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Exercise 5.3.6

Exercise 5.3.6

Exercise 5.3.6. Express the limit lim
‖P‖→0

n∑
k=1

√
4− c2

k ∆xk , where P is a

partition of [0, 1], as a definite integral.

Solution. With P = {x0, x1, . . . , xn} a partition of [a, b] = [0, 1],
ck ∈ [xk−1, xk ], ∆xk = xk − xk−1, and f (x) =

√
4− x2 we have that

lim
‖P‖→0

n∑
k=1

√
4− c2

k ∆xk =

∫ b

a
f (x) dx =

∫ 1

0

√
4− x2 dx . �
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Example 5.3.1. A Non-Integrable Function

Example 5.3.1

Example 5.3.1. Show that the function f (x) =

{
1, if x is rational
0, if x is irrational

is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of

definite integral,

∫ 1

0
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk for any choice of

ck ∈ [xk−1, xk ]. Now in any interval [xk−1, xk ] there are both rational and
irrational numbers.

So we can choose each ck to be rational in which case

each f (ck) = 1 and

∫ 1

0
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk =

lim
‖P‖→0

n∑
k=1

(1)∆xk = lim
‖P‖→0

n∑
k=1

∆xk = lim
‖P‖→0

1 = 1 since the sum of the

length of the subintervals is the length of [0, 1] (namely 1).
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Example 5.3.1. A Non-Integrable Function

Example 5.3.1 (continued)

Example 5.3.1. Show that the function f (x) =

{
1, if x is rational
0, if x is irrational

is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each ck to be irrational in

which case each f (ck) = 0 and

∫ 1

0
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk =

lim
‖P‖→0

n∑
k=1

(0)∆xk = lim
‖P‖→0

n∑
k=1

0 = lim
‖P‖→0

0 = 0. But we cannot have both∫ 1

0
f (x) dx = 1 and

∫ 1

0
f (x) dx = 0, so f is not Riemann integrable over

[0, 1]. �
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

3. Constant Multiple:

∫ b

a

kf (x) dx = k

∫ b

a

f (x) dx

4. Sum and Difference:∫ b

a

(f (x)± g(x)) dx =

∫ b

a

f (x) dx ±
∫ b

a

g(x) dx

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f · (b − a) ≤
∫ b

a

f (x) dx ≤ max f · (b − a).

7. Domination: f (x) ≥ g(x) on [a, b] ⇒
∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx .
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 1)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

3. Constant Multiple:

∫ b

a

cf (x) dx = c

∫ b

a

f (x) dx .

Proof. Let P be a partition of [a, b] and let
n∑

k=1

f (ck) ∆xk be an

associated Riemann sum. Then

∫ b

a
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk and

∫ b

a
cf (x) dx = lim

‖P‖→0

n∑
k=1

cf (ck) ∆xk

= lim
‖P‖→0

c
n∑

k=1

f (ck) ∆xk since multiplication

distributes over addition
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 2)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

3. Constant Multiple:

∫ b

a

cf (x) dx = c

∫ b

a

f (x) dx .

Proof (continued). . . .∫ b

a
cf (x) dx = lim

‖P‖→0
c

n∑
k=1

f (ck) ∆xk

= c lim
‖P‖→0

n∑
k=1

f (ck) ∆xk by the Constant Multiple Rule,

Theorem 2.1(3)

= c

∫ b

a
f (x) dx ,

as claimed.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 3)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. Sum and Difference:∫ b

a

(f (x)± g(x)) dx =

∫ b

a

f (x) dx ±
∫ b

a

g(x) dx .

Proof (continued). Let P be a partition of [a, b] and let
n∑

k=1

f (ck) ∆xk

and
n∑

k=1

g(ck) ∆xk be associated Riemann sums. Then by definition∫ b
a f (x) dx = lim‖P‖→0

∑n
k=1 f (ck) ∆xk and∫ b

a g(x) dx = lim‖P‖→0

∑n
k=1 g(ck) ∆xk , so∫ b

a
f (x) dx ±

∫ b

a
g(x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk ± lim
‖P‖→0

n∑
k=1

g(ck) ∆xk
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 4)

