Calculus 1

Chapter 5. Integrals
5.3. The Definite Integral—Examples and Proofs
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Exercise 5.3.6

Exercise 5.3.6. Express the limit I||m Z — Cf Axy, where P is a
—>0

partition of [0, 1], as a definite integral.
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Exercise 5.3.6

n

Exercise 5.3.6. Express the limit ||,I>i||m E 4 — Cf Axy, where P is a
—0
k=1

partition of [0, 1], as a definite integral.

Solution. With P = {xo, x1,...,x,} a partition of [a, b] = [0, 1],
Ck € [Xk—1, Xk], Axx = xk — xx—1, and f(x) = V4 — x? we have that

n

b 1
lim Z 4—c,fok:/ f(x)dx = / Va4 —x2dx| O
a 0

P||—0
IPll—0 &=
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Example 5.3.1

1,

Example 5.3.1. Show that the function f(x) = { 0

is not Riemann integrable over the interval [0, 1].

T

if x is rational
if x is irrational
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Example 5.3.1

Example 5.3.1. Show that the function f(x) = { é’ :::i :Z irfrg’(c)ir;ilal

is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of

n

1
definite integral, / f(x)dx = H"l’il\m . Z f(ck) Axy for any choice of
0 k=1

Ck € [Xk—1,%k]. Now in any interval [xx_1, xx| there are both rational and
irrational numbers.
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Example 5.3.1

Example 5.3.1. Show that the function f(x) = L, !f X1 .ratlo.nal
0, if x is irrational
is not Riemann integrable over the interval [0, 1].

Solution. If f is Riemann integrable on [0, 1] then by the definition of

n

1
definite integral, / f(x)dx = H"l’il\m . Z f(ck) Axy for any choice of
0 k=1

Ck € [Xk—1,%k]. Now in any interval [xx_1, xx| there are both rational and

irrational numbers. So we can choose each ¢, to be rational in which case
n

1
each f(ck) =1 and / f(x)dx = lim fck) Axx =
0

IPlI—04—=
n n
lim Z(l)Axk = lim ZAxk = lim 1 =1 since the sum of the
IPl=01— IPl=01— IP|—0

length of the subintervals is the length of [0, 1] (namely 1).
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Example 5.3.1 (continued)

Example 5.3.1. Show that the function f(x) = { 37 ::i :z irfrzzr;ilal

is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each ¢ to be irrational in
n

1
which case each f(cx) =0 and / f(x)dx = |\F|’i||m . f(ck) Axx =
0 k=1

n

lim 0) Ax, = lim 0= Ilim 0=0.
IIPﬁOkz_E( ) HPH—>OZ IPl|—0
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Example 5.3.1 (continued)

Example 5.3.1. Show that the function f(x) = { 37 ::i :z irfrzzr;ilal

is not Riemann integrable over the interval [0, 1].

Solution (continued). We can also choose each ¢ to be irrational in
n

1
which case each f(cx) =0 and / f(x)dx = |\F|’i||m . f(ck) Axx =
0 k=1

n

lim 0) Ax, = lim 0= lim 0=0. But we cannot have both
IIPﬁOkz_E( ) HPH—>OZ IPl|—0

1 1
f(x)dx =1 and / f(x)dx =0, so f is not Riemann integrable over
0 0
[0,1]. O
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Theorem 5.2

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

b b

kf(x) dx = k/ f(x) dx

a

3. Constant Multip/e:/

a

4. Sugn and Difference:

/(f(x)ig(x))dx:/b f(x)dxi/abg(x)dx

a a

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f~(b—a)§/bf(x)dx§max f-(b—a).

b b
7. Domination: f(x) > g(x) on [a, b] = / f(x) dx 2/ g(x) dx.
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Theorem 5.2 (continued 1)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

a

b b
3. Constant Multiple: / cf (x) dx = c/ f(x) dx.
a
n

Proof. Let P be a partition of [a, b] and let Z f(ck) Axy be an

k=1
n

b
associated Riemann sum. Then / f(x)dx = HIIDiHm . f(ck) Ax, and
a k=1

n

b
/ cf(x)dx = lim cf (ck) Axy
a IPIl—04—

n
= IiHm CZ f(ck) Axy since multiplication
P||—0
k=1

distributes over addition
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Theorem 5.2 (continued 2)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

b b
3. Constant Multiple: / cf (x) dx = c/ f(x) dx.

