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Example 5.3.1. A Non-Integrable Function

Example 5.3.1

1, if x is rational

Example 5.3.1. Show that the function f(x) = 0. if x is irrational

is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of

1

definite integral, / f(x)dx = | I|”m Z f(ck) Axy for any choice of
0 P —>0

¢k € [xk—1,xk]. Now in any interval [xk_l,xk] there are both rational and

irrational numbers. So we can choose each ¢k to be rational in which case

1
each f(ck) =1 and / f(x)dx = ||FI>I||m Z f(ck) Axy =
0

n
lim 1 =1 since the sum of the

lim Axe = |lim Axy i
IIPII*Okzzl( ) IPl— Z Pl
length of the subintervals is the length of [0, 1] (namely 1).
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Exercise 5.3.6

Exercise 5.3.6

n

Exercise 5.3.6. Express the limit ||,li”m E 4 — c,f Ax;, where P is a
—0
k=1

partition of [0, 1], as a definite integral.

Solution. With P = {xo, x1,...,x,} a partition of [a, b] = [0, 1],
Ck € [xk—1, xk], DAxx = xx — xk—1, and f(x) = /4 — x? we have that

n

b 1
lim - 4—C§Axk:/ f(x) dx = / V4 —x2dx| O
a 0

P||—0
1PI=0 &
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Example 5.3.1. A Non-Integrable Function

Example 5.3.1 (continued)

=

Example 5.3.1. Show that the function f(x) = 0’ :]ti :z irfrgsir;ilal

is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each ¢ to be irrational in
1
which case each f(ck) =0 and / f(x)dx = |FI)|”m Z flck) Axx =

n

lim Z(O) Axe = lim ZO = lim 0=0. But we cannot have both

IPl—0,— IPl—0 [Pll—0
1 1
f(x)dx =1 and f(x)dx =0, so f is not Riemann integrable over
0 0
[0,1]. O
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

b b
3. Constant Multiple: / kf(x) dx = k/ f(x) dx

4. 5utr,n and Difference:

/Q(f(x)ig(x))dXZ/abf(x) dxi/abg(x) d

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f-(b—a)S/bf(x)dxgmax f-(b—a).

b
7. Domination: f(x) > g(x) on [a, b] :>/ x) dx >/ g(x) dx.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 2)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

b b
3. Constant Multiple: / cf (x) dx:c/ f(x) dx

Ja

Proof (continued). ...

f(Ck) AXk

k=1
n

b
/cf(x)dx = lim ¢

I1PlI—0

f(ck) Axk by the Constant Multiple Rule,
k=1
Theorem 2.1(3)

= c/abf(x)dx,

as claimed. O
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= ¢ Ilim
[IP]|—0
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 1)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

-b -b

cf(x) dx = c/ f(x) dx.

Ja

3. Constant Multiple: /

Ja

Proof. Let P be a partition of [a, b] and let Z f(ck) Axy be an
k=1

b
associated Riemann sum. Then/ f(x)dx = lim Zf ck) Axy and
a

/ab cf(x)dx = lim

distributes over addition
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 3)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. 5ugn and Difference: ) .
/ (F(x) = g(x)) dx = / F(x) dx + / g(x) dx.

Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axk
k=1

and Zg(ck)Axk be associated Riemann sums. Then by definition
k= 1

f f dx = I|m||p||_,0 Zk 1 (Ck) AXk and
s X) dx = limyp o > k=1 &(ck) Axk, s0

b b n n
/ f(x) dx:l:/ g(x)dx = lim f(ck) Axx = lim Zg(ck)Axk
. ] I1Pli—0 &= I1PlI—0 £~
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 4)

Proof (continued).
b

b
f(x dx:l:/ X = lim f(ck) Axx = lim ck) Ax
[ raxs [Cegde= tim Z ST ng .

= |P|| (Z f(ck) Axy £ Zg Ck Axk>

by the Sum and leference Rules, Theorem 2.1(1 and 2)

= Ao <Z (rte) B eled AXk))

k=1
by commutivity and addition and subtraction

n
= ”"IDi”m . <Z (f(ck) £ g(ck)) Axk> since multiplication

k=1
distributes over addition
Calculus 1 October 28, 2020 10 / 38

Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 6)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f-(b—a)g/bf(x)dxgmax f-(b—a).

Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axy

k=1
be an associated Riemann sum. Then by definition

2 F(x) dx = limypy—o Sf_; f(ck) Axk. Notice that
n

min f < f(cx) < max f for all ¢, € [a, b] and ZAX/( =(b—a).
k=1
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 5)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. Sum and Difference:

/a (f(x) £ g(x)) dx = /ab f(x)dx £ /abg(x) dx.

Proof (continued). ...

b b n
/ f(x) dxi/ g(x)dx = lim ( (f(ck) £ g(ck)) Axk>
a a k

definition. - [

Calculus 1 October 28, 2020 11 / 38

Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 7)

Proof (continued). So we have
b
f(x)dx = lim f(ck) Axx > lim min f Axy
/a () IIPII*OZ IIPII—>OZ

n

= |lim minf ZAXk since multiplication
IPl—0 -1

distributes over addition

= min f lim Axy by the Constant Multiple Rule,
IPll—0 Z

Theorem 2.1(3)
n
= minf |lim (b— a) since Ax, =b—a
||P||—>0( ) kZ_;
= minf -(b—a),

as claimed.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 8)

Proof (continued). Similarly,
b
f(x)dx = lim f(ck) Axx < lim max f Axy
/a ) ||P||—>OZ IIPII—>OZ

n

= |lim maxf ZAXk since multiplication
IPl—0 1

distributes over addition

= max f lim Axy by the Constant Multiple Rule,
IPl—0 Z

Theorem 2.1(3)
n
= max f lim (b— a) since ZAX/( =b—a
PI—0 —
= maxf -(b—a),

as claimed. ]
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Exercise 5.3.10

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are mtegrable and that

/lgf(x)dx:—l /7 f(x)dx =5, and/

Theorem 5.2 to find (a) / —2f(x) dx, (b) /

(c)/ (2F(x) — 3h(x)) d, (d)/
(f)/9 (h(x) — F(x)) dx.

Solution. (a) We have

x) dx = 4. Use the rules in
— h(x)) dx,

x) dx, (e)/ x) dx, and

9 9
/ —2f(x)dx = =2 / f(x) dx by Constant Multiple Rule, Thm 5.2(3)
J1 J1
9
= —2(—1) =2 since / f(x)dx=-1. O
1
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 9)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

7. Domination: f(x) > g(x) on [a, b] :>/ x) dx >/ g(x) dx.

n
Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axy
k=1

and Zg ck) Axy be associated Riemann sums. Then by definition

f f dx = |Im||p||_,0 Zk 1 (Ck) AXk and

f g(x) dx = lim|p|_o > k—1 &(ck) Axx. Since f(x) > g(x) on [a, b] then
f(ck) > g(ck) for all ¢, € [a, b], and so

b b
/a f(x) dx ”P” Zf )Axk> I|m Zg Ck Axk—/ g(x)dx. O
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Exercise 5.3.10

Exercise 5.3.10 (continued 1)

Exercise 5.3.10. Suppose that f is h are mtegrable and that

/191‘(x)dx:—1,/7 f(x)dx =5, and/

Theorem 5.2 to find (b) / (f(x) — h(x)) dx.
7

x) dx = 4. Use the rules in

Solution (continued). (b) We have

9 9 9
/ (f(x) — h(x))dx = / f(x)dx — / h(x) dx
7 7 7
by the Difference Rule, Theorem 5.2(4)

9
= (5)—(4)=lsince/7 f(x)dx =5

9
and / h(x)dx=4. O
J7
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Exercise 5.3.10

Exercise 5.3.10 (continued 2)

Exercise 5.3.10. Suppose that f is h are mtegrable and that
.9 .