Proof (continued). . . .∫ b

a
f (x) dx ±

∫ b

a
g(x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk ± lim
‖P‖→0

n∑
k=1

g(ck) ∆xk

= lim
‖P‖→0

(
n∑

k=1

f (ck) ∆xk ±
n∑

k=1

g(ck) ∆xk

)
by the Sum and Difference Rules, Theorem 2.1(1 and 2)

= lim
‖P‖→0

(
n∑

k=1

(f (ck) ∆xk ± g(ck) ∆xk)

)
by commutivity and addition and subtraction

= lim
‖P‖→0

(
n∑

k=1

(f (ck)± g(ck)) ∆xk

)
since multiplication

distributes over addition
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 5)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. Sum and Difference:∫ b

a

(f (x)± g(x)) dx =

∫ b

a

f (x) dx ±
∫ b

a

g(x) dx .

Proof (continued). . . .∫ b

a
f (x) dx ±

∫ b

a
g(x) dx = lim

‖P‖→0

(
n∑

k=1

(f (ck)± g(ck)) ∆xk

)

=

∫ b

a
(f (x)± g(x)) dx ,

since

∫ b

a
(f (x)± g(x)) dx = lim

‖P‖→0

(
n∑

k=1

(f (ck)± g(ck)) ∆xk

)
, by

definition.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 6)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f · (b − a) ≤
∫ b

a

f (x) dx ≤ max f · (b − a).

Proof (continued). Let P be a partition of [a, b] and let
n∑

k=1

f (ck) ∆xk

be an associated Riemann sum. Then by definition∫ b
a f (x) dx = lim‖P‖→0

∑n
k=1 f (ck) ∆xk . Notice that

min f ≤ f (ck) ≤ max f for all ck ∈ [a, b] and
n∑

k=1

∆xk = (b − a).
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 7)

Proof (continued). So we have∫ b

a
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk ≥ lim
‖P‖→0

n∑
k=1

min f ∆xk

= lim
‖P‖→0

min f
n∑

k=1

∆xk since multiplication

distributes over addition

= min f lim
‖P‖→0

n∑
k=1

∆xk by the Constant Multiple Rule,

Theorem 2.1(3)

= min f lim
‖P‖→0

(b − a) since
n∑

k=1

∆xk = b − a

= min f · (b − a),

as claimed.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 8)

Proof (continued). Similarly,∫ b

a
f (x) dx = lim

‖P‖→0

n∑
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f (ck) ∆xk ≤ lim
‖P‖→0

n∑
k=1

max f ∆xk

= lim
‖P‖→0

max f
n∑

k=1

∆xk since multiplication

distributes over addition

= max f lim
‖P‖→0

n∑
k=1

∆xk by the Constant Multiple Rule,

Theorem 2.1(3)
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(b − a) since
n∑

k=1

∆xk = b − a
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as claimed.
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Theorem 5.2. Rules Satisfied by Definite Integrals

Theorem 5.2 (continued 9)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

7. Domination: f (x) ≥ g(x) on [a, b] ⇒
∫ b

a

f (x) dx ≥
∫ b

a

g(x) dx .

Proof (continued). Let P be a partition of [a, b] and let
n∑

k=1

f (ck) ∆xk

and
n∑

k=1

g(ck) ∆xk be associated Riemann sums. Then by definition∫ b
a f (x) dx = lim‖P‖→0

∑n
k=1 f (ck) ∆xk and∫ b

a g(x) dx = lim‖P‖→0

∑n
k=1 g(ck) ∆xk . Since f (x) ≥ g(x) on [a, b] then

f (ck) ≥ g(ck) for all ck ∈ [a, b], and so∫ b

a
f (x) dx = lim

‖P‖→0

n∑
k=1

f (ck) ∆xk ≥ lim
‖P‖→0

n∑
k=1

g(ck) ∆xk =

∫ b

a
g(x) dx . �
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Exercise 5.3.10

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (a)

∫ 9

1
−2f (x) dx , (b)

∫ 9

7
(f (x)− h(x)) dx ,

(c)

∫ 9

7
(2f (x)− 3h(x)) dx , (d)

∫ 1

9
f (x) dx , (e)

∫ 7

1
f (x) dx , and

(f)

∫ 7

9
(h(x)− f (x)) dx .