Proof (continued). ...

b
/ cf(x)dx = ”P'” Och k) Axy

k=1
n

= ¢ HFl’Hm f(ck) Axy by the Constant Multiple Rule,
0=

Theorem 2.1(3)

= c/abf(x)dx,

as claimed. ]
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Theorem 5.2 (continued 3)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. Sum and Difference:

/a(f(x)ig(x))dXZ/ab f(x)dxi/abg(x)dx_

Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axk
k=1

and Zg(ck) Axy be associated Riemann sums. Then by definition
k=1
S F(x) dx = limypy o S e_; f(ck) Axi and
b . n
[, &(x) dx =limp o> p_; g(ck) Ax, so

/ab f(x) dxi/abg(x) dx ||Pi”a0 2
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Theorem 5.2 (continued 4)

Proof (continued). ...

b b
/ f(x)dx:l:/ g(x)dx = lim Zf(ck ) Axi = lim Zg ck) DAxy
a a

IPll— IPll—

= HPII 0<Zf Ck Axk:tZg Ck Axk>

k=1
by the Sum and Difference Rules, Theorem 2.1(1 and 2)

— H/|>i||nlo (Z (f(ck) Axy = g(ck) AXk))

k=1
by commutivity and addition and subtraction

n

= HFl’iIIm . (Z (f(ck) £ g(ck)) Axk> since multiplication

T \k=1
distributes over addition
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Theorem 5.2 (continued 5)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

4. Sum and Difference:

/a(f(x)ig(x))dx_/ab f(x)dxi/abg(x)dx_

Proof (continued). ...

b b n
/ f(x) dxj:/ g(x)dx = lim ( (f(ex) £g(ck)) Axk>
a a k

b n
since / (f(x) £ g(x))dx = ||Fl)i”r‘i0 ( (f(ck) £ g(ck)) Axk> , by
a k=1
definition. O]

Caleulus 1 October 28, 2020 11 / 38



Theorem 5.2 (continued 6)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

6. Max-Min Inequality: If max f and min f are the maximum and
minimum values of f on [a, b], then

min f~(ba)g/bf(x)dxgmaxf~(ba).

Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axk

k=1
be an associated Riemann sum. Then by definition

fab f(X) dx = ||m||pH_)0 2221 f(Ck) Axg. Notice that

min f < f(ck) < max f for all ¢, € [a, b] and ZAxk =(b—a).
k=1
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Theorem 5.2 (continued 7)

Proof (continued). So we have

b
/f(x)dx = lim Zf o) Axe > lim memxk
a

I1Pll— 1Pll—
n

= lim min f ZAxk since multiplication
IPlI—0 1

distributes over addition

= min f lim Axy by the Constant Multiple Rule,
[IPl—0 Z

Theorem 2.1(3)

= minf lim (b— a) since Axy =b—a
HPII—>0( ) ;
= minf -(b—a),

as claimed.
0 Calculus 1 October 28, 2020 13 / 38



Theorem 5.2 (continued 8)

Proof (continued). Similarly,

b
/f(x)dx = lim Zf ) Ax < lim Zmafoxk
a

IPl—07 IPlI—0%
= lim max f ZAxk since multiplication
IPlI—0 pa]

distributes over addition

= max f H’lDIHm OZAxk by the Constant Multiple Rule,

Theorem 2.1(3)

= max f HI_LiHr‘n 0(b — a) since ZAxk =b-a
- k=1
= maxf -(b—a),

as claimed. ]
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Theorem 5.2 (continued 9)

Theorem 5.2. Rules Satisfied by Definite Integrals. Suppose f and g
are integrable over the interval [a, b]. Then:

7. Domination: f(x) > g(x) on [a, b] = / x) dx >/ g(x) dx.

Proof (continued). Let P be a partition of [a, b] and let Z f(ck) Axy
k=1

and Zg ck) Axy be associated Riemann sums. Then by definition

f f X_||m||PHHOZk 1 (Ck) AXk and

f g(x) dx = limypj o >_p—; &(ck) Axk. Since f(x) > g(x) on [a, b] then
f(ck) > g(ck) for all ¢« € [a, b], and so
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Exercise 5.3.10

Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that

9 9 9
/1 f(x)dx =—1, /7 f(x);lx =5, and /7 h(xg) dx = 4. Use the rules in
Theorem 5.2 to find (a) / —2f(x) dx, (b) / (f(x) — h(x)) dx,
(c)/ (2f(x) — 3h(x)) dx, (d)/ x) dx, (e)/ x) dx, and
(f)/ (h(x) — f(x)) dx.
9
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Exercise 5.3.10

Exercise 5.3.10. Suppose that f is h are integrable and that

9 9 9
/ f(x)dx =—1, / f(x)dx =5, and / h(x) dx = 4. Use the rules in
1 7 7

9 9
Theorem 5.2 to find (a) / —2f(x) dx, (b) / (f(x) — h(x)) dx,

(c)/ (2f(x) — 3h(x)) dx, (d)/ x) dx, (e)/ x) dx, and
(f)/9 (h(x) — f(x)) dx.

Solution. (a) We have
9 9
/ —2f(x)dx = —2/ f(x) dx by Constant Multiple Rule, Thm 5.2(3)
1 1
9
= —2(—1) =2 since / f(x)dx=-1. O
1
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Exercise 5.3.10

Exercise 5.3.10 (continued 1)

Exercise 5.3.10. Suppose that f is h are integrable and that
9 9 9

/ f(x)dx =—1, / f(x)dx =5, and / h(x) dx = 4. Use the rules in
1 7 7

9
Theorem 5.2 to find (b) /7 (f(x) — h(x)) dx.

Solution (continued). (b) We have

9 9 9
/ (f(x) — h(x))dx = / f(x)dx — / h(x) dx
7 7 7
by the Difference Rule, Theorem 5.2(4)

9
= (5)—(4):15ince/7 f(x)dx=5
and /gh(x)dx:4. O
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Exercise 5.3.10 (continued 2)

Exercise 5.3.10. Suppose that f is h are |ntegrab|e and that
9

/ f(x)dx =—1, / f(x)dx =5, and x) dx = 4. Use the rules in
1 7

Theorem 5.2 to find (c) / (2f(x) — 3h(x)) dx.

Solution (continued). (c) We have /79(2f(x) —3h(x)) dx =

9 9
= / 2f(x) dx —i—/ —3h(x) dx by the Sum Rule, Theorem 5.2(4)
7 7
9 9
= 2/ f(x)dx — 3/ h(x) dx by Constant Mult. Theorem 5.2(3)
7 7

= 2(5) —3(4) = —2 since /9 f(x)dx =5 and /9 h(x)dx=4. O
7

7
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Exercise 5.3.10 (continued 3)

Exercise 5.3.10. Suppose that f is h are integrable and that
9 9 9

/ f(x)dx =—1, / f(x)dx =5, and / h(x) dx = 4. Use the rules in
1 7 7

1
Theorem 5.2 to find (d) / f(x) dx.
9

Solution (continued). (d) We have

1 9
/ f(x)dx = —/ f(x) dx by the Order of Integration, Theorem 5.2(1)
9 1

= —(-1) =1 since /19 f(x)dx=-1. O
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Exercise 5.3.10 (continued 4)

Exercise 5.3.10. Suppose that f is h are integrable and that

9 9 9
/ f(x)dx =—1, / f(x)dx =5, and / h(x) dx = 4. Use the rules in
1 7 7
7
Theorem 5.2 to find (e) / f(x) dx.
1

Solution (continued). (e) By Additivity (Theorem 5.2(5)) we have

/17f(x)dx+/79f(x)dx:/19f(x)dx, then
/171"(x)dx—/19f()dx—/9 f(x) dx. So

7
/ f(x)dx =(— E smce/ x)dx = —1 and
1
9
/f(x)dsz. O
7
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Exercise 5.3.10 (continued 5)

Exercise 5.3.10. Suppose that f is h are |ntegrab|e and that

9
/f(x)dx:—l / f(x)dx =5, and/ x) dx = 4. Use the rules in
1 7

Theorem 5.2 to find (f) / — f(x)) dx.