/ f(x)dx = -1, / f(x)dx =5, and
1 7

Theorem 5.2 to find (c) / (2f(x) — 3h(x)) dx.

x) dx = 4. Use the rules in

Solution (continued). (c) We have /79(2f(x) —3h(x)) dx =

9 9
= / 2f(x) dx—l—/ —3h(x) dx by the Sum Rule, Theorem 5.2(4)
7 7
9 9
= 2/ f(x)dx — 3/ h(x) dx by Constant Mult. Theorem 5.2(3)
7 7

= 2(5) —3(4) = —2 since /9

9
f(x)dx:5and/ h(x)dx=4. O
7 7
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Exercise 5.3.10

Exercise 5.3.10 (continued 4)

Exercise 5.3.10. Suppose that f is h are mtegrable and that

/191‘(x)dx:—1,/7 f(x)dx =5, and/

Theorem 5.2 to find (e) / f(x) dx
1

dx = 4. Use the rules in

Solution (continued). (e) By Additivity (Theorem 5.2(5)) we have

/1 o /7 () dx — /19 F(x) dx, then
/17f(x)dX—/19f( )dx_/9 F(x) d. So

/17f()dx— -smce/
/79f(x)dx:5. O

= —1 and
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Exercise 5.3.10

Exercise 5.3.10 (continued 3)

Exercise 5.3.10. Suppose that f is h are mtegrable and that

/191‘(x)dx:—1,/7 f(x)dx =5, and/

Theorem 5.2 to find (d) / f(x) dx.
9

x) dx = 4. Use the rules in

Solution (continued). (d) We have
1 9
/ f(x)dx = —/ f(x) dx by the Order of Integration, Theorem 5.2(1)
9 1

= —(—1) =1 since /19 f(x)dx=-1. 0O
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Exercise 5.3.10

Exercise 5.3.10 (continued 5)

Exercise 5.3.10. Suppose that f is h are mtegrable and that

Agf(x)dx:—l /7 F(x) dx = 5, and/

Theorem 5.2 to find (f) / — f(x)) dx.

x) dx = 4. Use the rules in

Solution (continued). (f) We have /97(h(x) —f(x))dx =

7 7
= / h(x) dx — / f(x) dx by the Difference Rule, Theorem 5.2(4)
9 9
9 9
= —/ h(x) dx +/ f(x) dx by Order of Integration, Theorem 5.2(1)
7 7

-9 .9
= —(4)+(5)=since/7 f(x)dx:Sand/7 h(x)dx=4. 0O
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Exercise 5.3.63

Exercise 5.3.63

b
Exercise 5.3.63. Let c be a constant. Prove that / cdx = c(b— a).
a

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by “Integrability of
Continuous Functions” (Theorem 5.1), f is integrable on [a, b]. Therefore,
we can consider any sequence of partitions which have a norm approaching
0. So we consider an equal width partition P = {xp, x1, ..., Xx,} for which
Axy = Ax = (b—a)/n, xx =a+ k(b—a)/n, and cx € [xk_1,xk] (see
Note 5.3.A). Now ||P|| = Ax = (b — a)/n, so when n — oo we have

||P|| — 0. So the value of the Riemann integral is given by

[eo - "'Ln;"kzil'[(ck)(b a)ﬂ“ﬂ;ic(b;3>

k=1

b —
~ lim <nc a) by Theorem 5.2.A(4)
n—oo
= lim ¢(b—a)=c(b—a). O
n—oo
Calculus 1 October 28,2020 22 /38

Example 5.3.A

Example 5.3.A (continued 1)

> lim <a+kb_a> <b—a>
n—oo n n
k=1

Proof (continued).
b
/xdx = lim (b
a I7—>OO
= Iim(
n—oo

U‘l—l

= |im
n—oo

=) (i
sincezn:k——)
2
k=1

i ((b_a)a+ (b;a>2 <n(n2+ 1)))
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Example 5.3.A

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with ¢, = x, to prove
p? a2

that for a < b: / xdx—E—?.

Proof. Let f(x) = x. Then f is continuous on [a, b] so, by “Integrability

of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].

Therefore, we can consider any sequence of partitions which have a norm

approaching 0. So we consider an equal width partition

P = {x0,x1,...,%n} for which Ax, = Ax = (b— a)/n,

xk = a+k(b—a)/n, and ¢k € [xk—1, x| satisfies cx = xxk = a+ k(b—a)/n

(see Note 5.3.A). Now ||P|| = Ax = (b— a)/n, so when n — co we have

||P|| — 0. So the value of the Riemann integral is given by

b n _ n -
/ xdx = lim Zf(ck) <u>: lim ch<bna>
3 n—oo —1 n—oo

k=1
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Example 5.3.A

Example 5.3.A (continued 2)

Proof (continued).