Solution. (a) We have∫ 9

1
−2f (x) dx = −2

∫ 9

1
f (x) dx by Constant Multiple Rule, Thm 5.2(3)

= −2(−1) = 2 since

∫ 9

1
f (x) dx = −1. �
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Exercise 5.3.10

Exercise 5.3.10 (continued 1)

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (b)

∫ 9

7
(f (x)− h(x)) dx .

Solution (continued). (b) We have∫ 9

7
(f (x)− h(x)) dx =

∫ 9

7
f (x) dx −

∫ 9

7
h(x) dx

by the Difference Rule, Theorem 5.2(4)

= (5)− (4) = 1 since

∫ 9

7
f (x) dx = 5

and

∫ 9

7
h(x) dx = 4. �
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Exercise 5.3.10

Exercise 5.3.10 (continued 2)

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (c)

∫ 9

7
(2f (x)− 3h(x)) dx .

Solution (continued). (c) We have

∫ 9

7
(2f (x)− 3h(x)) dx =

=

∫ 9

7
2f (x) dx +

∫ 9

7
−3h(x) dx by the Sum Rule, Theorem 5.2(4)

= 2

∫ 9

7
f (x) dx − 3

∫ 9

7
h(x) dx by Constant Mult. Theorem 5.2(3)

= 2(5)− 3(4) = −2 since

∫ 9

7
f (x) dx = 5 and

∫ 9

7
h(x) dx = 4. �
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Exercise 5.3.10

Exercise 5.3.10 (continued 3)

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (d)

∫ 1

9
f (x) dx .

Solution (continued). (d) We have∫ 1

9
f (x) dx = −

∫ 9

1
f (x) dx by the Order of Integration, Theorem 5.2(1)

= −(−1) = 1 since

∫ 9

1
f (x) dx = −1. �
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Exercise 5.3.10

Exercise 5.3.10 (continued 4)

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (e)

∫ 7

1
f (x) dx .

Solution (continued). (e) By Additivity (Theorem 5.2(5)) we have∫ 7

1
f (x) dx +

∫ 9

7
f (x) dx =

∫ 9

1
f (x) dx , then∫ 7

1
f (x) dx =

∫ 9

1
f (x) dx −

∫ 9

7
f (x) dx . So∫ 7

1
f (x) dx = (−1)− (5) = −6 , since

∫ 9

1
f (x) dx = −1 and∫ 9

7
f (x) dx = 5. �
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Exercise 5.3.10

Exercise 5.3.10 (continued 5)

Exercise 5.3.10. Suppose that f is h are integrable and that∫ 9

1
f (x) dx = −1,

∫ 9

7
f (x) dx = 5, and

∫ 9

7
h(x) dx = 4. Use the rules in

Theorem 5.2 to find (f)

∫ 7

9
(h(x)− f (x)) dx .

Solution (continued). (f) We have

∫ 7

9
(h(x)− f (x)) dx =

=

∫ 7

9
h(x) dx −

∫ 7

9
f (x) dx by the Difference Rule, Theorem 5.2(4)

= −
∫ 9

7
h(x) dx +

∫ 9

7
f (x) dx by Order of Integration, Theorem 5.2(1)

= −(4) + (5) = 1 since

∫ 9

7
f (x) dx = 5 and

∫ 9

7
h(x) dx = 4. �
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Exercise 5.3.63

Exercise 5.3.63

Exercise 5.3.63. Let c be a constant. Prove that

∫ b

a
c dx = c(b − a).

Proof. Let f (x) = c . Then f is continuous on [a, b] so, by “Integrability of
Continuous Functions” (Theorem 5.1), f is integrable on [a, b]. Therefore,
we can consider any sequence of partitions which have a norm approaching
0. So we consider an equal width partition P = {x0, x1, . . . , xn} for which
∆xk = ∆x = (b − a)/n, xk = a + k(b − a)/n, and ck ∈ [xk−1, xk ] (see
Note 5.3.A).

Now ‖P‖ = ∆x = (b − a)/n, so when n →∞ we have
‖P‖ → 0. So the value of the Riemann integral is given by∫ b

a
c dx = lim

n→∞

n∑
k=1

f (ck)

(
b − a

n

)
= lim

n→∞

n∑
k=1

c

(
b − a

n

)
= lim

n→∞

(
nc

b − a

n

)
by Theorem 5.2.A(4)

= lim
n→∞

c(b − a) = c(b − a).
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n→∞
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nc
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Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with ck = xk to prove

that for a < b:

∫ b

a
x dx =

b2

2
− a2

2
.