Solution (continued). (f) We have /97(h(x) —f(x))dx =

7 7
= / h(x) dx —/ f(x) dx by the Difference Rule, Theorem 5.2(4)
9 9
9 9
= —/ h(x) dx +/ f(x) dx by Order of Integration, Theorem 5.2(1)
7 7

= smce/ dx-5and/ O

7
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Exercise 5.3.63

b
Exercise 5.3.63. Let c be a constant. Prove that / cdx = c(b— a).
a

T TR ES



Exercise 5.3.63

Exercise 5.3.63

b
Exercise 5.3.63. Let c be a constant. Prove that / cdx = c(b— a).
a

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by “Integrability of
Continuous Functions” (Theorem 5.1), f is integrable on [a, b]. Therefore,
we can consider any sequence of partitions which have a norm approaching
0. So we consider an equal width partition P = {xp, x1, ..., x,} for which
Ax, = Ax = (b—a)/n, xx = a+ k(b—a)/n, and ¢k € [xk—_1,x«] (see
Note 5.3.A).
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Exercise 5.3.63

Exercise 5.3.63

b
Exercise 5.3.63. Let c be a constant. Prove that / cdx = c(b— a).
a

Proof. Let f(x) = c. Then f is continuous on [a, b] so, by “Integrability of
Continuous Functions” (Theorem 5.1), f is integrable on [a, b]. Therefore,
we can consider any sequence of partitions which have a norm approaching
0. So we consider an equal width partition P = {xp, x1, ..., x,} for which
Axy = Ax = (b—a)/n, xx = a+ k(b—a)/n, and ¢k € [xk_1, x| (see
Note 5.3.A). Now ||P| = Ax = (b — a)/n, so when n — oo we have

|IP|| — 0. So the value of the Riemann integral is given by

b 4 b—a u b—a
dx = i f = li
/ac o= Jim ) <Ck>< ; ) ,,Lmoch< . )

k=1

= lim (ncb - a) by Theorem 5.2.A(4)
n—o0 n
= lim ¢(b—a)=c(b—a). O
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Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with ¢, = xx to prove
b 2 2

that for a < b: / wdx= 2T
R 2 2

T TS



Example 5.3.A

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with ¢, = xx to prove

b 2 2
that for a < b: / xd=2 %

. 2 2

Proof. Let f(x) = x. Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {x0,x1,...,xn} for which Ax, = Ax = (b—a)/n,
xxk = a+k(b—a)/n, and cx € [xk—_1, xk| satisfies cx = xx = a+ k(b—a)/n
(see Note 5.3.A).

Calculus 1 October 28, 2020 23 / 38



Example 5.3.A

Example 5.3.A

Example 5.3.A. Use a regular partition of [a, b] with ¢, = xx to prove
b 2

that for a < b: / xdx:b——a—z.

. 2 2
Proof. Let f(x) = x. Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {x0,x1,...,xn} for which Ax, = Ax = (b—a)/n,
xxk = a+k(b—a)/n, and cx € [xk—_1, xk| satisfies cx = xx = a+ k(b—a)/n
(see Note 5.3.A). Now ||P|| = Ax = (b — a)/n, so when n — co we have
|IP|| — 0. So the value of the Riemann integral is given by

b n n
b—a b—a
xdx = lim f(ck) <> = lim Ck ( )
/a' nﬁoo; n n—>OQZ n

k=1
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Example 5.3.A (continued 1)

Proof (continued).

b
/ X dx
a

Caleulus 1 October 28, 2020

u b—a : b—a
li =l k
i > e (P22) = fim Y- (a5

k=1

. <b—a>
lim
n—oo

. <b — a)
lim

& 1
since Z k = n(n+1)
k=1

]

S

2

i <(b_a)a+ <b;a>2 <n(n2+l)>>

24 / 38



Example 5.3.A (continued 2)

Proof (continued).