'/abxdx _ ningo<(b_a)a+<b;a)2<n(n2+1)>>

1
- wﬂ”““%&&%
2 2
B B )2 n“+n (1/n
oo e (18
1+1
= (b—a)a+(b—a)? lim %/n
n—oo
1+1limp—oo1l/n
— b_ b_ 2 n—o00
(b= a)a+ (b a2
2 _ 2
= (b—a)sH—(b—a)zlJrz(o):ab—a2 b 2Zb+a
b @
= ———. O
2 2
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Exercise 5.3.65 Exercise 5.3.65

Exercise 5.3.65 Exercise 5.3.65 (continued 1)

Exercise 5.3.65. Use a regular partition of [a, b] with ¢, = x, to prove Proof (continued).

thatfora<b'/bx2dx—b—3—a—3 /bXde = lim ié b-s —Iimi sy kP2 (b=

"), 3 3 s oo — k n ) n—oo — n n
Proof. Let f(x) = x2. Then f i ti b] so, by “Int bilit _ n —3\?2
roof. Le (x) x*. Then f is continuous on [a, b] so, by “Integrability . b—a 2 +2akb CE b—a

of Continuous Functions” (Theorem 5.1), f is integrable on [a, b]. LU R n

Therefore, we can consider any sequence of partitions which have a norm k=1 ;

approaching 0. So we consider an equal width partition L b—a 5 b—aw b—a & 5

P = {xo0,x1,...,Xxn} for which Axy = Ax = (b— a)/n, - nl|—>nc]>o n (na%) +2a n Zk+ n k
- k=1 k=1

xk = a+k(b—a)/n, and ¢k € [xk—1, xk| satisfies cx = xx = a+ k(b—a)/n b b—a /n(n+1)

(see Note 5.3.A). Now ||P|| = Ax = (b— a)/n, so when n — oo we have = lim ( > ((na2) +2a ( 5 )

|IP|| — 0. So the value of the Riemann integral is given by e n n

—a\? (n(n n
[os - o) me () e (e

! since Y7 k= M) gpg yon_ g2 — nlntl)@nt1)
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Exercise 5.3.65 (continued 2) Exercise 5.3.65 (continued 3)
Proof (continued). Proof (continued).
b : b— b— 1 b 2 2
/ xX2dx = im_ ( - a> ((na2) +2a— 2 <n(n2+ )> / x2dx = lim (b— a) <a2 +2a(b — a) <%>
. (b— a>2 <n(n+ 1)(2n + 1))) by <(2n3+3n2+ n)/n3>)
n 6 6
. 1+1/n
= nlim (b—a) (a2—|—2abn_2a <n(n2—i— 1)> = nILngo(b—a) <32+23(b—3)( 2/ >
(b—a)® (n(n+1)(2n+1) (b - a)? <w>)
™ 6
n3 6 /
2 2 i 2 1+limp,1/n
— n“_)n;o(b_a) (32+2a(b—a) <(f7 +2’7)/n > = (b—a) <a +2a(b—a)( 5 )
332 3 2 + 3limp—oo(1/n) + (limp—oo 1/n)?
+(b_a)2<(2n R >> +(b_a)2< (/n)+( /)))



Exercise 5.3.65 (continued 4)

Proof (continued).

/m%dx::(b—$<¥+24b—@<lzm0
a +w_ay<2+3my+my>>

6

= (b—a)(a®+a(b—a)+(b—a)*(1/3))
= (b—a)(a*+ ab— a* + b*>/3 —2ab/3 + a°/3)
= (b—a)(ab/3+ b*/3+ a%/3)
= (ab® + b> + a°b — a°b — ab® — a°)/3
p* a3
= ———. O
3 3
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e
Exercise 5.3.18