Proof. Let f (x) = x . Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {x0, x1, . . . , xn} for which ∆xk = ∆x = (b − a)/n,
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Example 5.3.A

Example 5.3.A (continued 1)

Proof (continued).∫ b

a
x dx = lim

n→∞

n∑
k=1

ck

(
b − a

n

)
= lim

n→∞

n∑
k=1

(
a + k

b − a

n

)(
b − a

n

)

= lim
n→∞

(
b − a

n

)( n∑
k=1

a +
b − a

n

n∑
k=1

k

)

= lim
n→∞

(
b − a

n

)(
(na) +

b − a

n

(
n(n + 1)

2

))
since

n∑
k=1

k =
n(n + 1)

2

= lim
n→∞

(
(b − a)a +

(
b − a

n

)2(n(n + 1)

2

))
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Example 5.3.A

Example 5.3.A (continued 2)

Proof (continued).∫ b

a
x dx = lim

n→∞

(
(b − a)a +

(
b − a

n

)2(n(n + 1)

2

))

= (b − a)a + (b − a)2 lim
n→∞

n(n + 1)

2n2

= (b − a)a + (b − a)2 lim
n→∞

n2 + n

2n2

(
1/n2

1/n2

)
= (b − a)a + (b − a)2 lim

n→∞

1 + 1/n

2

= (b − a)a + (b − a)2
1 + limn→∞ 1/n

2

= (b − a)a + (b − a)2
1 + (0)

2
= ab − a2 +

b2 − 2ab + a2

2

=
b2

2
− a2

2
. �
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Exercise 5.3.65

Exercise 5.3.65

Exercise 5.3.65. Use a regular partition of [a, b] with ck = xk to prove

that for a < b:

∫ b

a
x2 dx =

b3

3
− a3

3
.

Proof. Let f (x) = x2. Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {x0, x1, . . . , xn} for which ∆xk = ∆x = (b − a)/n,
xk = a+ k(b− a)/n, and ck ∈ [xk−1, xk ] satisfies ck = xk = a+ k(b− a)/n
(see Note 5.3.A).

Now ‖P‖ = ∆x = (b − a)/n, so when n →∞ we have
‖P‖ → 0. So the value of the Riemann integral is given by∫ b

a
x2 dx = lim

n→∞

n∑
k=1

f (ck)

(
b − a

n

)
= lim

n→∞

n∑
k=1

c2
k

(
b − a

n

)
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Exercise 5.3.65

Exercise 5.3.65 (continued 1)

Proof (continued).∫ b

a
x2 dx = lim

n→∞

n∑
k=1

c2
k

(
b − a

n

)
= lim

n→∞

n∑
k=1

(
a + k

b − a

n

)2(b − a

n

)

= lim
n→∞

(
b − a

n

) n∑
k=1

(
a2 + 2ak

b − a

n
+ k2

(
b − a

n

)2
)

= lim
n→∞

(
b − a

n

)(
(na2) + 2a

b − a

n

n∑
k=1

k +

(
b − a

n

)2 n∑
k=1

k2

)

= lim
n→∞

(
b − a

n

)(
(na2) + 2a

b − a

n

(
n(n + 1)

2

)
+

(
b − a

n

)2(n(n + 1)(2n + 1)

6

))
since

∑n
k=1 k = n(n+1)

2 and
∑n

k=1 k2 = n(n+1)(2n+1)
6
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Exercise 5.3.65

Exercise 5.3.65 (continued 2)

Proof (continued).∫ b

a
x2 dx = lim

n→∞

(
b − a

n

)(
(na2) + 2a

b − a

n

(
n(n + 1)

2

)
+

(
b − a

n

)2(n(n + 1)(2n + 1)

6

))

= lim
n→∞

(b − a)

(
a2 + 2a

b − a

n2

(
n(n + 1)

2

)
+

(b − a)2

n3

(
n(n + 1)(2n + 1)

6

))
= lim

n→∞
(b − a)

(
a2 + 2a(b − a)