/abxdx _ nan&((b_a)aJr(b;a>2<n(n2+1)>>

= (b—a)a+(b—a)? lim n(n+1)

n—oo 2n2

= (b—a)a+(b—a)® lim nun(%ﬁ

n—oo 2n?

= (b—a)a+(b—a)? lim 1+1/n

n—oo 2

14+ 1limp_ol
_ (b- a)a+ (b gt ma—cc1/n

2
~ (b )+(b—a)21+(0):ab—az+b2_2ab+32
2
b? 32
= 2 -2 o
2 2"
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Exercise 5.3.65

Exercise 5.3.65. Use a regular partition of [a, b] with ¢, = xx to prove

b 3 3
b
thatfora<b:/ x2dx:——a—.
a 3 3
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Exercise 5.3.65

Exercise 5.3.65

Exercise 5.3.65. IEJse a regular partition of [a, b] with cx = xx to prove

3 3
that for a < b: / x2dx:b——a—.

a 3 3

Proof. Let f(x) = x2. Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {xo,x1,...,Xn} for which Ax, = Ax = (b—a)/n,
xxk = a+ k(b—a)/n, and ¢k € [xk—_1, xk| satisfies cx = xx = a+ k(b—a)/n
(see Note 5.3.A).
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Exercise 5.3.65

Exercise 5.3.65

Exercise 5.3.65. IEJse a regular partition of [a, b] with cx = xx to prove
3

that for a < b: / x2dx:b——a—3.

a 3 3
Proof. Let f(x) = x2. Then f is continuous on [a, b] so, by “Integrability
of Continuous Functions” (Theorem 5.1), f is integrable on [a, b].
Therefore, we can consider any sequence of partitions which have a norm
approaching 0. So we consider an equal width partition
P = {xo,x1,...,Xn} for which Ax, = Ax = (b—a)/n,
xxk = a+ k(b—a)/n, and ¢k € [xk—_1, xk| satisfies cx = xx = a+ k(b—a)/n
(see Note 5.3.A). Now ||P|| = Ax = (b — a)/n, so when n — co we have
|IP]| — 0. So the value of the Riemann integral is given by

b 4 b—a L b—a
2 T _ 2
/a x“dx = nllm kg_l f(ck)< - ) —nllm g ck< p >

k=1
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Exercise 5.3.65 (continued 1)

Proof (continued).

b n n 2
. b—a : b—a b—a
[roe = Jm>od (*57) = jm > (46207 ) (557

k=1 k=1
n 2
— lim (b > <32+2akb +k2<b a)
n— oo n n
k=1
b—a a — b—a\?<
— li 2 2
nLﬂ;@( p ><(na)+2a Zk+< - > k)
k=1 k=1
= lim (b;a) <(n32)+23 —2 <n(n2+ 1)>

since Y 7_; k= ”(”2+1) and Y0, k2 = w
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Exercise 5.3.65 (continued 2)

Proof (continued).

/bX2dx - n@()(b;a) <(n32)+2ab;a <n(n2+1)>
] +<b;a>2<n(n+1)6(2n—|—l)>>

= lim (b—a) (a2+2.abn_2a (”(";1))

n—oo

+(b— a)? (n(n+ 1)(2n+ 1)))

n3 6
= lim (b a) <32 +2a(b—a) <W>

:C: 2y ((2n3 + 3%2 + n)/n3>>

Caleulus 1 October 28, 2020

28 / 38



Exercise 5.3.65 (continued 3)

Proof (continued).

b
/dex = lim(b—

(22 (172007

2)? (2n3 +3n + n)/n? >>

a)
("

— lim (b— a) <a +2a(b <1+21/">
i G

2y +3/n+1/n >)

= (b—a) <a +2a(b — a) <1 + nmn;oo 1/n)

(b a) (2 + 3limp oo (1/n) + (limy o 1/n)2>>

6
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Exercise 5.3.65 (continued 4)

Proof (continued).

