercise 5.2.28

Exercise 5.2.28
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Exercise 5.2.28

Exercise 5.2.28 (continued)

Solution. We have(
7∑

k=1

k

)
−

7∑
k=1

k3

4
=

(
7∑

k=1

k

)
− 1

4

7∑
k=1

k3

by Theorem 5.2.A(3), “Constant Multiple Rule”

=
(7)((7) + 1)

2
− 1

4

(
(7)((7) + 1)

2

)2

since
n∑

k=1

k =
n(n + 1)

2
by Theorem 5.2.B(1)

and
n∑

k=1

k3 =

(
n(n + 1)

2

)2

by Theorem 5.2.B(3)

= 28− 196 = −168 . �
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Exercise 5.2.28

Exercise 5.2.28 (continued)
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Exercise 5.2.38

Exercise 5.2.38

Exercise 5.2.38. Graph function f (x) = −x2 over interval [0, 1]. Partition
the interval into four subintervals of equal length. Then add to your sketch
the rectangles associated with the Riemann sum

∑4
k=1 f (ck)∆x , given

that ck is the (a) left-hand endpoint, (b) right-hand endpoint, (c)
midpoint of the kth subinterval. (Make a separate sketch for each set of
rectangles.)

Solution. The graph of f (x) = −x2

over interval [0, 1], along with
the “area” between the curve
and the x-axis, are:
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Exercise 5.2.38

Exercise 5.2.38 (continued 1)

Solution (continued). (a) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on left-endpoints
(right):
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Exercise 5.2.38

Exercise 5.2.38 (continued 2)

Solution (continued). (b) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on right-endpoints
(right):
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Exercise 5.2.38

Exercise 5.2.38 (continued 3)

Solution (continued). (c) The graph and the partitioning of the interval
is given here (left), along with the rectangles based on midpoints (right):

�

() Calculus 1 October 10, 2020 15 / 22



Example 5.2.5

Example 5.2.5

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y = 1− x2

based on n, and find the limit as n→∞ (in which case the width of the
subintervals approaches 0).

Figure 5.4(a)

() Calculus 1 October 10, 2020 16 / 22



Example 5.2.5

Example 5.2.5 (continued 1)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y = 1− x2

based on n, and find the limit as n→∞ (in which case the width of the
subintervals approaches 0).
Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be
∆x = (b − a)/n = (1− 0)/n = 1/n. The resulting subintervals will be
[xk−1, xk ] for k = 1, 2, . . . , n, where xk = a + k∆x = 0 + k(1/n) = k/n for
k = 0, 1, . . . , n.

Since y = f (x) = 1− x2 is a decreasing function, we use the right-hand
endpoint in determining the function value used for a given subinterval.
That is, we take ck = xk = k/n.

() Calculus 1 October 10, 2020 17 / 22
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Example 5.2.5

Example 5.2.5 (continued 2)

Example 5.2.5. Partition the interval [0, 1] into n subintervals of the
same width, give the lower sum approximation of area under y = 1− x2

based on n, and find the limit as n→∞ (in which case the width of the
subintervals approaches 0).

Solution (continued). With ck = xk = k/n and ∆xk = ∆x = 1/n (when
∆xk is the same for all k, the partition is called regular), we have the
Riemann sum:

sn =
n∑

k=1

f (ck) ∆xk =
n∑

k=1

f (k/n) (1/n) =
n∑

k=1

(1− (k/n)2) (1/n)

=
1

n

n∑
k=1

(
1− k2

n2

)
=

1

n

n∑
k=1

(1)− 1

n3

n∑
k=1

k2

=
1

n
(n)− 1

n3

n(n + 1)(2n + 1)

6
by Theorem 5.2.B(2)
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Example 5.2.5

Example 5.2.5 (continued 3)

Solution (continued). . . .

sn =
1

n
(n)− 1

n3

n(n + 1)(2n + 1)

6
= 1− (n + 1)(2n + 1)

6n2
.

The limit as n→∞ of the Riemann sum is:

lim
n→∞

sn = lim
n→∞

(
1− (n + 1)(2n + 1)

6n2

)
= 1− lim

n→∞

(n + 1)(2n + 1)

6n2

= 1− lim
n→∞

2n2 + 3n + 1

6n2

(
1/n2

1/n2

)
= 1− lim

n→∞

(2n2 + 3n + 1)/n2

6n2/n2

= 1− lim
n→∞

2 + 3/n + 1/n2

6
= 1− 2 + 3 limn→∞(1/n) + (limn→∞ 1/n)2

6

= 1− 2 + 3(0) + (0)2

6
= 1− 2

6
=

2

3
. �
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Exercise 5.2.48

Exercise 5.2.48

Exercise 5.2.48. For the function f (x) = 3x + 2x2, find a formula for the
Riemann sum obtained by dividing the interval [a, b] = [0, 1] into n equal
subintervals and using the right-hand endpoint for each ck . Then take a
limit of these sums as n→∞ to calculate the area under the curve over
[0, 1].

Solution. If we partition the interval [a, b] = [0, 1] into n subintervals of
the same width, then that width will be
∆x = (b − a)/n = (1− 0)/n = 1/n. The resulting subintervals will be
[xk−1, xk ] for k = 1, 2, . . . , n, where xk = a + k∆x = 0 + k(1/n) = k/n for
k = 0, 1, . . . , n. Using the right-hand endpoint for ck , we have
ck = xk = k/n.

We have the Riemann sum:

sn =
n∑

k=1

f (ck) ∆xk =
n∑

k=1

f (k/n) (1/n) =
n∑

k=1

(3(k/n) + 2(k/n)2) (1/n)
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Exercise 5.2.48

Exercise 5.2.48 (continued 1)

Solution (continued).

sn =
n∑

k=1

f (ck) ∆xk =
n∑

k=1

f (k/n) (1/n) =
n∑

k=1

(3(k/n) + 2(k/n)2) (1/n)

=
1

n

n∑
k=1

(
3

n
k +

2

n2
k2

)
by Theorem 5.2.A(3)

=
3

n2

n∑
k=1

k +
2

n3

n∑
k=1

k2 by Theorem 5.2.A(1,3)

=
3

n2

(
n(n + 1)

2

)
+

2

n3

(
n(n + 1)(2n + 1)

6

)
by Theorem 5.2.B(1,2)

=
3(n + 1)

2n
+

(n + 1)(2n + 1)

3n2
.
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Exercise 5.2.48

Exercise 5.2.48 (continued 2)

Solution (continued). Taking a limit as n→∞ of the Riemann sum
gives:

lim
n→∞

sn = lim
n→∞

(
3(n + 1)

2n
+

(n + 1)(2n + 1)

3n2

)
= lim

n→∞

3(n + 1)

2n
+ lim

n→∞

(n + 1)(2n + 1)

3n2

= lim
n→∞

3(n + 1)

2n

(
1/n

1/n

)
+ lim

n→∞

(n + 1)(2n + 1)

3n2

(
1/n2

1/n2

)
= lim

n→∞

3(n + 1)/n

2n/n
+ lim

n→∞

2n2/n2 + 3n/n2 + 1/n2

3n2/n2

= lim
n→∞

3 + 1/n

2
+ lim

n→∞

2 + 3/n + 1/n2

3
=

3 + (0)

2
+

2 + 3(0) + (0)2

3

=
3

2
+

2

3
=

13

6
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