(
(n2 + n)/n2

2

)
+(b − a)2

(
(2n3 + 3n2 + n)/n3

6

))
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Exercise 5.3.65

Exercise 5.3.65 (continued 3)

Proof (continued).∫ b

a
x2 dx = lim

n→∞
(b − a)

(
a2 + 2a(b − a)

(
(n2 + n)/n2

2

)
+(b − a)2

(
(2n3 + 3n2 + n)/n3

6

))
= lim

n→∞
(b − a)

(
a2 + 2a(b − a)

(
1 + 1/n

2

)
+(b − a)2

(
2 + 3/n + 1/n2

6

))
= (b − a)

(
a2 + 2a(b − a)

(
1 + limn→∞ 1/n

2

)
+(b − a)2

(
2 + 3 limn→∞(1/n) + (limn→∞ 1/n)2

6

))
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Exercise 5.3.65

Exercise 5.3.65 (continued 4)

Proof (continued).∫ b

a
x2 dx = (b − a)

(
a2 + 2a(b − a)

(
1 + (0)

2

)
+(b − a)2

(
2 + 3(0) + (0)2

6

))
= (b − a)

(
a2 + a(b − a) + (b − a)2(1/3)

)
= (b − a)(a2 + ab − a2 + b2/3− 2ab/3 + a2/3)

= (b − a)(ab/3 + b2/3 + a2/3)

= (ab2 + b3 + a2b − a2b − ab2 − a3)/3

=
b3

3
− a3

3
. �
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Exercise 5.3.36

Exercise 5.3.36

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the

integral

∫ π/2

0
θ2 dθ.

Solution. The integrand is f (θ) = θ2, the lower bound of the integral is
a = 0, and the upper bound of the integral is b = π/2. So by Equation (4)
(Exercise 5.3.65),∫ π/2

0
θ2 dθ =

b3

3
− a3

3
=

(π/2)3

3
− 03

3
=

π3

24
.

�
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Exercise 5.3.18

Exercise 5.3.18

Exercise 5.3.18. Graph the integrand and use known area formulas to

evaluate the integral:

∫ 0

−4

√
16− x2 dx .

Solution. Notice that with y =
√

16− x2, we have
y2 = (

√
16− x2)2 = 16− x2 and y ≥ 0. So x2 + y2 = 16 and y ≥ 0. So

the graph of y =
√

16− x2 is the top half (since y ≥ 0) of a circle of
radius r = 4 and center (0, 0):
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Exercise 5.3.18

Exercise 5.3.18 (continued)

Solution.

Since y = f (x) =
√

16− x2 is non-negative, then (by definition) the

definite integral

∫ 0

−4

√
16− x2 dx is the area under the curve

y =
√

16− x2 (and above the x-axis) from a = −4 to b = 0. That is, the
integral is 1/4 of the area of a circle of radius r = 4. Therefore,∫ 0

−4

√
16− x2 dx =

π(r)2

4

∣∣∣∣
r=4

=
π(4)2

4
= 4π . �
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Exercise 5.3.62

Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x | and find the average
value over the intervals (a) [−1, 0], (b) [0, 1], and (c) [−1, 1].

Solution. We consider the graph and relevant areas:

By definition av(h) = 1
b−a

∫ b
a h(x) dx , so calculating the integrals using

areas we have
(a) The average of h over [−1, 0] is 1

(0)−(−1)

∫ 0
−1 h(x) dx = 1/2 .

(b) The average of h over [0, 1] is 1
(1)−(0)

∫ 1
0 h(x) dx = 1/2 .

(c) The average of h over [−1, 1] is
1

(1)−(−1)

∫ 1
−1 h(x) dx = 1/2(1) = 1/2 . �
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Exercise 5.3.76

Exercise 5.3.76

Exercise 5.3.76. Show that the value of

∫ 1

0

√
x + 8 dx lies between

2
√

2 ≈ 2.8 and 3.

Solution. Let f (x) =
√

x + 8 = (x + 8)1/2. Then

f ′(x) =
1

2
(x + 8)−1/2 =

1

2
√

x + 8
and so the only critical point of f is

x = −8. So continuous function f has no critical points in [0, 1] and hence
by the technique of Section 4.1, “Extreme Values of Functions on Closed
Intervals,” the extremes of f on [0, 1] occur at the endpoints.