/c.,bx2 dx = (b-a) <a2 +2a(b— a) (1 +2(0))

(b a)? <2+3(06)+(0)2>>

= (b— a)(32+a(b—a)—|—(b—a)2(1/3))
= (b—a)(a®+ab— a®+ b?/3 —2ab/3 + a*/3)
= (b—a)(ab/3+ b*/3+ a°/3)
= (ab®+ b3+ a°b— a*b—ab® — a%)/3
p® a3
- -3 O
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Exercise 5.3.36

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the
w/2

integral/ 62 do.
0
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Exercise 5.3.36

Exercise 5.3.36. Use Equation (4) (see Exercise 5.3.65) to evaluate the
w/2

integral/ 62 do.
0

Solution. The integrand is f(6) = 62, the lower bound of the integral is
a =0, and the upper bound of the integral is b = /2. So by Equation (4)
(Exercise 5.3.65),

/2 3 3 3 3 3
0 3 3 3 3 |24
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Exercise 5.3.18

Exercise 5.3.18. Graph the integrand and use known area formulas to

0
evaluate the integral: / V16 — x2 dx.
—4
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Exercise 5.3.18

Exercise 5.3.18

Exercise 5.3.18. Graph the integrand and use known area formulas to

0
evaluate the integral: / V16 — x2 dx.
—4

Solution. Notice that with y = v/16 — x2, we have
y>=(V16 —x2)2 =16 —x?> and y > 0. So x>+ y?> =16 and y > 0. So
the graph of y = v/16 — x? is the top half (since y > 0) of a circle of
radius r = 4 and center (0, 0):

=416 —x*
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Exercise 5.3.18

Exercise 5.3.18

Exercise 5.3.18. Graph the integrand and use known area formulas to

0
evaluate the integral: / V16 — x2 dx.
—4

Solution. Notice that with y = v/16 — x2, we have
y>=(V16 —x2)2 =16 —x?> and y > 0. So x>+ y?> =16 and y > 0. So
the graph of y = v/16 — x? is the top half (since y > 0) of a circle of
radius r = 4 and center (0, 0):

=416 —x*
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Exercise 5.3.18 (continued)

Solution.

+ y=+16 —x2

—4 4

Since y = f(x) = v/16 — x? is non-negative, then (by definition) the
0

definite integral / V16 — x2 dx is the area under the curve
—4

y = V16 — x? (and above the x-axis) from a = —4 to b = 0. That is, the
integral is 1/4 of the area of a circle of radius r = 4. Therefore,
° m(r)? m(4)?
/ V16 — x2dx = = =|4x] O
4 4 |,_, 4
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Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].
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Exercise 5.3.62

Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

¥ =h(x) y=h() y = h(x) y = h(x)
f f f | t f | t f t
-1 1 -1 1 -1 1 -1 1
Caleulus 1
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Exercise 5.3.62

Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

¥ =h(x)

y=h()

y =h(x)

y =h(x)

T
=i

T
1

f
-1

;
1
1

1
=1

T
1

T
-1

.
T
1

By definition av(h) = ;1 fab h(x) dx, so calculating the integrals using
areas we have
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Exercise 5.3.62

Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

¥ =h(x) y=h() y = h(x) y= hx)

f f t | t f | t f t
-1 1 -1 1

-1 q —1 1
By definition av(h) = ;1 fab h(x) dx, so calculating the integrals using
areas we have

(a) The average of h over [-1,0] is m ffl h(x) dx = .
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Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

¥ =h(x) y=h() y = h(x) y= hx)
f f i | i f | t f t
=il: 1 -1 1 -1 1
By definition av(h) = 1 f h(x) dx, so calculating the integrals using

areas we have
(a) The average of h over [—1,0] is % ffl h(x)dx =|1/2|.

(b) The average of h over [0,1] is 7y= ( )f h(x)dx =|1/2|.
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Exercise 5.3.62

Exercise 5.3.62

Exercise 5.3.62. Graph the function h(x) = |x| and find the average
value over the intervals (a) [-1,0], (b) [0,1], and (c) [-1,1].