Exercise 5.3.18. Graph the integrand and use known area formulas to

0
evaluate the integral: / V16 — x2 dx.
—4

Solution. Notice that with y = /16 — x2, we have

y? = (V16 —x2)2 =16 —x?> and y > 0. So x>+ y> =16 and y > 0. So
the graph of y = v/16 — x? is the top half (since y > 0) of a circle of
radius r = 4 and center (0,0):

y =416 —x2

Calculus 1 October 28, 2020 32 /38

L Eeciessn
Exercise 5.3.36

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the
/2
integral / 62 do.
Jo
Solution. The integrand is f(0) = 02, the lower bound of the integral is

a =0, and the upper bound of the integral is b = /2. So by Equation (4)
(Exercise 5.3.65),

/2 3 3 3 3 3
/ pap 2 (2 O]
0 33
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I — Y R
Exercise 5.3.18 (continued)

Solution.

2 y =416 —x2

T T

- 4

Since y = f(x) = v/16 — x? is non-negative, then (by definition) the
0
definite integral / V16 — x2 dx is the area under the curve
J—a

y = V16 — x? (and above the x-axis) from a = —4 to b = 0. That is, the
integral is 1/4 of the area of a circle of radius r = 4. Therefore,

0 2 2
/_4\/16—x2dx:¥ :#:.D

Caleulus 1
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Exercise 5.3.62 Exercise 5.3.76

Exercise 5.3.62. Graph the function h(x) = |x| and find the average

) 1
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1]. Exercise 5.3.76. Show that the value of/ Vx + 8dx lies between
0

Solution. We consider the graph and relevant areas: 22 ~ 2.8 and 3.

y = h(x)

¥ =h(x) ¥ = hex) ¥ = h(x)
Solution. Let f(x) = v/x + 8 = (x 4 8)'/2. Then
1
| . f'(x) = =(x + 8)"Y? = ——— and so the only critical point of f is
L B _1 I o b I ™) 2(+), 2Vx +8 iy y. .p
By definition av(h) = 1 f h(x) dx, so calculating the integrals using x =—8. So continuous functlon f has no critical points |n.[0, 1] and hence
areas we have by the technique of Section 4.1, “Extreme Values of Functions on Closed
(a) The average of h over [~1,0] is =L f h(x) dx = [1/2] Intervals the extremes of f on [0, 1] occur at the endpoints Since

=./(0 =v8=2y2and f(1) = /(1 = /9 = 3, then the
(b) The average of h over [0,1] is (o fo x)dx =|1/2|. minimum of f on [a, b] =[0,1] is min f = 2\/5 and the maximum is
(c) The average of h over [—1,1] |s min f = 3.

e [ h(x) dx = 1/2(1) =[1/2] O
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Exercise 5.3.76 (continued) Exercise 5.3.88

1
Exercise 5.3.76. Show that the value of '/0 VX + 8 dx lies between Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then

2v/2 ~ 2.8 and 3. return over the same 150 miles at the rate of 50 miles/hour, what is your
average speed for the trip? Give reasons for your answer.
Solution (continued). By Theorem 5.2(6), the Max-Min Inequality, we
have Solution. We define function f(t) as your speed as a function of time t,
b . . . . .
. where t is measured in hours and f is measured in miles/hour. So we have
min £+ (b—a) = (2vV2)((1) - (0)) < / Fx) dx f defined piecewise as f(t) = 30 miles/hour for t between 0 hours and 5
1 hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and
= / Vx+8dx <maxf-(b—a)=(3)((1) - (0), f(t) = 50 miles/hour for t between 5 hours and 8 hours (since it takes 3
0

<
hours to travel 150 miles at 50 miles/hour): f(t) = { 30, 0st<5

1 50, 5<t<8
of2\/§§/ vVx+8dx <3, as claimed. (O -
0



Exercise 5.3.88 (continued)

30, 0<t<5
50, 5<t<8
the average speed (i.e., the average of f over [0, 8]) is

Solution (continued). ...f(t) = So, by definition,

8
M(f) = 5o f(t)dt:W/o F(t) dt

1 8

= - f(t)dt
([ron

1 5
= —(/ 30dt+ 50dt>
8 \Jo

((30)((5) — (0)) + (50)((8) — (5))) by Exercise 5.3.63

7
(150 + 150) = 320 ?5 miles/hour.

f(t) dt) by Theorem 5.2(5), Additivity

1
8
1
8