Since
f (0) =

√
(0) + 8 =

√
8 = 2

√
2 and f (1) =

√
(1) + 8 =

√
9 = 3, then the

minimum of f on [a, b] = [0, 1] is min f = 2
√

2 and the maximum is
min f = 3.
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x = −8. So continuous function f has no critical points in [0, 1] and hence
by the technique of Section 4.1, “Extreme Values of Functions on Closed
Intervals,” the extremes of f on [0, 1] occur at the endpoints. Since
f (0) =

√
(0) + 8 =

√
8 = 2

√
2 and f (1) =

√
(1) + 8 =

√
9 = 3, then the

minimum of f on [a, b] = [0, 1] is min f = 2
√

2 and the maximum is
min f = 3.
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Exercise 5.3.76

Exercise 5.3.76 (continued)

Exercise 5.3.76. Show that the value of

∫ 1

0

√
x + 8 dx lies between

2
√

2 ≈ 2.8 and 3.

Solution (continued). By Theorem 5.2(6), the Max-Min Inequality, we
have

min f · (b − a) = (2
√

2)((1)− (0)) ≤
∫ b

a
f (x) dx

=

∫ 1

0

√
x + 8 dx ≤ max f · (b − a) = (3)((1)− (0),

of 2
√

2 ≤
∫ 1

0

√
x + 8 dx ≤ 3, as claimed. �

() Calculus 1 October 28, 2020 36 / 38



Exercise 5.3.88

Exercise 5.3.88

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then
return over the same 150 miles at the rate of 50 miles/hour, what is your
average speed for the trip? Give reasons for your answer.

Solution. We define function f (t) as your speed as a function of time t,
where t is measured in hours and f is measured in miles/hour. So we have
f defined piecewise as f (t) = 30 miles/hour for t between 0 hours and 5
hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and
f (t) = 50 miles/hour for t between 5 hours and 8 hours (since it takes 3

hours to travel 150 miles at 50 miles/hour): f (t) =

{
30, 0 ≤ t < 5
50, 5 ≤ t ≤ 8
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Exercise 5.3.88

Exercise 5.3.88 (continued)

Solution (continued). . . . f (t) =

{
30, 0 ≤ t < 5
50, 5 ≤ t ≤ 8

So, by definition,

the average speed (i.e., the average of f over [0, 8]) is

av(f ) =
1

b − a

∫ b

a
f (t) dt =

1

(8)− (0)

∫ 8

0
f (t) dt

=
1

8

(∫ 5

0
f (t) dt +

∫ 8

5
f (t) dt

)
by Theorem 5.2(5), Additivity

=
1

8

(∫ 5

0
30 dt +

∫ 8

5
50 dt

)
=

1

8
((30)((5)− (0)) + (50)((8)− (5))) by Exercise 5.3.63

=
1

8
(150 + 150) =

300

8
=

75

2
miles/hour.

�
() Calculus 1 October 28, 2020 38 / 38



Exercise 5.3.88

Exercise 5.3.88 (continued)

Solution (continued). . . . f (t) =

{
30, 0 ≤ t < 5
50, 5 ≤ t ≤ 8

So, by definition,

the average speed (i.e., the average of f over [0, 8]) is

av(f ) =
1

b − a

∫ b

a
f (t) dt =

1

(8)− (0)

∫ 8

0
f (t) dt

=
1

8

(∫ 5

0
f (t) dt +

∫ 8

5
f (t) dt

)
by Theorem 5.2(5), Additivity

=
1

8

(∫ 5

0
30 dt +

∫ 8

5
50 dt

)
=

1

8
((30)((5)− (0)) + (50)((8)− (5))) by Exercise 5.3.63

=
1

8
(150 + 150) =

300

8
=

75

2
miles/hour.

�
() Calculus 1 October 28, 2020 38 / 38


	Exercise 5.3.6
	Example 5.3.1. A Non-Integrable Function
	Theorem 5.2. Rules Satisfied by Definite Integrals
	Exercise 5.3.10
	Exercise 5.3.63
	Example 5.3.A
	Exercise 5.3.65
	Exercise 5.3.36
	Exercise 5.3.18
	Exercise 5.3.62
	Exercise 5.3.76
	Exercise 5.3.88