Solution. We consider the graph and relevant areas:

¥ =h(x) y=h() y = h(x) y= hx)
f f i | i f | t f t
=il: 1 -1 1 -1 1
By definition av(h) = 1 f h(x) dx, so calculating the integrals using

areas we have
(a) The average of h over [-1,0] is % ffl h(x) dx =

1/2]

(b) The average of h over [0,1] is 7y= ( )f h(x)dx =|1/2|.

(c) The average of hover [-1,1] is
e S h) dx = 1/2(1) =[1/2] O
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Exercise 5.3.76

1
Exercise 5.3.76. Show that the value of / v x + 8 dx lies between
0
2v/2 ~ 2.8 and 3.
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Exercise 5.3.76

1
Exercise 5.3.76. Show that the value of / v x + 8 dx lies between
0
2v/2 ~ 2.8 and 3.

Solution. Let f(x) = v/x + 8 = (x + 8)%2. Then

1
f'(x) = =(x +8)"Y2 = ——— and so the only critical point of f is
()= 5+ 8= y crtical p
x = —8. So continuous function f has no critical points in [0, 1] and hence

by the technique of Section 4.1, “Extreme Values of Functions on Closed
Intervals,” the extremes of f on [0, 1] occur at the endpoints.
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Exercise 5.3.76

1

Exercise 5.3.76. Show that the value of / v x + 8 dx lies between
0

2v/2 ~ 2.8 and 3.

Solution. Let f(x) = v/x + 8 = (x + 8)%2. Then

1
fl(x) = Z(x+8)7Y2 = and so the only critical point of f is
()= 5+ 8= y crtical p
x = —8. So continuous function f has no critical points in [0, 1] and hence

by the technique of Section 4.1, “Extreme Values of Functions on Closed
Intervals the extremes of f on [0, 1] occur at the endpoints Since

=/(0)+8=+v8=2v2and f(1) = /(1 = /9 = 3, then the

minimum of f on [a, b] = [0, 1] is min f = 2\@ and the maximum is
min f = 3.
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Exercise 5.3.76 (continued)

1
Exercise 5.3.76. Show that the value of / v x + 8 dx lies between
0
2v/2 ~ 2.8 and 3.

Solution (continued). By Theorem 5.2(6), the Max-Min Inequality, we
have

b
minf-(b—a):(2\f2)((1)—(0))g/a F(x) dx
- /01 VX FBax < maxf - (b—a) = (3)((1) = (0),

1
of 2v/2 < / Vx + 8dx < 3, as claimed. O
0
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Exercise 5.3.88

Exercise 5.3.88

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then
return over the same 150 miles at the rate of 50 miles/hour, what is your
average speed for the trip? Give reasons for your answer.

T RS



Exercise 5.3.88

Exercise 5.3.88. If you average 30 miles/hour on a 150 mile trip and then
return over the same 150 miles at the rate of 50 miles/hour, what is your
average speed for the trip? Give reasons for your answer.

Solution. We define function f(t) as your speed as a function of time ¢,
where t is measured in hours and f is measured in miles/hour. So we have
f defined piecewise as f(t) = 30 miles/hour for t between 0 hours and 5
hours (since it takes 5 hours to travel 150 miles at 30 miles/hour) and
f(t) = 50 miles/hour for t between 5 hours and 8 hours (since it takes 3

<
hours to travel 150 miles at 50 miles/hour): f(t) = { 28’ g - i i g
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Exercise 5.3.88 (continued)

30, 0<t<h

Solution (continued). ...f(t) = { 50. 5<t<8§

T TR ES



Exercise 5.3.88 (continued)

30, 0<t<h
(t)z{

Solution (continued). ... f So, by definition,

50, 5<t<8
the average speed (i.e., the average of f over [0, 8]) is

I 1 8
av(f) = /af(t)dt_(8)—(0)/0 f(t)dt

5

|
W

|~ o

8
f(t) dt+/ f(t) dt) by Theorem 5.2(5), Additivity
0 5

5 8
/ 30 dt + / 50 dt)
0 5

30)((5) — (0)) + (50)((8) — (5))) by Exercise 5.3.63

7 N N

(

—~

300

(150 +150) = =~

O~ |~ |+

75
=5 miles/hour.
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